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Société mathématique suisse.

Réunion, de Bienne, 23 avril 1922.

La Société mathématique suisse a tenu une réunion de printemps à

Bienne, le dimanche 23 avril 1922, sous la présidence de M. G. Dumas,
professeur à l'Université de Lausanne. Sur l'invitation du comité,
MM. les professeurs W. Blaschke et Hecke, de l'Université de
Hambourg, et M. Plancherel, de l'Ecole polytechnique fédérale
de Zurich, ont présenté les conférences dont on trouvera ci-après
un résumé. En outre, des communications furent présentées par
MM. E. Guillaume, G. Polya et D. Mirimanoff.

Conférences.

1. Conférence de M. E. Hecke (Hambourg). — Arithmétique et
Théorie des fonctions. — Les plus grands progrès de l'arithmétique
ont été effectués lorsqu'on a appliqué aux questions qui y assortissent

le moyen puissant qu'offre l'analyse des variables continues.
Il suffit de se rappeler le nom du fondateur de la théorie analytique
des nombres : Dirichlet, ainsi que ceux de Gauss, Abel, Kronecker,
Kummer, qui firent voir l'importance de la fonction exponentielle et
de la fonction elliptique modulaire pour l'arithmétique supérieure.

Une question importante se pose : Quel secours doit-on attendre
de Vanalyse dans l'édification complète de la théorie des corps de
nombres algébriques de degrés supérieurs, théorie que l'on doit à
Kummer, Dedekind et Hilbert Quels problèmes de théories des fonctions

ces questions arithmétiques soulèvent-elles
Le conférencier esquisse les méthodes et les résultats en rapport

avec ces matières.
Dans le corps quadratique réel K(V//3), les « nombres entiers » sont

les nombres y m + n \X3 (m, 72, étant rationnels entiers) pour
lesquels il est aisé de définir la divisibilité. Les nombres les plus importants

du corps sont les diviseurs du nombre 1. ce sont par suite des
diviseurs de tous les nombres entiers. C'est précisément le cas du
nombre e 2 + \/3 « Lunité fondamentale » 2 — \/3 ^ et
des nombres ± s"(n 0, ± 1, ± 2,...) que l'on désigne tous sous
le nom d'« unités »; grâce à ces nombres, il est possible de décomposer

chaque nombre entier y en un produit de facteurs entiers, par
exemple y e-j] ces décompositions en facteurs sont peu intéressantes.

Les nombres premiers dans K(\/3) sont des nombres entiers
du corps qui ne peuvent être décomposés en un produit de facteurs
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entiers — les facteurs unités étant exclus. On peut alors démontrer
que chaque nombre entier du corps est décomposable d'une seule
manière en un produit de facteurs premiers, pourvu que l'on fasse
abstraction des facteurs unités.

Dirichlet a déjà reconnu la signification de la fonction:

£*(*) —
1

„ (N(p.) p-p.' 3^Z2)

(Jï) lN((Ll

qui est, par rapport au corps K(\/3), l'analogue de ce qu'est la fonction

Ç(s) de Riemann pour le corps naturel. Dans l'expression de
Çt:(s)7 la sommation porte sur toutes les valeurs entières ^ ^ 0, du
corps qui ne sont pas associées, c'est-à-dire telles que deux d'entre
elles ne diffèrent pas par un facteur unité. Cette fonction de la variable
5, par suite de l'unicité de la décomposition d'un entier, est
représentable en un produit infini :

=H
(n) 1

|N(tc)|'

où 7r passe par tous les nombres premiers non associés. Les propriétés
de la fonction analytique &(.<?) jouent un grand rôle dans la recherche
des nombres premiers du corps. L'un des premiers résultats relatifs
à ce point est le théorème de Dirichlet, qui assure qu'il existe une
infinité de nombres premiers rr.

Considérons maintenant l'ensemble des nombres m + n\/3 comme
une multiplicité à deux dimensions; les recherches récentes ont eu
pour but l'étude de certaines fonctions des deux variables qu'on
peut attacher au corps. Voici comment il nous paraît que le pas
essentiel peut être effectué dans cette direction : Par analogie avec
les recherches classiques, formons la forme quadratique définie qui
correspond au corps K(1/3), soit Au2 + A'p/2, où y. et p sont
conjugués et A et A' positifs; puis formons pour s 1 la série
convergente

12 (A^

la sommation étant étendue à toutes les valeurs entières de p, à
l'exclusion de [x 0. En multipliant les dénominateurs par un nombre
approprié Cs on peut s'arranger pour que AA' 1; posons alors
A ex. A' e~~x, nous obtenons alors la fonction

Z {s ; x) >
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des deux variables s et x. De telles fonctions de s ne sont pas inconnues

en analyse, mais ce qui fait leur importance pour la théorie
arithmétique du corps K, c'est leur périodicité en x. En effet, puisque
/jl parcourt toute la suite des entiers du corps, sp. parcourt aussi

toute cette suite, par conséquent :

Z (.9; x -j- 21og s) s= Z (s ; x)

On peut donc développer Z en série de Fourier

TTi II x
Z(«; X) 2 •

n=—00

Il se trouve précisément que c0 (à un facteur banal près) est
Ç/t(s) et que les autres coefficients cn sont liés simplement aux
fonctions :

X>) I I O-T- (« o,i...J
|N in) Is -L-L X (jt

1

<f»)
1 ,m (*) 1 — n~~—

|NW I'
OÙ

Tcin ijut, j

\t<P) eîôg~ë loSlpïf

on voit que

X»M ; x»(aß) x»(a)-x,,(ß) •

Cette suite infinie de fonctions est en quelque manière un équivalent
de la fonction de deux variables Z{s\x). Par suite de l'unicité

de la décomposition d'un entier du corps en produit de facteurs
premiers, on tire des faits précédents, le résultat suivant: L'expression
m2 — 3 n2 représente une infinité de nombres premiers, même si Von
ne considère que les nombres m, n situés dans le plan des m, n à
l'intérieur d'un angle de sommet 0(0. 0) et de valeur aussi petite que
l'on veut.

La représentation intégrale bien connue de T {s) permet de passer
à une autre fonction de 2 variables, qui n'est pas autre chose qu'une
série thêta à deux variables:

2(t, x') =2e"i(Tft2 + T'"'Z)

U

la sommation étant étendue à tous les nombres entiers du corps;
t et r' sont des variables complexes dont la partie imaginaire a un
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coefficient positif. La théorie des fonctions thêta permet de déduire
les propriétés d'invariance:

3-(£2t e'V) m 3 (T t') â(T -1- a x' + a') 3 (x x') (1)

(pour tout entier a)

et

58 7?^) iV + *)4 (ï'T' + S')4 *'(* x')

a, ß1 y, S étant quatre entiers quelconques du corps, assujettis à
satisfaire à la condition ad — ßy 1, et à certaines congruences
relatives au module 4.

Avec l'aide d'une formule particulière de l'espèce précédente,,
on peut démontrer que Z (s; x) est prolongeable et l'on en tire une
équation fonctionnelle pour cette même Z (x;s); par suite, on en
déduit des résultats analogues pour toutes les Ç (s, X„). Celles-ci
sont, après multiplication par (s—1), des fonctions transcendantes
entières de 5.

Grâce à ces fonctions thêta, nous avons réussi à atteindre le
domaine des fonctions modulaires à deux variables. On en déduit des
conclusions qui peuvent être considérées comme une généralisation
de la théorie de la division du cercle, et de celle de la multiplication
complexe des fonctions elliptiques. Si l'on n'a égard qu'à l'invariance
suivant les équations (1), on arrive, par exemple, aux séries suivantes:

?(t, x') +

p>0

k étant un nombre fixe ^ 1 ; la sommation ne porte que sur les entiers
totalement positifs du corps c'est-à-dire sur ceux pour lesquels on
a, à la fois q 0, yî 0. Ces fonctions représentent la véritable
généralisation de la fonction exponentielle pour le cas de plusieurs
variables; elles se décomposent en fractions rationnelles, pour ainsi
dire:

© (t x') A (k)
'

Y» + hÏ*(T' tf 3 — [i/G

A (k) étant indépendant de t et la sommation porte sur tous les
entiers du corps. Cette équation correspond à la décomposition bien

1
connue de cot nz, -r-ô—, etc.... Mais alors que ces fonctions sont7 SI IV TU Z ^
prolongeâmes dans tout le plan des z, les pôles et un point singulier-
essentiel mis à part, on constate que (p (t, z) n'est définie que dans
le domaine où r et / ont des coefficients de \/—1 positifs. Il est
possible d'étudier l'allure de <p dans le voisinage des points (singuliers)^
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frontières de ce domaine. En effet, puisque (s-, ex) <p (r, r')
on en déduit pour <p (rex, r'e"-*) un développement de Fourier d'après

27T«?
*

eIo"£ ce développement met alors en évidence l'allure de (p dans le

voisinage de t x 0; <p est infini comme c^si ; des développements

analogues sont valables dans le voisinage des points r —,2 V3

t' ~y^~ où p est un non-entier du corps. Lorsqu'on s'approche de ces

points (p ne devient infini que comme £ log r x H - ;
V ^ y 3 / \ 2 y 3 /

ces facteurs £ sont liés aux nombres de classes de certains corps
supérieurs.

Pour le traitement analytique de la théorie additive des nombres
dans K(V/3), les fonctions (p forment le moyen le plus commode.

Enfin par une nouvelle sommation, les fonctions <p engendrent les
fonctions modulaires et celles-ci donnent lieu à des représentations
analogues aux séries dEinstein. Par exemple, sommons par rapport
à tous les u. entiers, et plus par rapport aux seuls nombres non
associés %(ji ^ 0), dans l'expression:

f(,, ^=^_U + yy
Pour une valeur entière de k supérieure à 2, f(T, r) est absolument

convergente et l'on a:

+ Si'"v + *>'* *'>

oc, ß, y, iï étant des entiers du corps de déterminant 1.

2. — Conférence de M. Michel Plancherel (Zurich): Sur le
passage à la limite des équations aux différences aux équations
différentielles dans les problèmes aux limites de la physique mathématique. '—
Le passage du discret au continu peut se faire en mécanique de deux
manières différentes. Ou bien on effectue le passage à la limite sur
les équations du mouvement; on est ainsi conduit à des équations
différentielles ou aux dérivées partielles que l'on regarde alors comme
les équations du mouvement des milieux continus. Ou bien on effectue
plus tard ce passage à la limite, à savoir sur les solutions du problème
discret. Alors que la première manière est celle que les mathématiciens
du XVIIIme et du début du XIXme siècle ont souvent utilisée pour
trouver les équations des milieux continus, la seconde a été entre les.
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mains de physiciens tels que lord Rayleigh un procédé heuristique
puissant pour trouver les solutions des problèmes aux limites de la
théorie des équations aux dérivées partielles, par exemple, l'existence
d'une infinité de vibrations fondamentales et leurs propriétés. Tout
naturellement la question se pose: est-ce que ces deux passages à la
limite conduisent aux mêmes résultats? En d'autres termes: les petits
mouvements d'un système continu autour d'une position d'équilibre
peuvent-ils être envisagés comme cas limite des petits mouvements
d'un système fini de points matériels?

Formulé mathématiquement dans le cas le plus simple, le problème
est le suivant: Soit

JL(pÈ) + i,i+Xu=f{x)
u(o) u( 1 0 (2)

un problème aux limites pour une équation adjointe à elle-même.
On suppose p(x) 0. Soit d'autre part

jr2
A (pé A Ut_x) + q^i + ^ai fi » i 1, 2, n 1 (3)

«o un 0

le problème aux limites pour l'équation aux différences correspondante.

Ici

Peut-on affirmer que si n tendant vers l'infini et l- vers x, on a lim

m u(x) Peut-on calculer les valeurs et les fonctions fondamentales
de l'équation homogène correspondant à (1) comme limites des

valeurs et des solutions fondamentales des équations homogènes
correspondant à (3)

La réponse est affirmative et le but de la conférence était d'esquisser
la méthode permettant de donner cette réponse.

Les étapes de la démonstration sont en gros les suivantes:
A. On introduit pour les équations aux différences (3) une expression

jouant pour elle^ le même rôle que la fonction de Green de l'équation

(1) et ayant des propriétés analogues.
B. On résoud directement le passage à la limite du problème

i2A*ut ft, i —1, 2, 1

«» 0

(5)

(S)
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au problème f(x) (7)

m(0) — u (1) 0. (8)

C. On ramène ensuite la résolution de l'équation (1) sous les conditions

(2) à celle d'une équation intégrale

i
u\x) (X ; x, r) u (y) dr — F(a:) (9)

o

où K dépend de la fonction de Green de (7).
On ramène, d'une manière analogue, la résolution des équations (3)

sous les conditions (4) à celle d'un système

n —1

«< + ,7 2 K« "* F' ,l0J
k= 1

où K^: dépend de } et de la fonction de Green de (5). De plus, lorsque
n tend vers l'infini et lorsque

i k
>- X >- V

n n J

lim K (X ; x, r) lim Ff. — F(^)

Les résultats classiques de M. Hilbert sur la résolution d'une équation

intégrale par le passage à la limite d'un système d'équations
algébriques permettent alors de conclure que la solution ut de (10)
converge vers la solution u(x) de (9).

La méthode s'étend au cas des équations aux dérivées partielles.
Dans l'étape B l'équation & u f remplace tout naturellement l'équation

(7). Mais le passage à la limite de B n'est plus aussi immédiat
et demande une étude assez délicate. De même dans l'étape C, les
noyaux qui se présentent ne sont plus bornés, ce qui exige quelques
précautions nouvelles.

3. Conférence de M. Blaschke. — Chapitres choisis de géométrie
différentielle. — Le Conférencier expose les méthodes et les problèmes
de la géométrie différentielle affine, c'est-à-dire de l'ensemble des
questions qui se formulent au moyen d'expressions invariantes vis-
à-vis des transformations affines (projectivités avec conservation du
parallélisme). On se rend compte que l'on peut construire une
géométrie différentielle invariante vis-à-vis de l'affinité, présentant une
analogie remarquable et étroite avec la géométrie différentielle
ordinaire; on y peut, par exemple, définir les notions de longueur d'arc,
courbure et torsion, puis pour les surfaces courbes, les notions d'aire^
de normale à la surface, de lignes de courbure, d'élément d'arc, etc.^

L'Enseignement mathém., 22e année; 1921 et 1922. 20
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ces notions possédant entre elles les mêmes relations que les notions
correspondantes de la géométrie ordinaire.

Gomme exemple d'application de ces méthodes l'auteur a démontré
les théorèmes suivants:

Chaque ovale a au moins six points possédant une conique oscula-
trice stationnaire.

Un corps convexe dont toutes les lignes de gravité sont rectilignes
est nécessairement un ellipsoïde. Les lignes de gravité sont les courbes,
lieux des centres de gravité de sections planes parallèles.

Enfin, l'auteur exposa les plus simples problèmes de variation de
la géométrie affine (Intégrales simples et intégrales doubles avec ou
sans conditions auxiliaires).

La bibliographie du sujet se compose des mémoires classés sous le
titre de « Ueber affine Geometrie, I-XXV dans les Leipziger• Berichte
1916-1919, XXVI à XXXII dans la Mathematische Zeitschrift,
1922, et XXIII à XXXVII dans les Abhandlungen des math.
Seminars der Hamburgischen Universität, 1 (1922). Le deuxième
volume des Vorlesungen über Differentialgeometrie du conférencier
lui-même (Springer, Berlin, 1923) donnera un exposé synthétique
de la question.

Communications.

1. — M. G. Polya (Zurich). — Prolongement analytique. —
Je dirai qu'une fonction f(z) est de «type normal» dans l'angle
a g arc z ß si / (z) est holomorphe dans cet angle et y satisfait à
une inégalité de la forme \f(z)\ < kea\z\, A et a étant des constantes
positives. Pour une fonction entière de type normal l'angle comprend
le plan entier. Soit g (z) une fonction entière de type normal. Je
désignerai la fonction

de la variable réelle çp comme « l'indicateur » de g (z).
1. L'indicateur est la «fonction caractéristique»

(—Stützgeradenfunktion) d'une courbe convexe, dite la «figure adjointe» de
g (z), qui dans des cas particuliers peut se réduire à un polygone, à
un segment de droite ou à un point.

2. Le prolongement analytique des séries

g (0) + g (0) <*~2 + g" (0) ,v-3 + H
~g(0)e-»+ ~g(l)e--2»+ }(2)e-3» + =e(w)

+ g(/g2)2-1-«' + -1— + H
est holomorphe et uniforme à l'extérieur de la figure adjointe de (z)
mais a un point singulier sur chaque droite qui s'appuie sur cette
figure (chaque « Stützgerade »). Dans le cas des séries fö )et (w)
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je parle du plan entier des w, g(z) étant une fonction de type normal
quelconque, dans le cas de la série C(w) je ne considère qu'une bande
horizontale de largeur à l'intérieur de laquelle la figure adjointe de

g (z) est supposée comprise.
3. Une fonction f (z) de type normal dans le demi-plan Ûl(z) ^ 0

satisfaisant aux conditions

f(0j — /'(l) : /"(2) ~ ffô) ••• — 0

I /'(+ i'~)|+ i / (— ir)|< exp (rfx —- -Z \ \
V \ • i '' '•) +7 J

pour rassez grand, a étant une constante positive, s'annuile identi-
quement si s 0, mais peut être ^ 0, si s 0.

4. Une fonction entière g (z) satisfaisant à une inégalité de la forme
IgCOI < \z\aen^ pour \z\ suffisamment grand qui s'annuile pour
2 0, zh 1, ± 2, ± 3,... est &(z) sin nz, ou ® (z) est un polynome.

5. Soit N (r) le nombre des zéros de g (z) dans le cercle \z\<^r,
g (z) désignant une fonction entière de type normal. On a

U désignant le pourtour de la figure adjointe de g (z).
6. Admettons pour simplifier que tous les points singuliers sur le

cercle de convergence d'une série entière soient des pôles. On peut
affirmer que l'arc entre deux pôles consécutifs quelconques n'excède
pas une fraction de la circonférence égale au taux des coefficients
différents de zéro de la série en question. Admettons maintenant,
que les coefficients sont réels et différents de zéro. Si le point positif
du cercle de convergence est un point ordinaire de la série l'arc
de régularité qui le contient ne surpasse pas une fraction du cwcle
égale au taux des variations des coefficients. (Les taux en question
sont déterminés par des lim.)

On remarquera que ces énoncés apportent quelques précisions
à des théorèmes bien connus de MM. Borel, Carlson, Fabry, Lindelöf,
Phragmén, Vivanti etc. C'est surtout grâce à la remarque 1 qu'une
simplification notable et une coordination naturelle de toutes les
questions connexes deviennent possibles.

2. M. D. Mirimanoff (Genève). — Sur un problème de la théorie
de la mesure. U y a deux ans environ, M. Plancherel a attiré mon
attention sur le problème suivant:

Problème. Etant donné deux ensembles linéaires et Ey répartis,
le premier sur un segment OA de l'axe Ox et le second sur un segment
OB de l'axe Oy, on mène par les points de Ex des droites parallèles
à Oy et par les points de Ey des droites parallèles à Ox. Soient E
1 ensemble de tous les points d'intersection de ces deux familles de
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droites et la projection orthogonale de E sur une droite
quelconque OA formant avec O# un angle 3\ Quelle est la mesure de E^

Je donnerai la solution de ce problème pour le cas où les ensembles
Ex et Ey appartiennent à la catégorie des ensembles parfaits que
M. Denjoy désigne sous le nom d'ensembles présentant le caractère
(A) 1 et que j'appelle ensembles parfaits de première espèce.

Soit E un ensemble parfait de lre espèce construit sur un intervalle
(a, b). On sait que son complémentaire se compose d'un ensemble
d'intervalles ouverts 3t que j'appellerai, avec M. W. H. Young, les
intervalles noirs de E.

On peut établir la propriété suivante: Si a et ß sont deux points
quelconques de (a, b) n'appartenant pas à un même intervalle noir
de E (l'un des points a, ß peut être situé en dehors de (a, b)) et si &
est un ensemble parfait quelconque de lre espèce construit sur
(a, /3), les ensembles E et & ont des points communs.

Revenons à notre problème.
Soient Ex et Ey deux ensembles parfaits de lre espèce construits

sur OA et OB; l'ensemble plan E construit à partir de Ex et Ey est
enfermé à l'intérieur d'un rectangle. A tout intervalle noir 3i de Ex
correspond une bande noire verticale comprise entre les parallèles à
Oy passant par les extrémités de De même, à tout intervalle noir
de Ejy correspond une bande noire horizontale.

Soit maintenant d une droite quelconque coupant le contour du
rectangle, et d0 la portion de d comprise à l'intérieur de ce contour.
On peut établir le théorème suivant:

Théorème. Pour que la droite d passe par un point de E, il faut et
il suffît que les deux extrémités de d0 n'appartiennent pas à une
même bande noire.

La solution du problème de M. Plancherel en découle immédiatement.

Supposons, pour fixer les idées, OA OB 1 et 0 < 9" ^ 7
On a alors

m (E^) sin 3 + cos 3 —{$. cos 3 — sin 3)
i

la somme étant étendue à tous les i tels que 3i
Un exposé complet de ces recherches paraîtra dans le t. IV des

Fundamenta mathematicae, actuellement sous presse.

3. M. Ed. Guillaume (Berne). — A propos des discussions de
la Théorie d'Einstein au Collège de France. — L'auteur rappelle
l'objection qu'il a présentée à Paris, quelques semaines auparavant,
et qui a été reproduite dans la Revue générale des Sciences (n° 11,
p. 322-324, 1922).

1 Accademia del Lincei, novembre 1920, p. 291 et 316.
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