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UN CHAPITRE DE METHODOLOGIE MATHEMATIQUE,
LES IMAGINAIRES DE GALOIS

PAR

M. StuyvaerT (Gand).

Considérons deux polynomes & coefficients entiers,

Flx) = a, 2™ + (111:'”_1 + ... +a,,
fle) = bya™ 4 b2" " 4 ...+ b,

et soit m > n. L’étude de ces fonctions relativement & un
MODULE PREMIER P a 6té commencée dans un chapitre antérieur
de notre Cours de Méthodologie: on y a montré ’existence et
Punicité de la congruence fondamentale,

F(x) — f(z)Q(x) — R{x) = 0 (mod. p)

ou R(x) est de degré inférieur a n.

On dit que F(x) est divistble par f(x) suivant le module p, si le
polynome R(z) ci-dessus est congru & zéro, donc s’il existe un
polynome Q(x) tel que le polynome F(x) — f(z) Q(z) ait tous ses
coefficients multiples de p, ce qui s’écrit

Fx) = f1e)Q(x) . (mod. p)

Quand cette condition n’est pas satisfaite, la congruence
fondamentale donne lieu & la méme suite d’opérations que 1’algo-
rithme d’Euclide pour le p. g. ¢. d.

Alors, si un polynome ¢(z) divise (mod. p) les polynomes F(x)
et f(x); 1l divise R(x), car soient

Fla) = d(x)Glx) ., flo) = ¢x)g(x) (mod. p|)

L’Enseignement mathém., 22¢ année; 1921 et 1922, 17
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il en résulte que
V(%) G(x) — $(x)g(x)Q(x) — R(x)

a tous ses coefficients multiples de p ou que R(z) est divisible
(mod. p) par ¢(x). On voit de méme que si1 un polynome
divise (mod p) f(z) et R(z), il divise (mod. p) F(x).

Les divisions successives de Palgorithme d’Euclide, apphquees
a F(z) et f(x) doivent aboutir, parce que le degre des restes
décroit. En dernier lieu on trouve, ou bien un reste ayant tous
ses coeflicients congrus a zéro, et alors ’avant-dernier reste D(x)
divise (mod. p) le précédent et tous ceux qui viennent avant lui,
notamment F(z) et f(x); — ou bien un reste indépendant de
mais non multiple de p et alors les deux polynomes donnés
ne sont pas divisibles par un méme polynome.

Il faut encore établir 'unicité du p. g. c. d. (mod. p), ¢’est-a-
dire du polynome de degré le plus élevé divisant (mod p) F(x)
et f(x): 8’il y en a un autre, il divise les restes successifs, donc
le p. g. c. d. déja trouvé et comme ils doivent étre de méme
degré, le quotient est indépendant de .

On appelle polynome irréductible suivant le module p un poly-
nome qui n’est pas congru au produit de deux polynomes.

On a démontré dans un chapitre antérieur ceci: si flx) =0
(mod. p) a une racine «, le polynome f(z) est divisible (mod. p)
par x — o; et la réciproque est immédiate. Donc un polynome
irréductible de degré supérieur 4 1 n’a pas de racine; mais la
réciproque n’est pas exacte, car un polynome peut n’avoir aucune
racine et cependant étre réductible; il est alors congru au produit
de facteurs irréductibles de degré supérieur a 1.

Il est facile de former des polynomes irréductibles du second
degré, pour un module premier impair quelconque, 7 par exemple.
Le polynome z(x — 1) —d ne peut avoir que des diviseurs du
premier degré; done, s’il n’a pas de racine, il est irréductible;
or il n’a pour racine, ni 1, ni 0, si d n’est pas = 0 (mod. 7); rem-
placons x par 2, 3, 4, 5, 6 dans 2(z — 1); nous aurons cing résul-
tats qui peuvent étre, dans le cas le plus défavorable, non
congrus entre eux pour le module 7; il reste toujours au moins
une valeur de d qui n’est congrue ni a zéro, ni a ces cinq résultats

22—1)=2;3383—1)=6; 44—11=5;55—1)=6 ; 6(6 —1)=2]
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on peut prendre pour d toute valeur non congrue a 0, 2, 5, 6;
par conséquent

xle—1) — 1, (e —1)—3, xle —1) — 4

sont des polynomes irréductibles (mod. 7). La méme méthode
réussit encore pour des congruences du troisiéme degré, parce
que tout polynome cubique réductible a au moins un facteur
linéaire. Nous verrons plus loin I’existence de polynomes irré-
ductibles de tous les degrés. |

TueorkME. Tout polynome irréductible P(x) qui divise (mod. p)
un produit de deux polynomes ¥F(z) G(x) divise (mod. p) un des
facteurs.

10 Si P(x) est de degré égal ou inférieur & F(z) et s’il ne divise
pas F(z), on forme, au moyen de ’algorithme d’Euclide, la suite
de polynomes

Fz), Plx), R{x), Rz, .. n

qui doit aboutir, puisque P(z) est irréductible, & un entier n
non multiple de p. Multiplions par G(z) tous les termes de la
suite; P(z) divisant FG et PG divise RG,R’G,...nG, donc aussi
wnG = G, w étant I’entier, toujours existant et unique, tel que
wn =1 (mod. p).

20 Si F(z) est de degré inférieur & P(z) la suite de polynomes
a pour premier terme P(x), pouf second terme F(x), et la démons-
tration s’achéve comme ci-dessus.

Corollaires. Si les congruences

F(x) =0 ; [(x) =0 ; (mod. p)

ont une racine commune «, le binome x-— « divise (mod. P)
les deux polynomes F(z) et f(x). Doncil y a un p. g.c.d. (mod. p)
D(z) de F(x) et f(x). Visiblement toute racine de D(x) est racine
de F(z) et f(x). Mais si ce p. g. ¢. d. n’existe pas ou s’il est irré-
ductible et de degré supérieur & 1, F(x) et f(z) n’ont aucune racine
commune. |

On démontre, comme pour les nombres entiers, que

D(x)’E Flx)glx) 4+ [(x)G(x) (mod. p)

G(x) et g(x) étant deux polynomes.
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De tout ceci résulte, comme dans la théorie des polynomes
algébriques, qu'un polynome est congru, d’une seule maniére,
& un produit de polynomes irréductibles, avec les conséquences
habituelles. |

ArpricaTiON. Toute racine «, non multiple de p, de la con-
gruence ' _
fley =0 (mod. p)
est aussi racine de 2*~ — 1; donc f(z) et 2’ — 1 ont un p. g. c. d.
(mod. p) D(x); on le calcule par I’algorithme d’Euclide. Le poly-
nome D(z) a autant de racines que l'indique son degré, car,
comme il divise 2"~ — 1, il est congru & un produit de binomes
tels que z — «.

Si f(x) a moins de racines que son degré ne l'indique, il est
congru au produit de facteurs binomes affectés peut-étre d’expo-
sants, et peut-étre de polynomes irréductibles. Le calcul effectué
a I'instant fournit le produit D(x) des facteurs binomes chacun
avec l’exposant 1.

Comme on a

2PN — 1 =D (x)Qa)
on ne doit résoudre que celle des deux congruences D(z) = 0,
Q(x) =0 qui a le moindre degré; et cette remarque rameéne la
résolution de toute congruence & celle d’une congruence de degré

Cp—1
au plus égal a 2 7

Toute congruence douée d’autant de racines distinctes que

'indique son degré divise (mod. p) 'expression z’" — 1; mais
ceci n’est plus vrai 8’1l y a des racines multiples: par exemple
(z — a)*(x — () ne divise pas (mod. p) le polynome 2"~ — 1, car

alors 2"~ — 1 pourrait se décomposer en facteurs irréductibles
de deux maniéres .

Avant d’aborder la recherche des congruences irréductibles,
nous devons établir ce LEMME d’analyse combinatoire:

St T, désigne le nombre de combinaisons a répétition de m
lettres prises n @ n, on a la formule

k=0T o+ (k=2pT oy + (A= 3)p*0,_y 4y + -
-+ 2pk—3 Fp-—l,B + pk—2 p—1,2 ~+ I’ka = pk . (1)

! Exercice. Décomposer en facteurs irréductibles, suivant le module 7, le polynome
xb — 3wt — 208 — 222 — x — 2. (V. J. SERRET, 4lg. sup.).
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La formule se vérifie pour & = 2, car on a, dans ce cas

— 1) 4 1)
PRSP 1 2 Jy

Supposons donc la formule démontrée pour le nombre % et
appliquons ensuite a £ 4+ 1,

‘Z‘Fp—l,lf+1 + (k— 1)PFp——'l,k + (b — Q)PZFp——-‘l, fet T

— - k41 :
+2Pk 2Pp—l,3+PA le—1,2+Fp,k+l:p+ ; (2)

multiplions la formule (1) par p et soustrayons de (2), il vient

ka———l,/{—{—J + Fp,lc+1 = pr,/{

ou encore
p—Ypptt . pti—=1  pip 1 - (p - A)
1.2.8 . (k+1) 1.2 (k4 1)
_oplp+D p+E=1)
=¥ .2 aee & ’

ce qui se vérifie en divisant les deux membres par

plp+1 ... (p—|—k—/l) )
1.2 ... 4 '

on obtient en effet 'identité

kip — 1) p+ k
Fx1 Tl

THEOREME. Sutvant un module premier p il y a des congruences
irréductibles de tout degré k; leur nombre est au moins

‘.__.—1).

k—1)T,_, ,

en appelant T, . le nombre de combinaisons d répétition de m
objets prisn an .

Dans cet énoncé ne sont pas considérées comme distinctes
deux congruences dont 'une s’obtient en multipliant ’autre
par un facteur constant. Cette opération est en effet sans influence
sur la réductibilité et nous pouvons toujours débuter par la
préparation connue des congruences qui consiste & rendre égal
a I'unité le coefficient du terme le plus élevé en z.

1 Cf. Encyc. des sc. math., t. I, vol. 3, fasc. 1, p. 41.
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Des lors les congruences
a2 4+ ar +0b=0

sont en nombre p* puisque a et b peuvent prendre les valeurs
de 0 & p—1. Pour avoir celles qui sont irréductibles, il faut
ecarter celles qui ont la forme (x — ¢) (x — j), ol i et j prennent
des valeurs, distinctes ou égales, de 0 & p — 1, leur nombre est
I' ,. Le nombre des congruences irréductibles du second degré
est donc

-, o
p:— Fp)2__ l.FP__l’;_,

Supposons la formule (kK — 1) T',_i x établie pour toutes
les congruences jusque et y compris celles d’ordre k& — 1.
Enumeérons les p* congruences d’ordre k: celles qui ont & racines
sont en nombre I', x; celles qui sont le produit d’un polynome
irréductible du second degré par un autre polynome quelconque
sont en nombre p*—2 I',_, , et ainsi de suite; le lemme ci-dessus
donne pour résidu

k — 1')Fp—1,lc .

Seulement si un polynome d’ordre % est congru au produit
de trois facteurs irréductibles par exemple d’ordres %, i, j par
~des facteurs binomes, il figure trois fois parmi les congruences
exclues et il faut rétablir le nombre exact en ajoutant
2T k. Si h 4 i+ j est égal a k, il n’y a pas d’autre
correction de ce chef; mais si A+ i+ j < k, il v a eu des erreurs
analogues dans ’énumération des polynomes réductibles d’ordre
"~ k—1, etc., et il faut retrancher

27

k—1, k—h—i—j—1 * €LC ]

or on vérifie que si k > a,
Do > T gan ¥ g go + oo + Tigag + 1,

car la chose est visible pour @ = 1 quel que soit k; supposons-la
démontrée pour I';—_; ,—;; nous constatons que

— N A
Fk»“ " Fk: a—1 i IA—";a

d’ou pareillement

Dho =T+ Tiaes + g0y + L e >y 0+ Ty g
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ce dernier terme est par hypothése supérieur a
Lo qms + Ly oy + o

donc a fortior: on a 'inégalité & démontrer.

Ce qui précéde ne démontre pas seulement I’existence de
congruences irréductibles de tout degré, mais donne un moyen
théorique de les déterminer toutes. En effet, pour une congruence
quelconque, la solution n’exige qu’un nombre fini d’essais.
Seulement les calculs étant fort longs, il est bon de chercher
quelque moyen de les raccourcir.

Pour les congruences de second et troisiéme ordre, la question
de l'irréductibilité se confond avec celle de n’avoir pas de racine;
c¢’est pourquoi nous dirons quelques mots de ce dernier probleme.

Le systeme de classes de restes pour un module premier cons-
titue un cores. Par conséquent, on peut appliquer ici tout ce
que Palgebre enseigne sur le résultant de deux equations en z,
car la théorie du résultant ne comporte que des opérations
rationnelles. Par exemple, on a ce théoréme relatif & deux con-
gruences (que nous supposons préparées),

F = ™M + a, .17"1_1 + _l_ a’m =0
| (mod. p)
G = a” = 1)1'2311-——1 + ... + I)n =0

Pour que les deux polynomes F, G aient un p. 8. c d. (Mod. p)
d contenant x, il faut et il suffit que

[ 1
O |
A= R 2 b =M.p
a, by
a, b,
a,, b,

La remarque faite & linstant dispense de démonstration;
toutefois, nous consignons ici le raisonnement entiérement
calqué sur celui qui concerne les equations algébriques.
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Si F et G ont un p. g. ¢. d. (mod. p) ¢ contenant z, on a identi-
quement

F=3%U ou 3(ua" '+ a ™ W, 1) =0 (mod.p)
G=238V ou 3(y2a""" 4 O A T v =0 »
d’ou identiquement
PV = GU (mod. p)
ou
Uy — v, =0 )
byug + u, — a,vy — v, =0 (mod. p)

les polynomes U, V sont de degrés maximés m — 1 et 7 — 1;
un au moins des coefficients u n’est pas multiple de p, soit w_;;
multiplions ces derniéres congruences par les mineurs rela-
tifs & la k'“m° colonne du déterminant A; nous obtenons
Aui,y =M. p et p ne divisant pas u;_y, divise A.
Réciproquement, si A = Mp, multiplions les lignes du déter-
minant A par les puissances am+i—!, gmtn—2 _ x 1 de lindé-
terminée z et additionnons: la derniére ligne devient ainsi

e L S o N c S Y ¢ S
et en développant A suivant cette derniére ligne, on a identi-
quement

’ ' FV - GU =0 (mod p)
or on a, par la théorie du p. g. ¢. d. (mod p), identiquement

Vop-g c.d.(F.G)=p. g ¢c.d (FV,GV) = p.g. c. d. (GU, GV)
=Gp. g.cd (UYV);

or G est de degré n et V est de degré moindre, donc le p. g. c. d.
(F, GG) contient effectivement z.
Corollaire. Pour que la congruence

2" a4 e, =0 (mod. p)

ait une racine non multiple de p, il faut et il suffit qu’elle ait
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une racine commune avec

a:p——l-——’lEO

d’ou :
1 . . 1
a, 1 0 1
a, a, 0 0 |
4 " = M.p.
a, — 1
a, .—1

Comme APPLIGATION, cherchons, pour le module 5, les
congruences irréductibles du second degré.
Le déterminant suivant doit étre non multiple de b,

1 1
a, 1 0 1
a, a, 1 0 0
a, a, 1 0 0 |
a, a, — 1 0
ay .. —1

ce déterminant développé
4 4 2 2
l—a + a -+ 4a1a2 — 2a,

ne contient que les puissances paires de a,, c’est-a-dire que les
trinomes irréductibles ont la forme

2t ax+ a, .
Pour a, = -+ 1, on doit avoir

s ;
1 — a, + 1 -+ &a: —_ 2 =— ai (af T 4) non multiple de 5 ;
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dont on doit exclure 1
a, =1 avec a, =0 ou 2 y
a, = — | » a, =0 ou 1. ‘

L

Pour a, = =+ 2, on doit avoir

BT

s . 2
’l———a:—}—16‘i_—8af—8E’ial—l_—S(tj+4:4(a1:*_“’l>

non multiple de 5; donc il faut exclure

)
ay, = 2, =2 , 4

ay

*—"'2, 01:1.

En résumé les trinomes irréductibles sont

2t x41, x2+2x—1, a2tax4+2, x2+2x—2, x24+2;
la derniére formule est connue, puisque -+ 2 et — 2 sont les
non résidus quadratiques pour le module 5.

Examinons de plus pres le résultant de z7=' — 1 et de

F(x) ou " 4 alx"_1 -+ azx"—2 + .o +ad"np—1),

1 1
0 1 a 1
0 01 a, a, 1
0 0 . . a a
0 a, a,
A= —1 a,
—1 a,
—1
e — e ——
n col, p— 1col.

ajoutons la premiére ligne & la pieme la 2itme 3 la (p - 1)ieme
.. la nime 3 la (p + n—1)*m"; alors le déterminanta partiel
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des n premieres lignes et colonnes se réduit & son terme princi-
pal, et on peut supprimer les n premiéres lignes et colonnes, donc

a, a, 1
a, a, a,
dy
i a,
A= a 1 . . a,
a, a,
ay
|
T TN e e —
n col. p-n-1

Pour une coNGRUENCE BINOME z" -+ ¢ = 0, le résultant est

q o1
q

développons: le terme principal est ¢#—!; prenons un élément ¢
de la diagonale principale et remplacons-le par I’élément 1 de
la méme colonne, mais, comme on ne peut prendre qu’un élément
dans chaque ligne, il faut remplacer un second élément de la
diagonale principale situé & un intervalle n du premier, en descen-
dant la diagonale ou en reprenant au début si besoin, etc. Si
donc n est premier avec p — 1, on ne revient au point de départ
qu’aprés avoir épuisé la diagonale principale; pour amener tous
les éléments 1 sur la diagonale principale, il faut faire un
nombre impair p — 2 d’échanges de lignes; donc le déterminant
développé est gr—' — 1; or ceci est congru a zéro pour toute
valeur de ¢, donc, si n est premier avec p — 1, 2" + ¢ =0 na
pas de racine.
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Sinetp—1ontun p.g.c.dd, on revient au point de départ
p —

0
: 4 rl . I3 . — 1
les avoir remplacés par des éléments 1, ce qui nécessite [)_8 —1

apres avoir pris éléments ¢ de la diagonale principale et

, . . . p—1 .
échanges de lignes ou un changement de signe si £ =— est pair

et donne un terme en ¢ <p = 1) (0 — 1); on peut faire ceci de 9

maniéres, puis on doit prendre de ces groupes 2 a4 2, 3 4 3, etc.,
finalement le déterminant développé est

p-1 p—1 (g—1) ~ 1 p—1 (§—2) ( =1 )8
_ 58 — y o2 _
¢? Foq9 +~(~2 q " +..=\¢? F1
p= 1
or ¢q 9 J=1 est un diviseur algébrique de gr—'— 1 et a ]—]—%—-—
: . — 4
racines; donc 2" 4 ¢ = 0 est possible pour p—1—Z =— valeurs

de ¢. On retrouve des résultats connus, mais avec ceci de
curieux que les polygones de Poinsot apparaissent sur la diago-
nale d’'un déterminant (on rendrait la chose plus saisissante en
enroulant le déterminant sur un cylindre).

Remargue. Non seulement la théorie de I’élimination d’une
inconnue entre deux équations se transporte aux congruences,
mais aussi la méme théorie pour plusieurs équations. Ainsi pour
que deux congruences aient une racine commune, il ne suffit
pas que le résultant soit M.p. car il pourrait y avoir un p.g. c. d.
irréductible d’ordre supérieur a 1, mais que les deux congruences
alent une racine commune avec 27! — 1, ce qui peut s’exprimer
en posant que tous les déterminants extraits d’une matrice
solent M. p. Etc. (Voir notre Algébre a deux dimensions, Gand,
1920). |

Arrivons a la définition des imAGINAIRES DE Gavrois'. Le
module p étant premier, soit f(x) un polynome irréductible
de degré n > 1. Il n’a pas de racine. Posons néanmoins

i) =0 (mod. p)

1 V. Encyc. sc. math., t. I, vol. 3, fasc. 1, p, 44 ; BoreL-DRrRAcH, Introduct. a la théorie des
nombres, etc.
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i ne désigne pas V/'— 1; c’est ici le symbole d’un entier imagi-
naire, symbole vide de sens, car I’opération est impossible par
hypothese. Son calcul s’établit par des conventions:
Convenons de dire que deux expressions o(1), J(z) sont congrues
et d’écrire
o) = Jd ) (mod. p)

quand la différence des polynomes o(r) et J(x) est égale terme
a terme a une expression

Rf(x) 4+ Sp

ou R et S sont des polynomes en x & coefficients entiers. On
exprime la chose en écrivant

? (x) — ¢ (x)

il

US (mod. p, f(x)) (1)

cette congruence & deux modules est d’aprés notre hypothese,
vérifiée pour tout entier réel z.

La convention est permise, car dans le cas particulier ou f(x)
est reductible et a pour racine I’entier réel 7, on a /(i) = Qp et,
d’apres la relation (1),

¢(t) — () =(RQ + S)p =0 (mod. p)

Tout polynome o¢(i) en i & coefficients entiers réels est une
IMAGINAIRE DE Garors. D’aprés nos conventions, elle ne peut
étre = 0 (mod p) que si 'on a

o(x) =0 . (mod. p, f(x))

Elle sera dite racine de la congruence F(z) = 0 (mod. p) si
Pon a F(g(¢)) = 0 (mod. p), ¢’est-a-dire

I (o(x) )

il

b = (mod. p, f(x))

en particulier ¢ est racine de la congruence fondamentale
#(2) = 0 (mod. p).

A cause de 'hypotheése f(7) = 0, on peut abaisser toute imagi-
naire de Galois au-dessous du degre n: on divise algébriquement

o(z) par f(z) et 'on prend le reste; de plus, on peut abaisser tous
]es coefficients au-dessous de p.
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Les imaginaires de Galois ont donc la forme
g§=tay+ aji + a2 4+ ...a, """

ou les cocfficients ont les valeurs de 0 & p—1:1il y a p” ima-
ginaires distinctes (non congrues pour le mod. p). Pour
a, = @, = ... a,—; = 0, on a, comme cas particulier, les entiers
réels. ,

Convenons de faire, terme a terme la soMmme de deux imagi-
naires, et leur PrRODUIT comme si c¢’étaient deux polynomes,
et d’abaisser au-dessous du degré n par la congruence initiale
f(z) = 0.

Si le produit g, (z). g,(t) est congru a 0 (mod. p), ¢’est, d’aprés
nos conventions, que g (z).g,(x) = 0 (mod. p, f(z)) ou que
g.(x) . g,(x) est divisible (mod. p) par f(z); mais un polynome
irréductible qui divise (mod. p) un produit, divise un des facteurs,
donc le produit g,(x) . g.(x) ne peut étre congru a 0 (mod. p) que
st U'un des facteurs est congru a 0 (mod. p). Cette propriété s’étend
immédiatement & plusieurs facteurs.

Si 'on multiplie 'imaginaire A non =0 (mod. p) par les
p" imaginaires distinctes, on a des produits distincts, car s’il y
en avait deux, Ag, et Ag,, congrus pour le mod. p, on aurait
A (g,— g,) = 0 (mod. p) et comme A n’est pas = 0, g, et g,
ne sont pas distincts. Par suite, la congruence linéaire AX =B
(mod. p), et en particulier AX =1 a toujours une racine et
une seule.

Si I'on pose Ag = g’ (mod. p) et qu’on fasse parcourir a g
les p» — 1 imaginaires distinctes, non = 0, g’ parcourt les mémes
imaginaires, et en multipliant membre & membre,

(A" — 1) mg =0 (mod. p)

et comme ng n’est pas =0, on a la formule analogue a celle
du THEOREME DE FERMAT,

(mod. p)

AP A=0 (mod. p)
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Ceci signifie, d’aprés nos conventions, que si f(z) est irréduq-
tible suivant le module p et #(z) un polynome quelconque,

021 — b(a)

est divisible (mod. p) par f(z).

Les imaginaires de Galois relatives & un polynome irréduc-
tible constituent un corps puisque les quatre opérations fonda-
mentales s’y pratiquent comme pour les classes de reste (mod. p).
Par conséquent la division algébrique s’étend sans autre démons-
tration, aux POLYNOMES A COEFFICIENTS IMAGINAIRES DE GALOIS.

Entrons toutefois dans quelque détail. Soit

pia) = () 2" + g (1)a" " 4 ... g, (i)
un polynome entier en z & coefficients imaginaires de Galois.
L’imaginaire 6(7) est dite racine de o(z) si 'on a

s =0 ; (mod. p)

comme le premier membre s’obtient par des additions et multi-
plications, cette congruence a un sens, d’aprés nos conventions.

Le polynome ¢(x) est identiquement nul pour le module p sl
tous ses coefficients sont = 0 (mod. p); dans ce cas la congruence
9(z) = O est satisfaite par une imaginaire quelconque.

Le produit de deux polynomes pareils ne peut étre identique-
ment nul (mod. p) que si 'un des facteurs Pest. Car soient A le
premier coefficient non nul du premier polynome et B celui du
second; on sait que AB n’est pas = 0. Par suite le degré d’un
produit de polynomes est la somme des degrés des facteurs.

Un polynome o(z), entier en z et { est divisible (mod. p) par
un autre pareil ¢(z) non identiquement nul (mod. p) si 'on peut
former un polynome =(z) tel que I’expression

o lx) — & (x) 7 ()

i

soit identiquement nulle (mod. p).

Soit ¢(x) de degré au moins égal & J(z). Dire que ¢(x) est de
degré m c’est dire que le coefficient B, de 2 est une imaginaire
de Galois non = 0; on a toujours et d’une seule maniere,

(1) ¢(x) = () Q(x) + R (x) (mod. p)




264 M. STUYVAERT

ou R(x) est de degré inférieur & J(x). Car en comparant les coeffi-
cients des puissances successives de z dans les deux membres,
on détermine les coefficients de Q(x) puis ceux de R(z) sans ambi-
guité, chaque fois par une congruence linéaire. D’ou la théorie
du p. g. ¢. d. avec les propriétés habituelles. Nous aurons a
revenir sur cette congruence fondamentale (I").

Mais d’abord voici un cAs PARTICULIER. Soit le polynome
o(z) ayant pour racine I'imaginaire g,. On peut former la con-
gruence

L4

o(r) = (* — £ Q%) + R (mod. p)

ou R est de degré inférieur & x — g, donc indépendant de x. Cette
congruence étant identique, on peut remplacer z par g, et,
comme o(z,) =0, on obtient R =0, donc ¢(x) est divisible
(mod. p) par z — g,. Soit g, une autre racine,

?(8s) = (82 — 8)Q(8) (mod. p)

et comme le premier membre est congru a 0 et que g,— g, ne
Pest pas, g, est racine de Q(x) et ¢(x) est divisible par
(x — g,)(x — g,). etc. Ainsi, une congruence d’ordre m ne peut
avoir qu’une racine de plus que la congruence d’ordre m — 1 et,
de proche en proche, une congruence ne peut avoir plus de racines
que ne l'indique son degré, a moins d’étre identique.

Un role spécial revient au polynome z?" — x qui a pour racines
toutes les imaginaires de Galois, donc autant que l'indique son
degré; il est congru au produit

x(x — g)(r — g) -

g,,8,... étant toutes les imaginaires. Soit F(x) un autre polynome
ayant la méme propriété: on a |

n

F(x) = (2 — x) g (x) + r(x) (mod. p)

F(x) et (z¢"— z) étant = 0 pour toutes les imaginaires de Galois,
il en est de méme de r(x) qui a donc plus de racines que ne I’in-
dique son degré et disparait.; donc tout polynome ayant pour
racines toutes les imaginaires de Galois est de la forme

(xpn — x) 7 (x)

ot w(z) est un polynome arbitraire.
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Soit deux POLYNOMES A COEFFICIENTS REELS, F(x) et I, (),
soit D leur p. g. ¢. d. (mod. p); on sait que ’on peut trouver deux
polynomes G, G, tels que

D —FG, — F,G

ait tous ses coefficients (réels) multiples de p.

Dire que 'imaginaire de Galois g(¢) est racine de I et F,,
c’est dire que F(g(z)) et F,(g(x)) sont divisibles (mod. p) par
f(x); il en est de méme de D (g(x)). Ainsi les racines communes
a I et I, tant réelles qu'imaginaires de Galois, sont racines
de D(x).

Or zP"— x a pour racines toutes les imaginaires de Galois,
donc les racines de F(z) sont racines du p. g. c¢. d. (mod. p)
A(z) de F(z) et xr" — 2.

A(x) polynome a coefficients réels divise (mod. p) F(z); si
F(x) est irréductible (mod. p), A(z) est ou bien indépendant de z,
ou bien congru & F(z); donc une congruence irréductible a
coefficients réels a, ou bien aucune racine imaginaire de Galoié,
ou bien en a autant que l'indique son degré, car A(x) est divi-
seur (mod. p) de z#" — .

En particulier f(z) est irréductible, de degré n, a coefficients
réels et a une racine imaginaire i, donc elle en a n, et f(z) divise
(mod. p) le polynome 27" — . Celui-ci est donc divisible (mod. p)
par tout polynome irréductible de degré n, car f(z) a été choisi
arbitrairement.

De méme si I’entier r divise n, 'entier p” — 1 divise p” — 1,
et le polynome z#'—' — 1 divise algébriquement z¢"—1 — 1.

Ainsi toute congruence irréductible dont le degré r est n ou
un diviseur de n a autant de racines imaginaires de Galois que
Uindique son degré.

Toute autre congruence irréductible est privée de racine. Car
on sait, d’aprés les propriétés des coefficients binomiaux, que

(@a4+b4c+ ..V =a & bP + P + ... (mod. p)
donc |
(@ 4+ bx 4 ca® + P =al 4 PP + Px*® 4 ... (mod. P

et ceci d’apres le théoréeme de Fermat, est congru &
a+ bxl + cx®P 4 ...,

L’Enseignement mathém., 22¢ année; 1921 et 1922. 18
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¢’est-a-dire que

(¢lx) ) =o(f) 5 (mod. p)
remplacons « par z?,
9 (27) = (9 () )P = (o ()P)F = fo(x) )" (mod. p)
et, de proche en proche,
el = ¢(a?) (mod. p)

A présent si un polynome irréductible de degré n pouvait
diviser 27" — z dans ’hypothése r<n, ce polynome définirait
une imaginaire de Galois ¢ qui serait racine de 7" — z, donc
on aurait

=i, dou o) =0l (mod. p)

et, d’aprés la remarque précédente,

2 (") = (¢(0) P = ¢li)
c’est-a-dire que la congruence z" — x aurait pour racine toute
expression () donc toutes les imaginaires déduites de i en
nombre p*, et aurait plus de racines que son degré ne 'indique.

Ainsi 2?" — x ne peut étre divisible (mod. p) par un polynome
irréductible de degré supérieur & n.

Enfin, si n = mgq + r (0<r<m), 'expression 27" — z ne peut
étre divisible par un polynome irréductible F(x) de degre m,
car z"'? — z est divisible par F(x) d’aprés un résultat trouve a
Iinstant, z#"— x l’est ausst par hypothése, donc F(x) divise
(mod. p) leur différence

I ™

et celle-ci d’aprés une remarque ci-dessus est congrue a

<a,;p" —— x>pmq

et n’est pas divisible par F(z) puisque r<m (un polynome irré-
ductible qui divise un produit (z*"— x)?"? divise un facteur
x? — ).

En résumé, xP"— x est le produit de tous les polynomes irré-
ductibles dont les degrés sont n ou des diviseurs de n.
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Signalons comme corollaire facile ou exercice (cf. Encyc., t. I,
v. 3, fasc. 1, p. 42): si N est le nombre des congruences irréduc-

tibles d’ordre n, on a

n n n n

nN — pll . Epa_l, + 2 paiak o 2 a;apa + i pal”'z'“‘.’n
(¢) (E<k) (e<k<0)

ol1 la premiére somme est étendue & tous les facteurs premiers
inégaux a,, a,,... @, de n, la seconde a toutes les combinaisons
2 4 2 de ces facteurs, ...et ou ’exposant du dernier terme est le
quotient de n par le produit de ces facteurs.

Autre corollaire: xz*"— x n’a pas de facteurs multiples, car
¢’il avait la forme f*gPh¥ ..., le produit fgh... contenant toutes
les imaginaires de Galois serait de degré au moins égal & 27" —z.

Terminons par une propriété connue des CORPS A UN NOMBRE
FINI D’ELEMENTS (Encye., t. I, v. 2, fasc. 2, p. 249):

Les seuls corps & un nombre fint d’éléments sont ceux formés par
les classes de restes suivant un module premier auzxquelles on adjoint
une imaginaire de Galois.

D’abord les multiples successifs de I'unité absolue doivent
aboutir & zéro, donc constituer une classe de restes et nous avons
vu au chapitre Corps et Domaines que, pour avoir un corps, il
faut prendre un module premier p.

Ensuite, on ne peut, au corps de classes de restes (mod. p)
adjoindre une quantité ¢ de maniere & avoir un nouveau corps a
un nombre fini d’éléments que s1 ¢ est une imaginaire de Galois.
Car 1, ¢*, ¢°.... sont des ¢éléments du nouveau corps: comme
il n’y en a qu’un nombre fini, on doit avoir a la fin

— _
o o -+ Bl - «‘/12 e s y‘lm
of + B yE 4

le second membre existe puisque 'on a un corps, et multiplié
par le dénominateur il donne le numérateur, ainsi i est racine
d’une équation ou plutdt congruence a coefficients du corps
initial; si celle-ci est réductible, un des facteurs irréductibles
doit étre nul, car c’est une propriété essentielle du corps qu’on
produit ne s’annule que si un des facteurs s’évanouit; ainsi ¢ est
une imaginaire de Galois.
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Supposons & présent deux éléments i et j adjoints au corps
de classes de restes (mod. p). Les puissances successives étant
en nombre infini, une relation identique doit permettre d’expri-
mer les puissances de ¢ & partir de la h'*me et celles de j & partir
de la A¢™e au moyen des puissances précédentes.

Ces deux relations ne peuvent étre les mémes, car soit pour
fixer les idées, i -4 j® = 1; utilisons-la pour ne garder que
1, 1, ], j® et exprimons j®; nous aurons

e U I R =T R (U N A

nous retombons sur j* et cela provient de ce que remplacant
12 et j% tirés de la méme relation, nous aboutissons & uneidentité.

Ainsi il v a deux relations distinctes entre i et j; nous pouvons
en éliminer j ou i car ¢’est une opération rationnelle, donc i et j
sont séparément imaginaires de Galois, et de méme, de proche
en proche pour plusieurs éléments adjoints.

Montrons enfin que ’adjonction simultanée de deux (pour
fixer les idées) imaginaires i, j, équivaut & une adjonction unique.
Soit ¢ définie par une congruence f(x) = 0 irréductible d’ordre n
et j par une congruence g¢(z) d’ordre n’; les polynomes f(z), 9(x)
divisent respectivement

n n’
P i | et xp—1—’l;

g
soit 4 un multiple commun quelconque de n et n’; p* —1

~est divisible par p* — 1 et par p*—! donc

[73
P Al |

est divisible algébriquement par z?"—1 et zr" —1; il existe
des polynomes irréductibles d’ordre u; l'un d’eux définit des
imaginaires de Galois et d’aprés le théoréme précédent, i et j
sont exprimables par les nouvelles imaginaires.
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