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12 M. WINANTS

gion A (2). On a vu (10) que les trois valeurs de & ont le signe
de m. :

On fera le méme raisonnement pour les deux autres bissec-
trices. Ainsi la cubique posséde un ovale, intérieur au triangle
asymptotique (8). Cet ovale est ‘rés différent d’une ellipse: il
admet la symétrie du triangle équilatéral, A® 3A%

La cubique bipartite a neuf sommets. Nous appellerons som-
met tout point ou la courbe est rencontrée par Pun de ses axes
de symétrie.

13. — Nous proposons d’appeler tricentre le point ou le plan
d’une courbe est rencontré par un axe de symétrie ternaire.

Quand une courbe plane posséde un tricentre, elle est repré-
sentable, en coordonnées trilinéaires absolues, par une équation
symétrique. On ‘doit prendre, comme figure de référence, un
triangle équilatéral dont les médianes concourent au tricentre.

Nous croyons pouvoir affirmer que I'étude de la courbe sera
beaucoup plus simple en coordonnées trilinéaires qu’en coor-
données cartésiennes. A propos de chaque probléme particulier,
la symétrie cristallographique d’une figure suggérera les coor-
données dont on doit se servir. ‘

y 2. — Symétrie du tétraédre régulier.

14. — Soit ABCD un tétraédre régulier. Ce polyédre n’admet
aucun centre. La perpendiculaire AH, abaissée d’un sommet sur
la face opposée, est un axe ternaire, car, si Pon fait tourner le
solide, autour de cette droite, d’un tiers de tour, il y a restitu-
tion (2). Par chaque sommet, passe un A*: il y a donc 4A°.
La droite MN, qui joint les milieux
9 de deux arétes opposées, est un axe de
0 symeétrie binaire. Donc 3AZ.
Les sept axes de symétrie se coupent
D B au centre de gravité du tétraddre.
Le plan ABM, qui contient une aréte
) et le milieu de ’aréte opposée, est un
Vs plan de symétrie. Chaque aréte déter-

Fig. 2. mine un pareil plan P. Donc 6 P.
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15. — On appelle symbole de syméirie d’un polyeédre, un
tableau comprenant I'indication de tous ses éléments de symétrie.
16. — Le symbole de symétrie du tétraedre régulier est donc:

A% . 3AZ. 6P .

§ 3. — Forme générale de la surface. — Ombilics.

17. — Nous allons étudier le lieu géométrique des points dont
les distances a trois plans fixes rectangulaires ont un produit
constant. C’est une surface ayant pour équation:

o — pf" .

Nous pouvons supposer p > 0, car, si p était < 0, on change-

‘rait le sens de 'un des axes.

Lla surface ne rencontre ni les axes

: : . Z
ni les plans coordonnés, a distance finie. Y
Elle ne péneétre dans aucun des triedres o
suivants: z'yz, xy'z, xyz', z'y'z, dans 7
chacun desquels le produit des coor- X__________ < X

données est négatif. :
On peut immédiatement trouver qua- ‘«
tre points de la surface: (+ p, + p, Yy E
+p)s (+p—p —p); (—p ‘
+ Py~ —8 —p | p). Ge Fig. 3.
sont les quatre points A, B, C, D, som-
mets d’un tétraédre régulier, dont le centre de gravité se trouve
a l'origine des coordonnées.
La surface x y z = p® se compose donc de quatre nappes indé-
finies, asymptotes aux plans coordonnés. ,
Son équation ne change pas quand on remplace z y z par y z z,
2Yx, XY, LY 3, TY Z, ete. La surface admet six plans de symé-
trie, qui sont les mémes que ceux du tétracdre ABCD.
On démontre, en cristallographie, que Pintersection de n plans
de symétrie est un A" Il en résulte que la surface, dont nous
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