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GEOMETRIE 13

15. — On appelle symbole de syméirie d’un polyeédre, un
tableau comprenant I'indication de tous ses éléments de symétrie.
16. — Le symbole de symétrie du tétraedre régulier est donc:

A% . 3AZ. 6P .

§ 3. — Forme générale de la surface. — Ombilics.

17. — Nous allons étudier le lieu géométrique des points dont
les distances a trois plans fixes rectangulaires ont un produit
constant. C’est une surface ayant pour équation:

o — pf" .

Nous pouvons supposer p > 0, car, si p était < 0, on change-

‘rait le sens de 'un des axes.

Lla surface ne rencontre ni les axes

: : . Z
ni les plans coordonnés, a distance finie. Y
Elle ne péneétre dans aucun des triedres o
suivants: z'yz, xy'z, xyz', z'y'z, dans 7
chacun desquels le produit des coor- X__________ < X

données est négatif. :
On peut immédiatement trouver qua- ‘«
tre points de la surface: (+ p, + p, Yy E
+p)s (+p—p —p); (—p ‘
+ Py~ —8 —p | p). Ge Fig. 3.
sont les quatre points A, B, C, D, som-
mets d’un tétraédre régulier, dont le centre de gravité se trouve
a l'origine des coordonnées.
La surface x y z = p® se compose donc de quatre nappes indé-
finies, asymptotes aux plans coordonnés. ,
Son équation ne change pas quand on remplace z y z par y z z,
2Yx, XY, LY 3, TY Z, ete. La surface admet six plans de symé-
trie, qui sont les mémes que ceux du tétracdre ABCD.
On démontre, en cristallographie, que Pintersection de n plans
de symétrie est un A" Il en résulte que la surface, dont nous
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14 M. WINANTS

ous occupons, posséde exactement la méme symétrie cristallo-
graphique qu’un tétraédre régulier. Les axes ternaires ont pour
équations:

X =+ y=—+z;

les doubles signes sont in-
dépendants.

18. — Dans la suite, le

~ tétraédre ABCD va jouer

un réle important. On peut

aisément trouver les équa-

tions de ses quatre faces:

BCD : x+y+z=—p;
CDA:——x—]—J'—}-z:p;
DAB : r—y+s=p,
Fig. 4. ABC : X—4+y—z=p.

19. — Sur une surface, considérons un point ordinaire, ¢’est-a-
dire un point pour lequel le plan tangent est parfaitement
déterminé. La perpendiculaire menée au plan tangent, par le
point de contact, s’appelle normale.

Par cette normale faisons passer un plan quelconque ; il va
déterminer, dans la surface, une « section plane normale » laquelle
posseéde, au point considéré, une courbure bien déterminée. °

Faisons tourner le plan sécant: la courbure variera d’une
maniére continue. Euler a démontré que la courbure restait
comprise entre un maximum et un minimum, et que les sections
normales, correspondant au maximum et au minimum, étaient
perpendiculaires I'une sur 'autre. Ces deux sections sont dites
principales.

Depuis Monge, on appelle « ombilic » un point autour duquel
la courbure est la méme dans toutes les directions.

- Si, en un point d’une surface, le plan tangent n’est pas bien
déterminé, ce point est dit singulier. Le sommet d’un cone quel-
conque est toujours un point singulier. |

20. — Pour la surface que nous considérons, les points
A, B, C, D sont des ombilics. Il est facile de s’assurer que les
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plans tangents y ont pour équations respectives:

x+y+z2=3p;

t—7y—3z=3p ;

—x+y—z=3p ;

- —x—y+z=3p .

Ces quatre points ne sont donc pas singuliers.

D’autre part, la présence d’un A® est incompatible avec 1’exis-
tence de deux sections principales perpendiculaires entre elles.
Ces points sont donc des ombilies.

Au polyeédre ABCD, nous donnerons le nom de tetraedre
ombilical.

21. — D’une maniére plus générale, nous énoncerons la pro-
position suivante:

TutoreME: Quand une surface est rencontrée par un axe de
syméirie d’ordre supérieur & deux, chaque point d’intersection est
un point singulier, ou bien un ombilic.

22. — Nous pouvons, d’ailleurs, chercher les ombilics par
Panalyse. On démontre que les coordonnées d’un tel point véri-

fient les équations:
0%z B 0%z
da? _dxdy 0y2

o0z\2 0z dz dz\?2
|4 (22 2 (=
T <0x> ox 0y T (.03')

Dans le cas actuel, nous avons:

xyz = p*;
. _P 0P 0z __ P
T T ay o ey 0) xy?
0%z 2p3 o'z p? 0¥z _ 2pt
aat T ady T oxdy T ayrl T T oapd

2 1 2
y . (,1'.2)2 . 'g?
6 — 6 — 6
( P P 1 P
+ 3,4)2 a3y + 2%y
ou bien:
2xy xy 2y

e e S
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On peut en déduire:

'1'4:}'2 — x2y4 — PG , (E)
puis:
xﬁyﬁ — pl2 ,
d’ou:
xy = & p*,
et, par conséquent:
s==%p.

De la premiére équation (E), on tire encore:

x* == y%, cest-d-dire: x =4y = *p., c.q. f. d.

23. — Pour mettre complétement en évidence la symétrie
tétraédrique de la surface, nous allons rapporter cette derniére
au tétraedre ombilical (20) comme tétraedre de référence.

D’un point quelconque de I’espace, nous abaisserons des per-
pendiculaires sur les quatre faces de ce tétraedre; nous repré-
senterons ces perpendiculaires par o, 3, y, 0; nous les prendrons
pour coordonnées tétraédriques du point ; nous choisirons les
signes de telle facon qu’un point, pris a I'intérieur du tétraédre,
ait ses quatre coordonnées positives. ‘

Les équations des quatre faces sont connues (18) ; les distances
d’un point quelconque de I’espace a ces faces, sont:

a=lety+stp: VE,

f=(—ax+r+z—p :(— V3),
vy=(x—y+z—0p) :(— V3),
b=(w+y—z—p) (= VE).

De ces quatre équations, 'on déduit:

x4+y4+s= aV3—p, )\
—ax4+y+z=—pV3+p, ")

ey =T

x—-}—‘)'—-z:—5v3——{—p.

De la somme des trois derniéres équations (F) retranchons la
premiere ; il vient:
(¢ +B+v+)V3 =1p, (G)
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ce qui prouve que les quatre coordonnées tétraédriques d’un

méme point ne sont pas indépendantes. Du reste, il est facile
de montrer, ¢ priori, que leur somme est égale & la hauteur du
tétraddre de référence. La hauteur de ce tétraédre est donc:

4 _
a+B+r1+3=5pV3 -

Si, de la premiére équation (F), on retranche, successivement,
chacune des trois autres, on obtient:

2 = (« 4 B) V3 — 2p ,
2y = (o + VT — 2
2z = (& + 3)\/3_—2[) X

Sil’on tient compte de ’équation (G), on trouve:

4x:(a—|—ﬁ——y——8‘)\/§,
by = (o — & 1 —D)VF | )
, 4z::(a—@-—y—|—8)\/~3“.

24. — Si le point (z, y, z) doit appartenir & la surface que
nous étudions, ses coordonnées doivent vérifier I'équation :

xyz = p°. En multipliant les équations (H) membre & membre,
on obtient:

64p3
TS B P bt B —or(a

— ad(a 4 3) — By(B 4 v) — LO(B + 9) — y3(y + )
+ 2(afy + af8 4+ ayd + By3) .

Mais, d’aprés 1'équation (G) du numéro précédent, on a:
4p
o 8 — = »
+ P+ e Q
L’équation de la surface peut donc s’écrire:
Yo + 3¥a?B 4 6Xafy = Yo — Xa?f 4+ 2Xafy .
On en conclut:
4(20&2{3 + Xafy) =0 .
¢’est-a-dire:
af (0 + B) + ay(o + v) + ad(e 4 8) + By(B 4 v) 4 BB + )
7 + Y8y + 8) 1+ afy + affd + ay® + Y3 = 0 .
g% L’Enseignement mathém., 22¢ année, 1921 et 1922. 2
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De cette derniére équation, il résulte:

1o que la surface admet la symétrie cristallographique du
tétraedre régulier;

20 qu’elle ne péneétre pas a lintérieur du tétraédre ombilical.

§ 4. — Sections planes.

25. — Tout plan, parallele & lun des plans coordonnés,
coupe la surface suivant une hyperbole équilatére. En effet, les
deux équations:

xyz = p*, 5= g,
entrainent:
3
o =P
[
26. — Tout plan passant par 'un des axes coordonnés, coupe
2 la surface suivant une cubique
) cuspidale (1). Carles deux équa-
tions:
xyz = p? , )y = tx
entrainent:
tx?z = p3 ,
ou
@iy = g® ,
0 X (est une cubique [5°, ¢] dont

le rebroussement se trouve a
I'infini. Cette cubique est for-
mée de deux branches, symétriques I'une de I’autre par rapport
a Paxe des z. La constante ¢® a le méme signe que ¢. La courbe
rencontre les bissectrices des angles que font les axes coordonnés,
aux points:

Fig. 5.

+rx—=z=a.

En ces points, les tangentes ont, pour coefficients angulaires :
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