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12 M. WINANT S

gion A (2). On a vu (10) que les trois valeurs de a ont le signe
de m.

On fera le même raisonnement pour les deux autres bissectrices.

Ainsi la cubique possède un ovale, intérieur au triangle
asymptotique (8). Cet ovale est très différent d'une ellipse: il
admet la symétrie du triangle équilatéral, A3, 3A"2.

La cubique bipartite a neuf sommets. Nous appellerons sommet

tout point où la courbe est rencontrée par l'un de ses axes
de symétrie.

13. Nous proposons d'appeler tricentre le point où le plan
d une courbe est rencontré par un axe de symétrie ternaire.

Quand une courbe plane possède un tricentre, elle est
représentable, en coordonnées trilinéaires absolues, par une équation
symétrique. On doit prendre, comme figure de référence, un
triangle équilatéral dont les médianes concourent au tricentre.

Nous croyons pouvoir affirmer que l'étude de la courbe sera
beaucoup plus simple en coordonnées trilinéaires qu'en
coordonnées cartésiennes. A propos de chaque problème particulier,
la symétrie cristallographique d'une figure suggérera les
coordonnées dont on doit se servir.

Symétrie du tétraèdre régulier.

Soit ABCD un tétraèdre régulier. Ce polyèdre n'admet
aucun centre. La perpendiculaire AH, abaissée d'un sommet sur
la face opposée, est un axe ternaire, car, si l'on fait tourner le
solide, autour de cette droite, d'un tiers de tour, il y a restitution

(2). Par chaque sommet, passe un A3; il y a donc 4A3.
La droite MN, qui joint les milieux

de deux arêtes opposées, est un axe de
symétrie binaire. Donc 3A2.

Les sept axes de symétrie se coupent
au centre de gravité du tétraèdre.

Le plan ABM, qui contient une arête
et le milieu de l'arête opposée, est un
plan de symétrie. Chaque arête détermine

un pareil plan P. Donc 6 P.
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15. — On appelle symbole de symétrie d'un polyèdre, un
tableau comprenant l'indication de tous ses éléments de symétrie.

16. — Le symbole de symétrie du tétraèdre régulier est donc:

4A3 3A2 6P

S 3. Forme générale de la surface. — Ombilics.

17. — Nous allons étudier le lieu géométrique des points dont
les distances à trois plans fixes rectangulaires ont un produit
constant. C'est une surface ayant pour équation:

xyz — p"

z
/y'

//

X

//
;

Nous pouvons supposer p > 0, car, si p était < 0, on changerait

le sens de l'un des axes.
La surface ne rencontre ni les axes

ni les plans coordonnés, à distance finie.
Elle ne pénètre dans aucun des trièdres
suivants: x'yz, xy'z, xyz', x'y'z, dans
chacun desquels le produit des
coordonnées est négatif.

On peut immédiatement trouver quatre

points de la surface: (+ p, + p,
+ P) ; (+ p, — p, — p) ; (— p,
+ P, — P) ; (—-P, — p, + P)- Ce

sont les quatre points A, B, C, D,
sommets d'un tétraèdre régulier, dont le centre de gravité se trouve
à l'origine des coordonnées.

La surface xy z p3 se compose donc de quatre nappes
indéfinies, asymptotes aux plans coordonnés.

Son équation ne change pas quand on remplace xyz par y x z,
z y x, x z y, xyz, xyz, etc. La surface admet six plans de symétrie,

qui sont les mêmes que ceux du tétraèdre ABCD.
On démontre, en cristallographie, que l'intersection de n plans

de symétrie est un A". Il en résulte que la surface, dont nous

Fis
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