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18 M. WINANTS

De cette derniére équation, il résulte:

1o que la surface admet la symétrie cristallographique du
tétraedre régulier;

20 qu’elle ne péneétre pas a lintérieur du tétraédre ombilical.

§ 4. — Sections planes.

25. — Tout plan, parallele & lun des plans coordonnés,
coupe la surface suivant une hyperbole équilatére. En effet, les
deux équations:

xyz = p*, 5= g,
entrainent:
3
o =P
[
26. — Tout plan passant par 'un des axes coordonnés, coupe
2 la surface suivant une cubique
) cuspidale (1). Carles deux équa-
tions:
xyz = p? , )y = tx
entrainent:
tx?z = p3 ,
ou
@iy = g® ,
0 X (est une cubique [5°, ¢] dont

le rebroussement se trouve a
I'infini. Cette cubique est for-
mée de deux branches, symétriques I'une de I’autre par rapport
a Paxe des z. La constante ¢® a le méme signe que ¢. La courbe
rencontre les bissectrices des angles que font les axes coordonnés,
aux points:

Fig. 5.

+rx—=z=a.

En ces points, les tangentes ont, pour coefficients angulaires :
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Cect démontre que les branches, prises séparément, ne sont
pas symétriques par rapport aux bissectrices.

27. — Pour étudier les sections faites par des plans perpen-
diculaires & un A%, nous allons, tout d’abord, établir des formules
de transformation des coordonnées, dont nous aurons souvent
a faire usage.

Tout plan perpendiculaire & la droite x = y = z, coupe le
, triedre coordonné trirectangle suivant un triangle équilatéral
ABCG, que nous prendrons comme triangle de référence.

Soient M un point quelconque du plan sécant ; x, y, z ses coor-
données rectilignes dans I'espace; «, 3,y ses coordonnées trili-
néaires absolues dans le plan sécant.
La figure montre qu’on a:

Z

s =y sinl ;

mais:

3cos?20) — 1 :

4

2
sin ) = =
3]

et, par conséquent:

-
«a BTy

D’autre part:

donc

SUNNY

Y
o

*+ Py =(r+1r+ :.)\/; — conslante

P

est équation du plan.

28. — Coupons donc la surface ryz = p* par le plan
£+ Y+ z2=1; en coordonnées trilinéaires absolues, la sec-
tion sera représentée par I’équation:

afy = (p\/;) = m? .

C’est donc la courbe que nous avons étudiée plus haut (2-12).
Le triangle fondamental a pour hauteur:

3
a+3+7:l\/§-




e e

D T TS ST 5 S TR PO

20 M. WINANTS

En faisant varier [ de — o & + oo, on obtient toutes les
cubiques indiquées dans le tableau de la fin du n° 10.

29. — Toutes les sections planes ont des symétries parti-
culiéres, mais qui sont compatibles avec la symétrie tétra-
édrique de la surface. Il suffit qu’on tienne compte de la position
particuliere du plan sécant (25, 26, 28).

§ 5. — Propriétés du plan tangent.
30. — Nous allons établir quelques propriétés de la surface,
dont on ne verra pas immédiatement les relations avec la

symétrie.

Nous représenterons les coordonnées courantes d’'un point de
lespace par X, Y, Z, et celles du point de contact par =z, y, z.
L’équation du plan tangent est:

(X —ax)yz + (Y — )z + (Z — z)ay = 0,
ou
X Y  Z
= = e + = 3.

Done, les coordonnées a I’origine du plan tangent sont triples
des coordonnées du point de contact. Soit ABC le triangle sui-
vant lequel le plan tangent coupe le triedre coordonné. Le point
de contact est le centre de gravité du triangle ABC.

Tout plan tangent détermine, avec les plans coordonnés, un -
tétraedre de volume constant:

V= —2—}73 .

Tout ceci rappelle des propriétés de U'hyperbole algébrique
plane du second ordre.

31. — Calculons la distance d’un plan tangent & l’origine.
Cette distance est donnée par une formule bien connue de Géo-
métrie analytique. |
— 0 . 3xyz
1 Vy2zt 4 z2a? 4 a?y?

ou
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