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THEOREME DE LIOUVILLE 277

Autre remarque. Soient a,, «,,... o, des nombres rationnels
et la somme U définie par

17 .
ax, + ayxy, + oo+ o, x, = U

Les z, définis comme plus haut sont des fonctions rationnelles
de U. En effet, si1’on pose

x, =y, - Gy Xy == Vg oo &, X, =¥,

On a
Yy +3+ - +y,= U

& o 2 2 2 2 2 .
= ag o, = PR PP W Y e

donc les y sont des fonctions rationnelles de U, et il en est de
méme, par suite, des z.

DEMONSTRATION DU THEOREME DE LIOUVILLE
PAR L’ELIMINATION DU TEMPS
ENTRE LES EQUATIONS DE LAGRANGE

PAR

M. Emile Turritre (Montpellier).

1. La méthode de LiouviLLg, lorsqu’elle est applicable & un
systéme & k degrés de liberté, conduit & 2k quadratures indépen-
dantes les unes des autres. Ces 2k quadratures se partagent en
deux groupes. Un premier groupe de k& quadratures fournit t—1
relations entre les seuls paramétres g, , q, ,--- qx du systéeme; le
second groupe de k quadratures donne par addition I’expression
du temps.

Toutes les relations indépendantes du temps, qui déterminent
géometriquement les trajectoires, se séparant ainsi, comme consé-
.quence du calcul, des éléments cinématiques, je me suis proposé\
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d’examiner comment se présente cette séparation des quadra-
tures, lorsqu’on applique a cette question de dynamique les
résultats de la théorie de I’élimination du temps dans les équa-
tions de LAGRANGE. J’ai été conduit, par cette voie, & une nou-
velle démonstration du beau théoréme de LiouviLLg.

L’élimination du temps dans les equations de LAGRANGE telle
qu'elle a été effectuée par G. DarBoux ! et par M. P. PAINLEVE 2
conduit & £ — 1 équations de méme forme que les équations de
LAGRANGE: ce sont de. équations d’EvLer du calcul des varia-
tions.

J& crois utile d’indiquer une méthode simple pour déduire ces.
equations de celles de LAGRANGE sans appliquer le principe de la
moindre action. Pour préciser la signification des formules, et,
dans un but didactique, Jappliquerai la méthode & deux exemples.
classiques.

2. L’élimination du temps dans les équations de Lagrange. —
On sait combien la formule de BINET, dans le cas des forces
centrales uniquement fonctions de la distance est utile pour-
permettre de déterminer la trajectoire d’un point matériel indé-
pendamment du temps. Les k intégrales du théoréme de Liou-
VILLE donnant les relations entre les seuls parametres permettent
de méme d’éliminer Ia notion du temps.

D’une maniére générale, il v a lieu de se poser la question sui-
vante. En prenant I'un des paramétres de LAGRANGE, ¢, par
exemple, pour variable fondamentale, obtenir & — 1 équations.
différentielles dans lesquelles 92y 954 94, --- qr sOfent les fonctions.
inconnues et ¢, la variable. Il suffit évidemment d’éliminer le
temps entre deux équations de LacrancE, celle relative au
parametre ¢, et une autre équation.

Prenons donc deux parameétres, que J’appellerai z et y; je
me placerai dans le cas d’existence d’une fonction des forces U et
de liaisons indépendantes du temps. Soit T — U — h, 'intégrale
des forces vives. Les équations de LLAGRANGE pour ces para-
metres sont: ‘

d < aT> ol U d (o’l‘) o1 dU
dt \ox’ dx ~ ox de \ 'y’ o oy

N

1 G. DARBOUX. Legons sur la théorie géneérale des surfaces, 1889, t. 11, p- 499.
* Les diverses communications faites en 1892 par M. P. PAINLEVE sur les changements de-
variables dans les équations de la dynamique se trouvent dans les C. R., t. CXIV et CXV.
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/1y 19 . d 3
L’expression de T étant T = X 2™ + Y y'%, je poseral Zt%

~

rr:xl2.'® : ®:X+1]2Y , .q:i_'_,
0T ,00 o 00
Ty s S wy T
L’intégrale des forces vives donne:
U+ 4
T=U<4"#h, x22. 00 =U4 h , 2% = g—
Je pose encore:
Q*=06.(U+4 4k, %':9
< ®
Comme U n’est pas fonction de 5:
06 0Q
hy — = 2Q.— .
b'l‘__x,b(ﬂ 20 2 Q 2 207 \Q_QDQ
o' o T U4k om @ OWUF R o Tom

279

= n,

Il est évident que la dérivation totale par rapport & ¢ d’une

fonction quelconque f donne lieu aux égalités suivantes:

df _df dx _df ,_Q df

I’équation de L.AGrRANGE relative au parametre y devient

alors, en application de ces diverses formules:

alir) =5+

Q d (,0Q\ __ ,,00 L oU U + ko0

O dx\"on /)" oy oy @ oy oy
Q d [0Q 10 1 2Q22Q
20 —(22) =~ = 0] = = =~ QY =22
OdW< ) oy LU+ O] =57 (@) =70

¢’est-a-dire finalement:

d [2Q dQ
dx\ on _Zm'~
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Telle est la forme définitive de 1’équation de la trajectoire,
dans laquelle:

_dy. . dx g -l
=0 8= r(dt), Q= (U +4).0

Elle a la forme de I’équation d’EuLer du calcul des variations.
3. Exemples. — Prenons un exemple: celui du point matériel
pesant dans le vide, en admettant que la trajectoire est plane
et située dans le plan vertical Ozy. Alors (pour une masse m = 2):

T = a2 + 5?2, U=— — 2gy
O=1+4+7, Q'=(h—2g7(1+ 7% .
lei, 1l convient de faire une remarque analogue a celle qui
concerne les coordonnées cycliques; c’est que 'une des coor-

données, x, est absente de Q.
Lorsque y est absente de Q, I’équation trouvée donne

d />0
d<M>_O’

et par suite en intégrant

0Q
—— == constante ,
o
VYU + & . V = constante .

Nous avons donc intérét dans le cas actuel & prendre y et non «

. .. o dx
comme variable principale. Posons: p = e
=142, Q% = (b — 2gy)(1 + 0% ;

il nous suffit d’écrire:

—— = a (constante) .

Pour ¢ = 0, le mobile part de 'origine O (z = 0, y = 0) avec
une vitesse de projections (¢, cos e, ¢, Sill ;). On a done:

1 3 h
) — cotg a 6 — — Q — —
Po 8% » 0 sin? a, ’ e sin? a,




THEOREME DE LIOUVILLE 281

d’ailleurs, d’aprés le théoréme des forces vives, 2 = ¢; donc:

o — %

7 sina,

Par dérivation, nous avons:

>Q

2Q = 2p(h — 2gy) ,

' 0p .

aQ = o(h — 2gy) ,

Do 0% %2 , a =y, cos a, .
sin o, sin o, ©

i

L’équation de la trajectoire se présente par suite sous la forme
. sulvante:

v cosa, = s 2(v sin? ¢, — 2g%)
0 0 d.y 0 o] ’
e
x—-rozif J ¥y COS 0
2
-2 .
I/vosm o — 29y
v, COS ;
—_— — 0 """ 70 212 U
x X, = F p l/vo sinfa; — 2gy 5

la trajectoire est donc la parabole d’équation:

2 g2

¢ sin?a, — 20y — 2 (x — x,)? ;

o 0 8 . . o)” 5
v’ cos? a

/
en écrivant que pour ¥y = 0, x = 0, on détermine la valeur de la

constante z,:

o2
S 0 < & .
x, = — sin g, cos a,

p ?
o

I’équation définitive de la parébole trajectoire est enfin:

2
2
2v0 cos® a

. 2 e
= y+ af— 2xx, =0,
8
g’

y = — + x tang o, .

2
Qs'o cos? a,
(est I’équation bien connue. .

[’Enseignement mathém., 22¢ année ; 1921 et 1922. 19
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Passons au second exemple.
‘Dans le cas des forces centrales, uniquement fonction de la
distance et en dynamique du plan:

dl‘ 4 de #
2' — 2 ‘ "
I — (—t> + ! <———t> y (7) 3

0 ne figure pas dans Q. Il faut alors prendre r comme variable
indépendante, et poser:

db ’ .
1= O=r4+1, Q= (U h@r2+1) ;

I’équation %%— = a (constante) conduit & la quadrature:

f):iav/l dr
2 a’
r\/U—i—h——72

4. Extension au cas d’un nombre quelconque de paramétres. —
I suffit de prendre g, par exemple, pour coordonnée indépen-
dante, et de poser:

dg, _ dg, dqb~1__,)
v qu—qg, qu_k'

dg,
0= Qn + Qun, + o+ Q_ymy + Q-
P=0.(U+4 &) ;

Les k£ — 1 équations indépendantes du temps sont alors:

d <OQ>_6.Q
d‘/k on,) 0q, ,

d 0\ bQ‘
dq, (0%__1) TGy
5. Démonstration du théoréme de Liouville. — Pour simplifier
I'exposé de la démonstration — (qui sera rapidement rendue
générale ensuite) — je supposerai que ’énergie cinétique T a
pour expression

T= (A + A+ 4+ . +4,) (4 + 0’ + - + )
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que la fonction des forces U est

U 40U, 4+ ..+,
A+ A+ FA

%

et que la constante T — U des forces vives est nulle. Je prendrai
g, pour variable indépendante qui, pour simplifier I’écriture,
sera désignée par ¢ et je poserai:

dQl dQ2 . . dgk—l
7]1:@7 ﬂgzd—(]’ v [}k__1—— dq ’

Les dérivés des fonctions

A (g, U (q,) o Ay (qs) Uy (¢g5), - Ak (97) » Uk (qk)

seront désignées par accentuation.
Dans ces conditions:

O=(A+ &+ A (7, + o+ + 1)
W=U Uy o+ Uy (4 + 1, + o 1y + 1) 5

pour simplifier encore 1’écriture et Pimpression, il v a lieu de
poser:

N, A = H—1 U+U+..+0, =1, .

02 = U,. H.
/
04} 0Q ’
Q—=1,.0, , 20— =U_.H :
0, 04, !

la dérivation totale, par rapport a g, = ¢ de 'avant-derniére
égalité ci-dessus donne:

au,

Q— —— . — =17
dq "o, dg = ° Ll dg

dq

bv]l

d(os).) dQ 0Q  dn

I’équation générale de la théorie de élimination du temps,

d <0,Q> ... 08
dg \on, _0(11 ’
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transforme I’équation précédente en la suivante:

0Q dn.aQ:UOd_-ql_F_qldl;o
0f; ~ dq oy dg dq
LR N mUy dQ _ [, dn, 4T,

20T T g T 0 dg Ty

1 n, U, dH dU,\ . dn, du,
7 HU + 398 <U°dq + dq)—Uozg""md—(,
n, (4 dH du, _dy dU
oy U — U %M 4 9 0
U, + (°dq+.qu °dq+ tdg
, dH “dn dU
B2U, 4 7, U, ° - = 2HU07ql + 0 H dqo ,
dn, di du, .o

14U , .
il est évident que U, = - dql; Péquation obtenue est donec:
1

2
Uy(2H . dn, — 0, . dH) 4 4, H. dU—y— dU, =0 ;

My

elle 8’écrit encore:

une intégration, avec une constante additive «,, donne alors:

2
Uy,
H

=U, + « ;

on a donc un systéme d’intégrales premiéres:

2 2
R Mt _ Ypa +ooyg
v, 7 H — U ’

0

Paddition membre & membre de ces égalités donne:

H—1 Up—Ug 4o 4+ oo oy, 1 e —ay_
H U © HT U ’

0 0

Uk——ozl—oc2




THEOREME DE LIOUVILLE 285
on peut poser, avec une constante o telle que
o + agF ... Fa, =0,
les égalités suivantes:

:
2 U o, . . Up g+ oy

=T g ;
P T =T Uy

le probleme est résolu par quadratures:

2 2

2
1 d(]2 qu

aq
U1+“1_U2+°‘2— ”_Uk'i_ak.

Si I’on se place dans le cas le plus général,

T=(A + A, + ... + A}c)<B1(/;2 + Bz(/;2 + ot qulli) ’
T —U="h,

il est manifeste qu’il faut remplacer U, par U, 4+ hA,, ... Uy

par U, + hA;, dg; par B,.dg? , . . dg, par By dg}; d’ou les for-
mules bien connues:

2 3 2
B, d(/1 B, d‘lg B, dg,

U, -+ A, + aizUz-}—IzAz—‘l—ag_m:Uk—khAk—}—ak

a4+ oo e, =0

Le théoréme des forces vives donne finalement 1 expression
de temps avec k& quadratures.
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