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Autre remarque. Soient oq, a.2, an des nombres rationnels

et la somme U définie par

ai xi T ao 'r2 + • * • "t~ an Xn ~ ^ '

Les définis comme plus haut sont des fonctions rationnelles
de U. En effet, si l'on pose

a! Ji <*2 X2 — r2 CL„ xn — yn

on a

Ji + y2 + ••• + yn ~ u

f «1 aî ' f% fl2a|- fi — an< '

donc les y sont des fonctions rationnelles de U, et il en est de

même, par suite, des x.

DÉMONSTRATION DU THÉORÈME DE LIOUVILLE
PAR L'ÉLIMINATION DU TEMPS

ENTRE LES ÉQUATIONS DE LAGRANGE

PAR

M. Émile Turrière (Montpellier).

1. La méthode de Liouville, lorsqu'elle est applicable à un
système à k degrés de liberté, conduit à 2k quadratures indépendantes

les unes des autres. Ces 2k quadratures se partagent en
deux groupes. Un premier groupe de k quadratures fournit k—1
relations entre les seuls paramètres q{ q2 q* du système; le
second groupe de k quadratures donne par addition l'expression
du temps.

Toutes les relations indépendantes du temps, qui déterminent
géométriquement les trajectoires, se séparant ainsi, comme
conséquence du calcul, des éléments cinématiques, je me suis proposé
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d examiner comment se présente cette séparation des quadratures,

lorsqu'on applique à cette question de dynamique les
résultats de la théorie de l'élimination du temps dans les équations

de Lagrange. J'ai été conduit, par cette voie, à une
nouvelle démonstration du beau théorème de Liouville.

L'élimination du temps dans les équations de Lagrange telle
qu'elle a été effectuée par G. Darroux 1 et par M. P. Painlevé 2

conduit à k1 équations de même forme que les équations de
Lagrange : ce sont de., équations d'EuLER du calcul des varia-
tions.

Je crois utile d'indiquer une méthode simple pour déduire ces
équations de celles de Lagrange sans appliquer le principe de la
moindre action. Pour préciser la signification des formules, et,
dans un but didactique, j'appliquerai la méthode à deux exemples
classiques.

2. L élimination du temps dans les équations de Lagrange. —
On sait combien la formule de Binet, dans le cas des forces
centrales uniquement fonctions de la distance est utile pour
permettre de déterminer la trajectoire d'un point matériel
indépendamment du temps. Les kintégrales du théorème de Liouville

donnant les relations entre les seuls paramètres permettent
de même d'éliminer la notion du temps.

D une manière générale, il y a lieu de se poser la question
suivante. En prenant l'un des paramètres de Lagrange, ?f par
exemple, pour variable fondamentale, obtenir équations
différentielles dans lesquelles q,, q,, q,t, q, soient les fonctions
inconnues et qt la variable. Il suffit évidemment d'éliminer le
temps entre deux équations de Lagrange, celle relative au
paramètre qi et une autre équation.

Prenons donc deux paramètres, que j'appellerai x et y, je
me placerai dans le cas d existence d'une fonction des forces U et
de liaisons indépendantes du temps. Soit T — U fi5 l'intégrale
des forces vives. Les équations de Lagrange pour ces
paramètres sont:

— (__ A / ôT \ ôT _ ôU
dt bx àx ' dt \ö)'/ öj ôj '

Gr. Darboux. Leçons sur la théorie générale des surfaces, 1889, t. II, p 499» Les diverses communications faites en 1892 par M. P. Painlbvé sur le's changements de-variables dans les équations de la dynamique se trouvent dans les C. Rt. CXIV et CXV.
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dr
L'expression de T étant T X x"1+ Y y'2, je poserai y,

T 0 X + Ï)2 Y, -1 ^-'

Ôj öj ' öj'
'

örj
* ör' ÖY]

L'intégrale des forces vives donne:

U 4- h
T U + h x'2. © U + h .r'2 —

Je pose encore:

O2 0 (U + h) ,*' § •

Comme U n'est pas fonction de v?:

(tr -f- h)—2Q.V ' ' ÖY] ÖY)

ôT _ ./ö® _ 20 00 Û2_ 2Q2 ÖÜ
__ 2ÔQ

(>)'' ÖY] Ü -{-il Ö Yj © ©(U —J- A) Ö f] ÖY]

Il est évident que la dérivation totale par rapport à t d'une
fonction quelconque / donne lieu aux égalités suivantes:

df df dx df f
Q df

dt dx ' dt dx ' © ' dx

L'équation de Lagrange relative au paramètre y devient
alors, en application de ces diverses formules:

d / ÔT\
dt \ ör' /

ôT ÖÜ

dt\by'J [öj 6)

û d/2&Q\_ 60 au_u au
© ' ätr \ Ö Y] /

X
ÖJ ÖJ © ÖJ ÖJ

O d /öQ\ 1 ö r, „-1 1 ö „„ 2Q öQ

0 Tx(vVg©I + ' ] 0ö^'( "©""ây
;

c'est-à-dire finalement:

d /öü\ _ öQ
dx \ Ö Y] J ÖY]

'
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Telle est la forme définitive de l'équation de la trajectoire,
dans laquelle:

" È: ® T:(§)'; û' (" + »)-8.

Elle a la forme de l'équation d'EuLER du calcul des variations.
3. Exemples. — Prenons un exemple: celui du point matériel

pesant dans le vide, en admettant que la trajectoire est plane
et située dans le plan vertical Oxy. Alors (pour une masse m 2) :

T y:'2 + y'2 U — — 2gy

0 z=z 1 -f Y)2 Q2 (k — 2gy) (1 -4- Y]2)

Ici, il convient de faire une remarque analogue à celle qui
concerne les coordonnées cycliques ; c'est que l'une des
coordonnées, x, est absente de Ü.

Lorsque y est absente de Q, l'équation trouvée donne

(")=-d /öQ
dx

et par suite en intégrant

öQ
zz: constante

ÖY)

-ô V©VU 4-h zz: constanteV
Ö Y]

Nous avons donc intérêt dans le cas actuel à prendre y et non x

comme variable principale. Posons: p b* ~
0z=:l + p2 ü» (Ä-2Är)(1q-p2)

il nous suffit d'écrire:

m =z a (constante)

Pour t 0, le mobile part de l'origine 0 (x 0, y 0) avec
une vitesse de projections (v0 cos a0, c0 sin a0). On a donc:

1 a h
po cotg a0 « ®0 ry-âv > û. i
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d'ailleurs, d'après le théorème des forces vives, h donc:

Q0 •u sin a0

Par dérivation, nous avons:

2Q^- 2p (h-2gy)

«Ü p (h — 2gy)

avn cos an 2

s îo an s m an
a i' cos 0Ln

L'équation de la trajectoire se présente par suite sous la forme
suivante :

a2 (h — 2oj)(l + p«) f(h - 2oj)2

«2(1 + P2) — ?2(h — 2gy)

fdx\2
*2 fa) (h -a2- 2gy)

f. cos' o0 ^ (f0 sin2 <x0 — 2 ;

f dy

[/v sin2 a0 — 2

• cos a.

'V*:° in2 a0 — ;

O

la trajectoire est donc la parabole d'équation:

v sin2 œ0 — 2gy — * — ;

v cos^ a„
o o

/
en écrivant que pour y0, x0, on détermine la valeur de la
constante x0\

"o
ocn — sm a„ cos a„ ;

l'équation définitive de la parabole trajectoire est enfin:

2c cos2 aA

- r + x2 — 2xxq — 0

—i h x tang a0li' cos^ ocn

C'est l'équation bien connue.

L'Enseignement mathém., 22e année ; 1921 et 1922.
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Passons au second exemple.
Dans le cas des forces centrales, uniquement fonction de la

distance et en dynamique du plan:

" ($'+'GrT
9 ne figure pas dans Q. Il faut alors prendre r comme variable
indépendante, et poser:

rfö
71 ^ © r2rj2 + 1 Q2 (U + A) (r2ri2 + 1) ;

l'équation — a (constante) conduit à la quadrature:

e ±* /'J r.y/u + 4-^
4. Extension au cas d'un nombre quelconque de paramètres. —

Il suffit de prendre par exemple, pour coordonnée indépendante,

et de poser:

d(h _ dq2
__

d(lk—\
_~ '

dqk - ^ •

® + Qa*!, + ••• + + Q* •

û2 — ©. (U + h) ;

Les k— 1 équations indépendantes du temps sont alors:

d /dû \ _ dû
d9*\driJ ~ Mi

_A_ öfl \ _ da
d(tkV^k~\)~~ Mfc^t

5. Démonstration du théorème de Liouville. — Pour simplifier
l'exposé de la démonstration — (qui sera rapidement rendue
générale ensuite) — je supposerai que l'énergie cinétique T a

pour expression

T (Ax 4- A2 -j~ A3 + -f- Ak) (q± + ql 4- 4 qkJ
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que la fonction des forces U est

u, + u2 + + r.
Aj + A2 + -f- Ak

et que la constante T — U des forces vives est nulle. Je prendrai
qk pour variable indépendante qui, pour simplifier l'écriture,
sera désignée par q et je poserai:

r. — „ _ <^2..- 1
1

dq ' 2
dq 'k~X

Les dérivés des fonctions

A1 (?i> • 0, [qj,A2 (r/2) u2 (?2), A^

seront désignées par accentuation.
Dans ces conditions:

® (Ai + A2 i- + Ak)(r)*+ r,2 -f -f-
>

=(U> + u2 +... + u,» („;+^ +...+^ +

pour simplifier encore l'écriture et l'impression, il y a lieu de
poser:

\+ a! + •• • + ri;_i H — 1 u, + u2 + + u0

a2u0 h
d fi AQ

û^T-1i-Uo. 2û|ii U.H;ü 11 0<7l

la dérivation totale, par rapport à qk q de l'avant-dernière
égalité ci-dessus donne :

dq\i%)dqÖ-/1, 0 + ^ dq '

l'équation générale de la théorie de l'élimination du temps,d_/qii\ _ nu
dq \ôïiJ ~
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transforme l'équation précédente en la suivante:

ou au. TJ «Ui
ör/1 dq ör^ 0 dq 11

dq

IHU' + ^u lüi I ^Ho
1 £1 dq 0 dq 1

dq '2

il est évident que Ut — ; l'équation obtenue est donc
yjj aq

H2
U0(2H dr\— rij.rfH) + r),H.rfU d\J, =0 ;

11

elle s'écrit encore:

U.TL

une intégration, avec une constante additive <xv donne alors:

H

on a donc un système d'intégrales premières:

\ U, -f- «, 1 —i t"/;.—l -)-

H - U0
' •" "H" - d;

'•

l'addition membre à membre de ces égalités donne:

H — 1 _
Uo — V + «i + ••• + «*_! a, — otj — aA._,

H u0 ' H- u;
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oïi peut poser, avec une constante ak telle que

ai ~h a2 ~1~ ayt — ^ »

les égalités suivantes:

2 Uj -j— &i f 1 ~b ak—1

^ U£ + ak + ak

le problème est résolu par quadratures:

dcl[
__

d%
__ _ _j4k_

U1 + ai B2 + a2 Uk + H

Si l'on se place dans le cas le plus général,

T (Ai + A2 + 4- Aa) (Bx (Jt + B2 r/2 + -j- ftkqk)

T — U — h

il est manifeste qu'il faut remplacer U1 par \]l + hAi Uj
par Uk + hAkl dq\ par B^.dq\ dq\ par Bk dq\; d'où les
formules bien connues:

Bi dg\
_

B2 d% _ _
B& dch

Uj -j- hA1 + ai U2 -|- IiA2 -p- a2 + hAk -}-

<*i +• ••• H- *k — 0 •

Le théorème des forces vives donne finalement l'expression
de temps avec k quadratures.
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