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SUR LES RADICAUX CARRÉS

PAR

B. Niewenglowski (Paris).

On sait qu'étant donné un nombre quelconque d'irrationnelles
algébriques, on peut exprimer chacune d'elles en fonction
rationnelle d'une même irrationnelle. Je me propose d'étudier
un cas particulier simple:

Soient xu x2, xtl des nombres tels que

an a.2, an étant rationnels, mais non tous carrés parfaits.
Il s'agit de prouver que chacun des nombres x peut s'exprimer
en fonction rationnelle de leur somme et de trouver les expressions

de ces nombres.
Premier cas. — Soient les deux équations

x2 — a y2 — b

Si l'on pose:
x + y V x — y yf

on en tire
a — b — yy

et, par conséquent:
o TT ß — b

~tt a — bu y + V' +

2r — V - V'1
V V'

Remarquons que si l'on change y en —y, V se change en
V' et les expressions de x et y en fonction de V' se déduisent
immédiatement de leurs expressions en V. Il suffit donc de ne
garder que la fonction V.
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On peut remarquer encore l'identité

2 a+ 2 hV2 + V'2 V2 + (a ~ ^
ou, sous forme entière:

V* _ 2 (a + b) Y2 + (a — b)2 0

On peut s'en servir pour exprimer x et y par des polynômes
entiers en Y. On peut en effet écrire:

v + Xix v + Is» + 24 - •

c'est-à-dire:
2x

Vs - (3 « + V
b — a

et, pareillement
o < _ (3 b + a) Y - V3

2 ^

On peut obtenir ces deux expressions par une autre voie. Il
suffit, en effet, de résoudre les deux équations

x + y — V

(a -f- 3b)x -j- (b + 3a)y Y3

Ayant obtenu x et y en fonctions rationnelles de Y, on en
déduit le produit xy: mais il est plus simple de remarquer que

a 4~ b 4- 2#j — Y2

donc
1

xy — — (Y2 — a — b)

On arrive au même résultat en faisant le produit des expressions

entières trouvées pour x et y, et en tenant compte de l'identité

V4 _ 2(a + b) Y2 4- (a — b)2 0

trouvée plus haut.
Remarque. — On peut obtenir pour x et ?/, une infinité d'expressions

rationnelles en V, plus compliquées. On a ainsi une source

inépuisable d'exercices de calcul algébrique. Je vais indiquer
brièvement la marche à suivre.



RADICAUX CARRÉS 271

On a vu que
V3 (a+ 36) X + + 3a)y

Je dis que
V3"+1 Pnx +

On le voit en supposant la loi vérifiée jusqu'à V-"-1 et en

multipliant membre à membre les égalités

V2"-1 pn_xoc + qn_xJ a + h + (Lxy

On pourra alors écrire par exemple

Pn-\ x + 1n-\yV2"_1 Pnx + W V'2"+1

on reconnaît que

/>„_! /» ^ 0 si a

On aura donc

X Aw V2"-1 -j_ BwY2,i+1 J C7lY271""1 + D/2V2,'+1

les coefficients de V2"—1 et V2/,+1 étant rationnels.
En posant

x — AjY + Bj V3

x A2V3 + B2Vb

* AJ2"-1 + BwY2,,+1

et en désignant par i2, /„ des nombres rationnels
arbitraires on aura encore

A,A,Y + (B,\ + A2X2)Y3 + (B2X2 + A3X3) Y5 + + \nBnY2n+x
^1 + ^2 + \

On pourrait encore exprimer x et y en fonction linéaire de
deux puissances impaires non consécutives de V.

Quant au produit x y on peut l'exprimer au moyen de
puissantes paires de V. On a:

v2" -K + h*r •

On le reconnaît de proche en proche, en partant de V2.
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On peut donc écrire:

«„V2" + p„

Cela étant, ayant obtenu

T= F(V)

F désignant une fonction rationnelle, on en tire:

bx F(V)[a„V2" + ß„J

et pareillement pour y.
Deuxième cas. — Nous considérerons maintenant 3 radicaux

x, y, ^ définis par
x2 — a y2 — b z2 — c

et nous chercherons x, y, z en fonctions rationnelles de V, sachant
que

x + y + z Y

Il est très facile d'obtenir des fractions rationnelles donnant
x, y ou Par exemple, en écrivant

Y X — y -y- %

il vient, en élevant au carré et tenant compte des hypothèses:

Y2 -\- a — 2V* — b -}~ c -f- 2yz

et
(Y 2 + a — b — c — 2V*)2 4 hc

d'où, enfin
(V2 -f- « — 6 — c)2 -h 4aV2 — 4hc

x — 4 V (Y2 + a — h — c)
•

formules analogues pour y et jz.

Il s'agit maintenant d'obtenir des expressions entières.
Pour plus de commodité, nous traiterons un cas particulier:
Posons

x y + z V (1)

avec
*2 1 y2 2 z2 3 (2)

c'est-à-dire:
* z= s .* y s' Y 2 % E" y 3

s, /, z" ayant pour valeurs, arbitrairement + 1 ou — 1.
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On a ainsi:
y s + s; vït+ E" yr.-

En élevant au carré les deux membres de l'équation (1) et

simplifiant à l'aide des équations (2), on a:

xy -{- zx + xy — — Y2 — 3

et par suite:

(x + y + z) (yz + zx + xr) ~ v3 — 3 v

Développant et simplifiant, en tenant compte de (1) et (2):

2* + y + Zxyz =Z I V3 - 6V (3)

Pareillement

\2x + y + 3xyz) (yz + ^ + xy) Y3 — 6vj V2 _ 3^

Développant et simplifiant, on obtient:

10* + y + 3xyz i V5 — ~ V3 + 8V (4)

Enfin nous avons

(10* + y + 3 xyz) (yz+ zx+ xy) Y5 - | V3 + 8v) V3 - 3^

ou, plus simplement:
1 3e)

2 x +y+11xyz — V7 — 3V5 + _ Vs — 42V (5)

Les équations (ï), (3), (4), (5) permettent de calculer x,
^ et xyz.

De (3) et (4) on tire immédiatement

8* -1 V5 — 5V3 + 14V

Les équations (5) et (3) donnent

l8xyz - V7 — 3V5 + 17V3 — 36V
O
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Les équations (1) et (3) fourniront les valeurs de y et z. On

trouve
O AH 07

^ -64V" + Ï6V5-8 V3 + 4V'

z — V7 — — v5 + — V3 — — Y
64 32 8 4

Supposons

s 4- 1 s' — 1 e" + 1

c'est-à-dire:

x 1 j j — y 2~, 2 yâ"

v 1 — y2~ -|- y 3".

Nous aurons en particulier

V5 — 20V3 + 56V 32

En continuant la même méthode, on pourrait obtenir d'autres
équations du 1er degré en x, y, z et xyz et obtenir ainsi d'autres
polynômes entiers en V ayant pour valeurs x, y, z et xyz. —
D'autre part ayant calculé par exemple y, z et xyz, comme
xyz X y X z — bcx, on pourra obtenir une autre expression
pour x, etc.

Les calculs sont déjà compliqués avec 3 radicaux; avec un
plus grand nombre de radicaux ils deviennent pénibles.

Troisième cas. — Cas général. Nous supposerons enfin qu'il
y a un nombre quelconque n de radicaux carrés. Nous nous
bornerons à prouver qu'ils s'expriment tous rationnellement
en fonction de leur somme.

Soient donc

x\ ~h x2 "t" ~f~ Xn~^
et

Nous emploierons la méthode indiquée par Desboves pour
rendre rationnelle une équation où n'entrent que des radicaux
carrés. Pour cela, nous poserons

-f" ^3 —J~ • • • xn — — "V — x\
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et nous formerons les sommes

W + w —

W + a?2 + a*3 W + x2 — Xg w — x2 + ,r3 W ^2 ,r3

et ainsi de suite, jusqu'à une dernière ligne dont nous n écrirons

que les termes extrêmes:

w + #a + xs + + >
W x2 .r3 — — Xn

Le dernier terme de cette suite étant nul, par hypothèse, le

produit de tous ses termes est nul aussi:

(W -j- #2 + % 4- + *,,) (W — -r2 — *3 — - ~ *n) 0 •

Ce produit contient 2"-' facteurs. On reconnait aisément que

dans le produit effectué les exposants de toutes les lettres sont

pairs; ce produit ne contiendra donc aucun des radicaux x2,

x3 xn; quant à^,à la première puissance, il figurera dans les

puissances de W, c'est-à-dire de V — xA. L'équation obtenue

sera donc de la forme
/'Ol — g (\)z=- 0

Les polynômes entiers / (Y), g (V) étant à coefficients

rationnels et respectivement de degrés 2"~1 et 2n~1 — 1 ; on aura
ainsi :

_ fX)Xl- giV)

on aurait des expressions analogues pour #2, x3... xn.

Proposons nous, maintenant, d'obtenir des expressions
entières en Y. Nous suivrons là'même marche que dans le cas de

3 radicaux.
Nous avons une première équation:

+ <*'2 + xn V

On en déduit

v,a,.. - i(Y»_/,.

h étant une constante; calculons le produit 2x^lxax^.
Un produit partiel xaxp X x^ donne si y a: x\x^ — aax^.
Pareillement si y ß, on obtient a^xa1 et si y ^ a et y ^ ß

on a xax^x^. Le produit sera donc 2pxa -|- Iqx^x^x^.
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On voit de même que si l'on multiplie le produit obtenu par

2 x7 xo, on obtiendra une somme de termes contenant chacun
1, 3 ou 5 facteurs x. Et il en sera toujours ainsi, car en multipliant

un produit d'un nombre impair de facteurs x, par xaXß, si
l'un de ces facteurs entre dans le produit partiel multiplicande
le nombre des facteurs, après remplacement de x^ par aa ou

par aß ne change pas, et si xa et Xß ne sont ni l'un ni l'autre
facteurs dans le multiplicande, le produit aura deux facteurs
de plus; la parité du nombre des facteurs est conservée. Nous
aurons donc comme inconnues les termes Xot, leurs produits
3 à 3, 5 à 5 etc., c'est-à-dire un nombre d'inconnues égal à
Cn + Cn + le dernier terme étant C"-1 si n est pair et
G si n est impair — cette somme est égale à 2n~x. Il faudra
donc former 2n~1 équations. On pourra ainsi, et d'une infinité
de manières obtenir des expressions entières en V pour les x,
en résolvant l'un quelconque des systèmes de 2n~x équations
linéaires ainsi obtenues. Le plus simple aura pour degré le
nombre impair de rang 2"_1, soit 2 2n~x — 1 ou 2n — 1.

Remarquons maintenant que dans la fraction que nous

avons obtenue plus haut, le numérateur est de degré 2"~[ et
celui du dénominateur est 2n~x — 1 ; la somme de ces degrés
est précisément 2a — 1. C'est ce que l'on peut vérifier pour les
cas de n 2 ou n 3. Ayant obtenu pour a?a, Xß, x^ et xaXßX
par exemple des représentations entières, on pourra en déduire
pour x,A une représentation fractionnaire, car en supposant

Xy ~ Q

etc.

Remarque. Il résulte des calculs précédents que si V était
rationnelle, chacune des quantités xi, #2, xn serait rationnelle.
Donc la somme

yä± yj± yr... ± yr
est irrationnelle, si tous les nombres a,, à, c I ne sont pas des
carrés parfaits.

*ß — ß ' ~ pf
On aura

* - Q
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Autre remarque. Soient oq, a.2, an des nombres rationnels

et la somme U définie par

ai xi T ao 'r2 + • * • "t~ an Xn ~ ^ '

Les définis comme plus haut sont des fonctions rationnelles
de U. En effet, si l'on pose

a! Ji <*2 X2 — r2 CL„ xn — yn

on a

Ji + y2 + ••• + yn ~ u

f «1 aî ' f% fl2a|- fi — an< '

donc les y sont des fonctions rationnelles de U, et il en est de

même, par suite, des x.

DÉMONSTRATION DU THÉORÈME DE LIOUVILLE
PAR L'ÉLIMINATION DU TEMPS

ENTRE LES ÉQUATIONS DE LAGRANGE

PAR

M. Émile Turrière (Montpellier).

1. La méthode de Liouville, lorsqu'elle est applicable à un
système à k degrés de liberté, conduit à 2k quadratures indépendantes

les unes des autres. Ces 2k quadratures se partagent en
deux groupes. Un premier groupe de k quadratures fournit k—1
relations entre les seuls paramètres q{ q2 q* du système; le
second groupe de k quadratures donne par addition l'expression
du temps.

Toutes les relations indépendantes du temps, qui déterminent
géométriquement les trajectoires, se séparant ainsi, comme
conséquence du calcul, des éléments cinématiques, je me suis proposé
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