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20 M. WINANTS

En faisant varier [ de — o & + oo, on obtient toutes les
cubiques indiquées dans le tableau de la fin du n° 10.

29. — Toutes les sections planes ont des symétries parti-
culiéres, mais qui sont compatibles avec la symétrie tétra-
édrique de la surface. Il suffit qu’on tienne compte de la position
particuliere du plan sécant (25, 26, 28).

§ 5. — Propriétés du plan tangent.
30. — Nous allons établir quelques propriétés de la surface,
dont on ne verra pas immédiatement les relations avec la

symétrie.

Nous représenterons les coordonnées courantes d’'un point de
lespace par X, Y, Z, et celles du point de contact par =z, y, z.
L’équation du plan tangent est:

(X —ax)yz + (Y — )z + (Z — z)ay = 0,
ou
X Y  Z
= = e + = 3.

Done, les coordonnées a I’origine du plan tangent sont triples
des coordonnées du point de contact. Soit ABC le triangle sui-
vant lequel le plan tangent coupe le triedre coordonné. Le point
de contact est le centre de gravité du triangle ABC.

Tout plan tangent détermine, avec les plans coordonnés, un -
tétraedre de volume constant:

V= —2—}73 .

Tout ceci rappelle des propriétés de U'hyperbole algébrique
plane du second ordre.

31. — Calculons la distance d’un plan tangent & l’origine.
Cette distance est donnée par une formule bien connue de Géo-
métrie analytique. |
— 0 . 3xyz
1 Vy2zt 4 z2a? 4 a?y?

ou
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32. — Nous dllons chercher lintersection de la surface par

un plan tangent. Un pafeil plan coupe le triedre coordonné sui-
vant un triangle acutangle ABC, que nous prenons comme

triangle de référence

‘En représentant par 6’, 97, 9", les angles que font les plans
coordonnés avec le plan tangent, nous aurons:

Zo = v sin o
(Cf. n° 27). Mais, on a
1
cos §” — & : : : ;
+ \/x—,rz e + =
done:
11
+ 2 —+ 3,.2 . :\/xz 3 ).2
1 1 Vy2z? 4 2222 L a?y

Vs
On a (30): OA =3z ; OB—By,OC—?)z Appelons a, b, ¢
<, et

<

) cdz

sin 0" — —_= —,
sp*  9p?

d
(2)

les cotés du triangle ABC ; alors: V27 4 4

par conséquent:
cdzvy

b= ——L ,

=

Pour tout point de la section, nous aurons ainsi

729p*

La cubique, suivant laquelle le plan tangent coupe la surface
a donc pour équation
afr = abe . d® 3)

NN

27p
d

—

D’autre part, on a
1
—3—><lr1ang1eABC><d = —6—><OA><OB><OC
(!

ao + b+ cy =
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Cherchons les coordonnées triangulaires du point de contact;
dans la formule (2), supposons Z = z ; il en résulte:

9p?
| V= d
par analogie: (3)
3 3
o EB— H g = gp— .
ad bd
A titre d’abréviation, nous poserons:
Ip?
L 6
m k. (6)
les équations (3, 4, 5) deviennent alors:
q ? ?
cubique : g = T, (7)
que : affy = e 14
condition: aa 4 b 4 ¢y = 3m? ; (8)
) m? m? m?
point de contact : a=-—; f=—; 9=—
a b c 9
(9)
aoe = b =cy=m? .

Les dernieres équations prouvent que le point de contact est
le centre de gravité du triangle ABC (30).

33. — On sait que tout plan, tangent & une surface, coupe
cette surface suivant une courbe & point double. Dans le cas
actuel, nous obtiendrons une cubique acnodale [3°, «], qui géné-
ralisera celle du n® 11. En opérant comme pour cette derniére,
nous allons rechercher les coordonnées d’un point quelconque

2 2 2
de la courbe. Une droite, passant par le point (% ’l;)— %—), a

pour équation:

uo 4 v ++ wy = m2<;i+~;:— —|—%> . | (10)
En résolvant les équations (7, 8, 10), on trouve:

am?(cy — bw)?
g =

T be(ay — bu)(aw — cu)

puis 3,y par permutation tournante. Ces équations prouvent
que la courbe envisagée est unicursale.
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34. — Examinons enfin la section faite par un plan paralléle
au plan tangent, ¢’est-a-dire par un plan quelconque. Cherchons
si la cubique rencontre les médianes du triangle de référence.

Nous aurons les équations:

cubique : afy = £ ;|
médiane : b = cy ;

condition: aa 4+ bB 4+ cy = 3m? .
On cherche d’abord une équation en «, en éliminant 3 et y:
ao3 — 6am?a® 4~ Imia — &bck® =0 .

- D’aprés un théoréme de Descartes, cette équation n’admet
aucune racine négative, ou bien elle en admet une et une seule,
suivant que la constante & est positive ou négative.

On cherche ensuite une équation en 3, en éliminant « et y:

1 3hm? 1 252

(5_3_ack3'§ ack3:0'

On forme le discriminant de cette équation, et I’on arrive aux
conclusions suivantes:

E <0 cubique unipartite non singuliére [2°, a] ;
=20 cubique dégénérée en trois droites ;
6
0<k <L E";)—C cubique bipartite [19, a] ;
6
k= % cubique acnodale [3°, a] ;

k> —- cubique unipartite non singuliére [2°, a].

Cette discussion ressemble beaucoup & celle du no 10. Elle
reste la méme, que le triangle de référence soit acutangle ou
non (32).

De cette discussion, I'on peut déduire le théoréme suivant:

Si 'on demande le lieu géométrique des points dont les dis-
tances aux trois c6tés d’un triangle ont un produit constant, et
s1 Pon détermine cette constante de maniére que la cubique soit
unicursale, elle sera toujours acnodale, et le centre de gravité du
triangle sera le point double isolé.
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