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UN CHAPITRE DE MÉTHODOLOGIE MATHÉMATIQUE,

LES IMAGINAIRES DE GALOIS

PAR

M. Stuyvaert (Gand).

Considérons deux polynômes à coefficients entiers,

F (x) a0xm + + 4- am

f(x) bQxn + + + b]t

et soit m ^ n. L'étude de ces fonctions relativement à un

module premier p a été commencée dans un chapitre antérieur
de notre Cours de Méthodologie: on y a montré l'existence et

l'unicité de la congruence fondamentale,

F (x) — f(x) Q(x) — R(tf) 0 (mod. p)

où R(x) est de degré inférieur à n.
On dit que F(x) est divisible par f(x) suivant le module p, si le

polynome R(x) ci-dessus est congru à zéro, donc s'il existe un
polynome Q(#) tel que le polynome F(x) — f(x) Q[x) ait tous ses

coefficients multiples de p, ce qui s'écrit

F (,r) f\cr) Q(x-) (mod. p)

Quand cette condition n'est pas satisfaite, la congruence
fondamentale donne lieu à la même suite d'opérations que
l'algorithme d'Euclide pour le p. g. c. d.

Alors, si un polynome $(x) divise (mod. p) les polynômes F(x)
et f(x) ; il divise R(#), car soient

F (;r) <(>(#) G(#) f(x) S ^(x)g{x\ (mod. p

L'Enseignement mathém., 22e année; 1921 et 1922, 17



200 M. STUYVAERT
il en résulte que

^ (;r) G (;r) — ^ (x) g(x) Q(x) — R (,r)

a tous ses coefficients multiples de p ou que R(^r) est divisible
(mod. p) par {p(x). On voit de même que si un polynome
divise (mod p) /(x) et R(#), il divise (mod. p) F(x).

Les divisions successives de l'algorithme d'Euclide, appliquées
à F(;r) et f(x) doivent aboutir, parce que le degré des restes
décroît. En dernier lieu on trouve, ou bien un reste ayant tous
ses coefficients congrus à zéro, et alors l'avant-dernier reste D(x)
divise (mod. p) le précédent et tous ceux qui viennent avant lui,
notamment F(#) et f(x)\ — ou bien un reste indépendant de x
mais non multiple de p et alors les deux polynômes donnés
ne sont pas divisibles par un même polynome.

Il faut encore établir l'unicité du p. g. c. d. (mod. p), c'est-à-
dire du polynome de degré le plus élevé divisant (mod p) F(x)
et f(x): s'il y en a un autre, il divise les restes successifs, donc
le p. g. c. d. déjà trouvé et comme ils doivent être de même
degré, le quotient est indépendant de x.

On appelle polynome irréductible suivant le module p un
polynome qui n'est pas congru au produit de deux polynômes.

On a démontré dans un chapitre antérieur ceci: si f(x) 0
(mod. p) a une racine a, le polynome f(x) est divisible (mod. p)
par x a\ et la réciproque est immédiate. Donc un polynome
irréductible de degré supérieur à 1 n'a pas de racine; mais la
réciproque n'est pas exacte, car un polynome peut n'avoir aucune
racine et cependant être réductible; il est alors congru au produit
de facteurs irréductibles de degré supérieur à 1.

Il est facile de former des polynômes irréductibles du second
degré, pour un module premier impair quelconque, 7 par exemple.
Le polynome x(x—1)—d ne peut avoir que des diviseurs du
premier degré; donc, s'il n'a pas de racine, il est irréductible;
or il n'a pour racine, ni 1, ni 0, si d n'est pas s 0 (mod. 7);
remplaçons x par 2, 3, 4, 5, 6 dans x(x— 1); nous aurons cinq résultats

qui peuvent être, dans le cas le plus défavorable, non
congrus entre eux pour le module 7; il reste toujours au moins
une valeur de d qui n'est congrue ni à zéro, ni à ces cinq résultats

[2(2 — 1) 2 ;3 (3 — 1) 6 ; 4(4 — 1) 5 ; 5(5 — 1) 6 ; 6(6-1) 2]
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on peut prendre pour d toute valeur non congrue à 0, 2, 5, 6;

par conséquent

x (x — 1) — 1 x (x — 1) — 3 x(x — 1) — 4

sont des polynômes irréductibles (mod. 7). La même méthode
réussit encore pour des congruences du troisième degré, parce
que tout polynome cubique réduqtible a au moins un facteur
linéaire. Nous verrons plus loin l'existence de polynômes
irréductibles de tous les degrés.

Théorème. Tout polynome irréductible F(x) qui divise (mod. p)
un produit de deux polynômes F(#) G(x) divise (mod. p) un des

facteurs.
1° Si F(x) est de degré égal ou inférieur à F(œ) et s'il ne divise

pas F(x), on forme, au moyen de l'algorithme d'Euclide, la suite
de polynômes

F (jr) P(.r R(,r) R'(.r) n

qui doit aboutir, puisque F(x) est irréductible, à un entier n
non multiple de p. Multiplions par G(z) tous les termes de la
suite; F(x) divisant FG et PG divise RG,R'G,...^G, donc aussi
wnG G, w étant l'entier, toujours existant et unique, tel que
wn 1 (mod. p).

2° Si F(x) est de degré inférieur à P(z) la suite de polynômes
a pour premier terme P(#), pour second terme F(x), et la démonstration

s'achève comme ci-dessus.
Corollaires. Si les congruences

F (.r) EE 0 ; / (x) — 0 ; (mod. p)

ont une racine commune a, le binôme x — a divise (mod. p)
les deux polynômes F(a) et f(x). Donc il y a un p. g. c. d. (mod. p)
D(x) de F(z) et f(x). Visiblement toute racine de B(x) est racine
de F(x) et f(x). Mais si ce p. g. c. d. n'existe pas ou s'il est
irréductible et de degré supérieur à 1, F(x) et f(x) n'ont aucune racine
commune.

On démontre, comme pour les nombres entiers, que

D(.x) EE F (x)g(x) /(x) G(x) (mod. p)

G(x) et g(x) étant deux polynômes.
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De tout ceci résulte, comme dans la théorie des polynômes

algébriques, qu'un polynome est congru, d'une seule manière,
à un produit de polynômes irréductibles, avec les conséquences
habituelles.

Application. Toute racine a, non multiple de p, de la
congruence

f(x) 0 (mod. p)

est aussi racine de xp~x — 1 ; donc f(x) et xp~x — 1 ont un p. g. c. d.
(mod. p) D(x); on le calcule par l'algorithme d'Euclide. Le
polynome D(x) a autant de racines que l'indique son degré, car,
comme il divise xp~x — 1, il est congru à un produit de binômes
tels que x — a.

Si f(x) a moins de racines que son degré ne l'indique, il est

congru au produit de facteurs binômes affectés peut-être d'exposants,

et peut-être de polynômes irréductibles. Le calcul effectué
à l'instant fournit le produit D(#) des facteurs binômes chacun
avec l'exposant 1.

Gomme on a
xP-1 — 1 D (x) Q(x)

on ne doit résoudre que celle des deux congruences D(#) 0,
Q(x) 0 qui a le moindre degré ; et cette remarque ramène la
résolution de toute congruence à celle d'une congruence de degré

au plus égal à p
2

1.

Toute congruence douée d'autant de racines distinctes que
l'indique son degré divise (mod. p) l'expression xp~~x — 1; mais
ceci n'est plus vrai s'il y a des racines multiples: par exemple
(x — a)2{x — ß) ne divise pas (mod. p) le polynome xp~] — 1, car
alors xp~~1 — 1 pourrait se décomposer en facteurs irréductibles
de deux manières h

Avant d'aborder la recherche des congruences irréductibles,
nous devons établir ce lemme d'analyse combinatoire:

Si Tm n désigne le nombre de combinaisons à répétition de m
lettres prises n à n, on a la formule

(* - 1) rP-i,k + (* ~ 2)PrP-uk-i + (* - *)P2+ -
+ 2/-3iy_,,3 + pk-2 rH>1 + rM - p* (1)

1 Exercice. Décomposer en facteurs irréductibles, suivant le module 7, le polynome
x6 — 3x4 — 2x8 — 2x2 — x — 2. (V. J. Serret, Alg. sup.).



LES IMAGINAIRES DE GALOIS 253

La formule se vérifie pour k — 2, car on a, dans ce cas

r i v -p{p _ 1]
i ^ + 1) - p2

p—"2 i p,2 2
H

2 P '

Supposons donc la formule démontrée pour le nombre k et

appliquons ensuite à k + i7

ATp„l)k+1 + (* — p Fp_lk + (k — 2)/>2r/?_ljÄ;„1 -h

+ ^Pk~^p_^s + Pk '
fp—1,2 + *>,*+1 — Pk+ ' ^

multiplions la formule (1) par p et soustrayons de (2), il vient

~ P ^P>k

ou encore

(p — 1 )p{p + 1) (p + k — 1) p[p + 1) [p + k)

ÏT2 3 [k 4- 1)
1

1 - 2 [k + lj

_ p(p + 1) ••• (p + k — J)
~P 1.2 k

'

ce qui se vérifie en divisant les deux membres par

p[p + i) (p k — 1)

1 2 k

on obtient en effet l'identité
7t T — j) P + k

— „k + i "r /• + i ~ 1 •

Théorème. Suivant un module premier p il y a des congruences
irréductibles de tout degré k\ leur nombre est au moins

en appelant Tm,n le nombre de combinaisons à répétition de m
objets pris n à n l.

Dans cet énoncé ne sont pas considérées comme distinctes
deux congruences dont l'une s'obtient en multipliant l'autre
par un facteur constant. Cette opération est en effet sans influence
sur la réductibilité et nous pouvons toujours débuter par la
préparation connue des congruences qui consiste à rendre égal
à l'unité le coefficient du terme le plus élevé en x.

1 Cf. Encyc. des sc. math., t. I, vol. 3, fasc. 1, p. 41.
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Dès lors les congruences

x2 -f- ax -f- b 3 0

sont en nombre p% puisque a et b peuvent prendre les valeurs
de 0 k p — 1. Pour avoir celles qui sont irréductibles, il faut
écarter celles qui ont la forme (x— i) (x — /), où i et / prennent
des valeurs, distinctes ou égales, de 0 à p — 1, leur nombre est
Tp 2. Le nombre des congruences irréductibles du second degré
est donc

P2 - Vp,2 1
• rp-l,2

Supposons la formule (k —~ 1) I^-i^ établie pour toutes
les congruences jusque et y compris celles d'ordre k — 1.

Enumérons les pk congruences d'ordre k : celles qui ont k racines
sont en nombre Yp, k ; celles qui sont le produit d'un polynome
irréductible du second degré par un autre polynome quelconque
sont en nombre pk~2 Tp—ï.-2 et ainsi de suite; le lemme ci-dessus
donne pour résidu

Seulement si un polynome d'ordre k est congru au produit
de trois facteurs irréductibles par exemple d'ordres h, i, / par
des facteurs binômes, il figure trois fois parmi les congruences
exclues et il faut rétablir le nombre exact en ajoutant
2 Tp,k—h-i-j • Si h -f- i -f- j est égal à A, il n'y a pas d'autre
correction de ce chef ; mais si h + i + j < jfc, il y a eu des erreurs
analogues dans l'énumération des polynômes réductibles d'ordre
k — 1, etc., et il faut retrancher

2 F*;—1, k—h—i—j—1 " etc '

or on vérifie que si k > a,

a > r*_I,a—i + 2 H- ••• -r -j- 1

car la chose est visible pour a 1 quel que soit k; supposons-la
démontrée pour I\_i a-i; nous constatons que

A:, a a—1 ^A— /, a

d'où pareillement

^ k,(X ~ ^A:—l,a—1 "h "
Ar,a—2 "b + f[k—'2,a ^ ^ k—V — l "f fA-—l,a—1
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ce dernier terme est par hypothèse supérieur à

2, a—.2 ^£-3, a—3 "P • ••

donc a fortiori on a l'inégalité à démontrer.
Ce qui précède ne démontre pas seulement l'existence de

congruences irréductibles de tout degré, mais donne un moyen
théorique de les déterminer toutes. En effet, pour une congruence
quelconque, la solution n'exige qu'un nombre fini d'essais.
Seulement les calculs étant fort longs, il est bon de chercher
quelque moyen de les raccourcir.

Pour les congruences de second et troisième ordre, la question
de 1 irréductibilité se confond avec celle de n'avoir pas de racine;
c est pourquoi nous dirons quelques mots de ce dernier problème.

Le système de classes de restes pour un module premier constitue

un corps. Par conséquent, on peut appliquer ici tout ce
que l'algèbre enseigne sur le résultant de deux équations en x,
car la théorie du résultant ne comporte que des opérations
rationnelles. Par exemple, on a ce théorème relatif à deux
congruences (que nous supposons préparées),

I4 x'" -f ax xm~l -f -f_ am 0

r * (mod. p)G~x"+ V*"-1 + + t,a0

Pourque les deux polynômes F, G aient un p. c. (mod. p)
§ contenant x, il faut et il suffit que

1 1

ai 1 1

"2 ai h •

a2 b2

a b
m n

a_ b
m n

La remarque faite à l'instant dispense de démonstration;
toutefois, nous consignons ici le raisonnement entièrement
calqué sur celui qui concerne les équations algébriques.
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Si F et G ont un p. g. c. d. (mod. p) § contenant x, on a

identiquement

F 8U ou + um_x) ~ 0 (mod./?)

G — o\ ou o (r0,r
1

-j- vA xn -f- vn_p — 0 »

d'où identiquement
(mod. p)FV EE GU

OU

"o — % 0

hiuo + U1 — «1^0 — G ~ 0 } (mod.p)

les polynômes U, V sont de degrés maximés m — 1 et n — 1 ;

un au moins des coefficients u n'est pas multiple de /?, soit uk-1;
multiplions ces dernières congruences par les mineurs relatifs

à la keme colonne du déterminant A; nous obtenons
Akat-i M p et p ne divisant pas uk^u divise A.

Réciproquement, si A Mp, multiplions les lignes du
déterminant A par les puissances xm+"-\ 1 de
l'indéterminée x et additionnons: la dernière ligne devient ainsi

xn~x F xn~2F F xm~l G xm~2 G G

et en développant A suivant cette dernière ligne, on a
identiquement

FV — GU EE 0 (mod p)

or on a, par la théorie du p. g. c. d. (mod p), identiquement

V. p. g. c. d. (F, G) p. g. c. d. (FV, GV) p. g. c. d. (GU, GV)

EE G p. g. c. d. (U, V) ;

or G est de degré n et V est de degré moindre, donc le p. g. c. d.
(F, G) contient effectivement x.

Corollaire. Pour que la congruence

xn -j- a1 xn 1
-f- an EEE 0 (mod. p)

ait une racine non multiple de p, il faut et il suffit qu'elle ait
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une racine commune avec

xP-* — i

1 i
«1 1 0 i
a2 0 0

ci2 0

a — ia

Cla — 1

Gomme application, cherchons, pour le module 5, les

congruences irréductibles du second degré.
Le déterminant suivant doit être non multiple de 5,

l 1

1 0 1

a2 ax 1 0 0

• «2 1 0 0

*2 a, — 1 0

«2 -1

ce déterminant développé

A ^
I

^
1 / ^ O ^

1 — a± + at + 4 at a2 — 2 a%

ne contient que les puissances paires de a,, c'est-à-dire que les
trinômes irréductibles ont la forme

x2 + a1 x -f- a2

Pour a2 zfc 1, on doit avoir

1 — -f- 1 di 4 — 2 — — ai (ai H- non multiple de 5
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dont on doit exclure

tf«, EE I

ayec ox EE 0 ou 2

» «j 0 ou 1

Pour a2 — ± 2, on doit avoir

1 — a>L -f- 16 *+• 8 a^ — 8 EE 4 ,4^ 8 cq -f- 4 — 4 (Vq + I

non multiple de 5; donc il faut exclure

ci2~ 2 — 2

cq — — 2 öq rn 1

En résumé les trinômes irréductibles sont

J5* ± x -J- 1
f x2 + 2x — 1 .X2 ± x -f- 2 X2 ± 2,x — 2 .x2 ± 2 ;

la dernière formule est connue, puisque + 2 et — 2 sont les

non résidus quadratiques pour le module 5.

Examinons de plus près le résultant de xp~x — 1 et de

F (.x) ou x" -f a1xn~1 + a2x"~~2 -f- -f- a11 [n < p — 1)

A —

1

0 1

0 0 1

0 0

0

1

— 1

— 1

n col.

1

a1 1

a2 «q 1

a2 at

an

1 col.

ajoutons la première ligne à la piùme, la 2iéme à la (p + l)i(>me

la n'eme à la (p + n—a}ors }e déterminanta partiel
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des n premières lignes et colonnes se réduit à son terme principal,

et l'on peut supprimer les n premières lignes et colonnes, donc

Cin (,2

J a n

«1 1

a9 ai '

a2 '

1

n col.

Pour une congruence binôme x" + q 0, le résultant est

développons: le terme principal est qp~v\ prenons un élément q
de la diagonale principale et remplaçons-le par l'élément 1 de
la même colonne, mais, comme on ne peut prendre qu'un élément
dans chaque ligne, il faut remplacer un second élément de la
diagonale principale situé à un intervalle n du premier, en descendant

la diagonale ou en reprenant au début si besoin, etc. Si
donc n est premier avec p — 1, on ne revient au point de départ
qu'après avoir épuisé la diagonale principale; pour amener tous
les éléments 1 sur la diagonale principale, il faut faire un
nombre impair p — 2 d'échanges de lignes; donc le déterminant
développé est qp~1 — 1 ; or ceci est congru à zéro pour toute
valeur de <7, donc, si n est premier avec p — 1, xn -f q 0 n'a
pas de racine.
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Si n et p — 1 ont un p g. c. d £, on revient au point de départ

après avoir pris ^
^

éléments q de la diagonale principale et
y ^les avoir remplacés par des éléments 1, ce qui nécessite —^

1

n 1
échanges de lignes ou un changement de signe si —^— est pair

et donne un terme en. q — 1); on Peut faire ceci de d

manières, puis on doit prendre de ces groupes 2 à 2, 3 à 3, etc.,
finalement le déterminant développé est

P- ]Z P-Y* n P-Y« l p—\ \8

—'
J 1

or q $ qz 1 est un diviseur algébrique de qP~l — 1 et a

racines; donc -f q 0 est possible pour p — 1— valeurs

de q. On retrouve des résultats connus, mais avec ceci de
curieux que les polygones de Poinsot apparaissent sur la diagonale

d'un déterminant (on rendrait la chose plus saisissante en
enroulant le déterminant sur un cylindre).

Remarque. Non seulement la théorie de l'élimination d'une
inconnue entre deux équations se transporte aux congruences,
mais aussi la même théorie pour plusieurs équations. Ainsi pour
que deux congruences aient une racine commune, il ne suffit
pas que le résultant soit M.p. car il pourrait y avoir un p.g. c. d.
irréductible d'ordre supérieur à 1, mais que les deux congruences
aient une racine commune avec xp~~l — 1, ce qui peut s'exprimer
en posant que tous les déterminants extraits d'une matrice
soient M. p. Etc. (Voir notre Algèbre à deux dimensions, Gand,
1920).

Arrivons à la définition des imaginaires de Galois1 Le
module p étant premier, soit f(x) un polynome irréductible
de degré n > 1. Il n'a pas de racine. Posons néanmoins

f(i) 0 ; (mod. p)

1 V. Encyc. sc. math., t. I, vol. 3, fasc. 1, p, 44; Borel-Drach, Introduct. à la théorie des
nombres, etc.
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i ne désigne pas \/— 1; c'est ici le symbole d'un entier imaginaire,

symbole vide de sens, car l'opération est impossible par
hypothèse. Son calcul s'établit par des conventions:

Convenons de dire que deux expressions <p(i), >p(i) sont congrues
et d'écrire

f(i) à (i) (mod. p)

quand la différence des polynômes y(x) et tp(x) est égale terme
à terme à une expression

R/'(x) + Sp

où R et S sont des polynômes en x à coefficients entiers. On
exprime la chose en écrivant

cp (x) — § {x) 0 ; (mod. p, f{x)j (1)

cette congruence à deux modules est d'après notre hypothèse,
vérifiée pour tout entier réel x.

La convention est permise, car dans le cas particulier où f(x)
est réductible et a pour racine l'entier réel i, on a f(i) Qp et,
d'après la relation (1),

© (i) — (1 (i) ~ (RQ -j- S) p 0 (mod. p)

Tout polynome <p(i) en i à coefficients entiers réels est une
imaginaire de Galois. D'après nos conventions, elle ne peut
être 0 (mod p) que si l'on a

o (x) 0 (mod. p, f(x))

Elle sera dite racine de la congruence F(z) 0 (mod. p) si
l'on a F(<p(z,')) 0 (mod. p), c'est-à-dire

t"(?(-x')) 0 ; (mod. p, f(x))

en particulier i est racine de la congruence fondamentale
f(z) 0 (mod. p).

A cause de l'hypothèse f(i) 0, on peut abaisser toute imaginaire

de Galois au-dessous du degré n : on divise algébriquement
qo(z) par f(z) et l'on prend le reste; de plus, on peut abaisser tous
les coefficients au-dessous de p.
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Les imaginaires de Galois ont donc la forme

5 ö0 t a\i H~ °2 *2 + ••• an—\in
1

où les coefficients ont les valeurs de 0 à p — 1 : il yap"
imaginaires distinctes (non congrues pour le mod. p). Pour
a, a2 a„_i — 0, on a, comme cas particulier, les entiers
réels.

Convenons de faire, terme à terme la somme de deux
imaginaires, et leur produit comme si c'étaient deux polynômes,
et d'abaisser au-dessous du degré n par la congruence initiale

Si le produit gx (i). g2(i) est congru à 0 (mod. p), c'est, d'après
nos conventions, que g1 (x) g, (x) 0 (mod. p, f(x)) ou que
gx(x) g2(x) est divisible (mod. p) par f(x); mais un polynome
irréductible qui divise (mod. p) un produit, divise un des facteurs,
donc le produit gx(x) g%(x) ne peut être congru à 0 (mod. p) que
si Vun des facteurs est congru à 0 (mod. p). Cette propriété s'étend
immédiatement à plusieurs facteurs.

Si l'on multiplie l'imaginaire A non 0 (mod. p) par les

p'1 imaginaires distinctes, on a des produits distincts, car s'il y
en avait deux, Agi et Ag2, congrus pour le mod. p, on aurait
A (gx — g2) 0 (mod. p) et comme A n'est pas 0, gx et g2

ne sont pas distincts. Par suite, la congruence linéaire AX B

(mod. p), et en particulier AX 1 a toujours une racine et
une seule.

Si l'on pose Ag g (mod. p) et qu'on fasse parcourir à g
les pn — 1 imaginaires distinctes, non 0, g' parcourt les mêmes

imaginaires, et en multipliant membre à membre,

et comme izg n'est pas e 0, on a la formule analogue à celle
du THÉORÈME DE FERMAT,

f{z) 0.

(mod. p)

AJ 1 (mod. p)

ou encore, quelle que soit l'imaginaire A, même 0,

n
A — A o (mod. p)
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Ceci signifie, d'après nos conventions, que si f(x) est irréductible

suivant le module p et 9(x) un polynome quelconque,

[Ô(x)]^ —0(x)

est divisible (mod. p) par f(x).
Les imaginaires de Galois relatives à un polynome irréductible

constituent un corps puisque les quatre opérations
fondamentales s'y pratiquent comme pour les classes de reste (mod. p).
Par conséquent la division algébrique s'étend sans autre démonstration,

aux POLYNOMES A COEFFICIENTS IMAGINAIRES DE GALOIS.
Entrons toutefois dans quelque détail. Soit

?(*) go(i)xm + + gm(i)

un polynome entier en x à coefficients imaginaires de Galois.
L'imaginaire 9{i) est dite racine de <p(x) si l'on a

9 [0 (i)] 0 ; (mod. p)

comme le premier membre s'obtient par des additions et
multiplications, cette congruence a un sens, d'après nos conventions.

Le polynome <p(x) est identiquement nul pour le module p si
tous ses coefficients sont 0 (mod. p) ; dans ce cas la congruence
y(x) — 0 est satisfaite par une imaginaire quelconque.

Le produit de deux polynômes pareils ne peut être identiquement
nul (mod. p) que si l'un des facteurs l'est. Car soient A le

premier coefficient non nul du premier polynome et B celui du
second; on sait que AB n'est pas 0. Par suite le degré d'un
produit de polynômes est la somme des degrés des facteurs.

Un polynome <p(#), entier en x et i est divisible (mod. p) par
un autre pareil <p(x) non identiquement nul (mod. p) si l'on peut
former un polynome n(x) tel que l'expression

© (x) — (,*;) 7i (.r)

soit identiquement nulle (mod. p)
Soit <f(x) de degré au moins égal à Dire que <p(x) est de

degré m c'est dire que le coefficient B0 de x'" est une imaginaire
de Galois non 0; on a toujours et d'une seule manière,

(1) cp {x)~ijj [x)Q(,x') -j- R (x) (mod.
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où R(x) est de degré inférieur à <p(x). Car en comparant les coefficients

des puissances successives de x dans les deux membres,
on détermine les coefficients de Q(#) puis ceux de R(x) sans ambiguïté,

chaque fois par une congruence linéaire. D'où la théorie
du p. g. c. d. avec les propriétés habituelles. Nous aurons à

revenir sur cette congruence fondamentale (r).
Mais d'abord voici un cas particulier. Soit le polynome

<p(x) ayant pour racine l'imaginaire gr On peut former la
congruence

©G) (x — gx) Q (#) 4- R (mod. p)

où R est de degré inférieur à x — g.v donc indépendant de x. Cette

congruence étant identique, on peut remplacer x par gi et,
comme (p(x{) 0, on obtient R 0, donc y(x) est divisible
(mod. p) par x — gA. Soit g2 une autre racine,

(£2) (n2 — 01 Q. {&%! (mod. p)

et comme le premier membre est congru à 0 et que g2 — gt ne
l'est pas, g2 est racine de Q(x) et y(x) est divisible par
(x — gi)(x — g2). et°- Ainsi, une congruence d'ordre m ne peut
avoir qu'une racine de plus que la congruence d'ordre m — 1 et,
de proche en proche, une congruence ne peut avoir plus de racines

que ne l'indique son degré, à moins d'être identique.
Un rôle spécial revient au polynome xpU — x qui a pour racines

toutes les imaginaires de Galois, donc autant que l'indique son

degré; il est congru au produit

oc(oc — §x) (x — g2)

g!,g2... étant toutes les imaginaires. Soit F(x) un autre polynome
ayant la même propriété: on a

F (x) (xp — x) q (x) -|- r(x) (mod. p)

F(x) et {xpU— x) étant 0 pour toutes les imaginaires de Galois,
il en est de même de r(x) qui a donc plus de racines que ne

l'indique son degré et disparaît.; donc tout polynome ayant pour
racines toutes les imaginaires de Galois est de la forme

(xP x) 7C (x)

où tï(x) est un polynome arbitraire.
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Soit deux polynômes a coefficients réels, F(#) et F.,(^),
soit D leur p. g. c. d. (mod. p) ; on sait que l'on peut trouver deux

polynômes G, G< tels que
D — F G, — F1 G

ait tous ses coefficients (réels) multiples de p.
Dire que l'imaginaire de Galois g(i) est racine de F et F1?

c'est dire que F(g(x)) et F1(g(x)) sont divisibles (mod. p) par
f(x); il en est de même de D (g(x)). Ainsi les racines communes
à F et F1? tant réelles qu'imaginaires de Galois, sont racines
de D(z).

Or xp" — x a pour racines toutes les imaginaires de Galois,
donc les racines de F(x) sont racines du p. g. c. d. (mod. p)
A(#) de F(#) et xp" — x.

A(x) polynome à coefficients réels divise (mod. p) F(#); si

F(#) est irréductible (mod. p), A(x) est ou bien indépendant de x,
ou bien congru à F(#); donc une congruence irréductible à

coefficients réels a, ou bien aucune racine imaginaire de Galois,
ou bien en a autant que l'indique son degré, car &(x) est diviseur

(mod. p) de xp"— x.
En particulier f(x) est irréductible, de degré 72, à coefficients

réels et a une racine imaginaire 2, donc elle en a n, et f(x) divise
(mod. p) le polynome xpH— x. Celui-ci est donc divisible (mod. p)
par tout polynome irréductible de degré 72, car f(x) a été choisi
arbitrairement.

De même si l'entier r divise 72, l'entier pr— 1 divise pn — 1,
et le polynome xp>—1 — 1 divise algébriquement xp"~l— 1.

Ainsi toute congruence irréductible dont le degré r est n ou
un diviseur de 72 a autant de racines imaginaires de Galois que
l'indique son degré.

Toute autre congruence irréductible est privée de racine. Car
on sait, d'après les propriétés des coefficients binomiaux, que

(a + b c -[- .,,jp EE a? -j- hp -j- cp -{- (mod. p)
donc

4. hx + cx^ + ...)p EE ap + bp xp + cpx2p + (mod. p)

et ceci d'après le théorème de Fermât, est congru à

a -}- bxp -I- cx2p -J-

L'Enseignement mathém., 22e année; 1921 et 1922. 18
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c'est-à-dire que
(<pU*) )p 9 (xp) ; (mod. p)

remplaçons x par xp,

9 (Xp2) (9 (xp) f ~ ((9 (xf))p (9 {*) )p2 (mod. /?)

et, de proche en proche,

[y(x)]p' ?(^r) (mod. p)

A présent si un polynome irréductible de degré n pouvait
diviser xp" — x dans l'hypothèse r<?i, ce polynome définirait
une imaginaire de Galois i qui serait racine de xpt — #, donc

on aurait

ip EE i d'où ®{ip EE ®(i) (mod. p)

et, d'après la remarque précédente,

?(/) (o(i)f 9(0

c'est-à-dire que la congruence x/—x aurait pour racine toute
expression y(i) donc toutes les imaginaires déduites de i en

nombre p'\ et aurait plus de racines que son degré ne l'indique.
Ainsi xpH— x ne peut être divisible (mod. p) par un polynome

irréductible de degré supérieur à n.

Enfin, si n mq + r (0<r<m), l'expression xp"— x ne peut
être divisible par un polynome irréductible F(x) de degré m,

car xp,nq — x est divisible par F(x) d'après un résultat trouvé à

l'instant, xpn-—x l'est aussi par hypothèse, donc F(x) divise

(mod. p) leur différence

xpmq+r _ xpmg

et celle-ci d'après une remarque ci-dessus est congrue à

{xpï'-x)pmq

et n'est pas divisible par F{x) puisque r<jn (un polynome
irréductible qui divise un produit (xp' — x)p,nq divise un facteur
xpt — x).

En résumé, xp"—x est le produit de tous les polynômes
irréductibles dont les degrés sont n ou des diviseurs de n.
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Signalons comme corollaire facile ou exercice (cf. Encyc., t. I,
v. 3, fasc. 1, p. 42): si N est le nombre des congruences irréductibles

d'ordre n, on a

n n n n

nN p"-^p"i + 2 paiakUl + ...±pa^-"n
(i) (i<£) {i<k<l)

où la première somme est étendue à tous les facteurs premiers

inégaux av aan de n, la seconde à toutes les combinaisons
2 à 2 de ces facteurs, ...et où l'exposant du dernier terme est le

quotient de n par le produit de ces facteurs.
Autre corollaire: x?'1—x n'a pas de facteurs multiples, car

s'il avait la forme le produit fgh... contenant toutes
les imaginaires de Galois serait de degré au moins égal à xp'2 — x.

Terminons par une propriété connue des corps a un nombre
fini d'éléments (Encyc., t. I, v. 2, fasc. 2, p. 249):

Les seuls corps à un nombre fini d'éléments sont ceux formés par
les classes de restes suivant un module premier auxquelles on adjoint
une imaginaire de Galois.

D'abord les multiples successifs de l'unité absolue doivent
aboutir à zéro, donc constituer une classe de restes et nous avons
vu au chapitre Corps et Domaines que, pour avoir un corps, il
faut prendre un module premier p.

Ensuite, on ne peut, au corps de classes de restes (mod. p)
adjoindre une quantité i de manière à avoir un nouveau corps à

un nombre fini d'éléments que si i est une imaginaire de Galois.
Car i, i2, i3.... sont des éléments du nouveau corps : comme
il n'y en a qu'un nombre fini, on doit avoir à la fin

_ a + ßi + T;2 + pT"-1
~~

a' _}_ pq _j_ Yi2 +

le second membre existe puisque l'on a un corps, et multiplié
par le dénominateur il donne le numérateur, ainsi i est racine
d'une équation ou plutôt congruence à coefficients du corps
initial; si celle-ci est réductible, un des facteurs irréductibles
doit être nul, car c'est une propriété essentielle du corps qu'on
produit ne s'annule que si un des facteurs s'évanouit; ainsi i est
une imaginaire de Galois.
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Supposons à présent' deux éléments et adjoints au corps
de classes de restes (mod. p).Les puissances successives étant
en nombre infini, une relation identique doit permettre d'exprimer

les puissances de i à partir de la Aième et celles de à partir
de la kiéme au moyen des puissances précédentes.

Ces deux relations ne peuvent être les mêmes, car soit pour
fixer les idées, i2 + j21 ; utilisons-la pour ne garder que
1, i, j, j2et exprimons /*; nous aurons

j3=f.j=j{ i- i2)j — ji2 j — j — y2) y3 ;

nous retombons sur j3 et cela provient de ce que remplaçant
i2et j2tirés de la même relation, nous aboutissons à une identité.

Ainsi il y a deux relations distinctes entre i et / ; nous pouvons
en éliminer j ou i car c'est une opération rationnelle, donc i et j
sont séparément imaginaires de Galois, et de même, de proche

en proche pour plusieurs éléments adjoints.
Montrons enfin que l'adjonction simultanée de deux (pour

fixer les idées) imaginaires i, j, équivaut à une adjonction unique.
Soit i définie par une congruence 0 irréductible d'ordre n

et jpar une congruence <p(x) d'ordre n' ; les polynômes /(: <p(z)

divisent respectivement

xP"-1 - 1 et x.P'l'-x - 1 ;

*
;

soit p. un multiple commun quelconque de n et n ; — 1

est divisible par p" — 1 et par donc

est divisible algébriquement par xp'1 — 1 et x?" — 1 ; il existe

des polynômes irréductibles d'ordre p\ l'un d'eux définit des

imaginaires de Galois et d'après le théorème précédent, et /
sont exprimables par les nouvelles imaginaires.
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