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93. — Dgrrarorre (Ligue Chronos, Paris), Sur la réforme du

calendrier.
Le prochain congres doit se tenir a Rouen. [Le président de sec-
tion sera M. LeLieuveE, le secrétaire M. A. GERARDIN.

Société mathématique suisse.
Neuchdtel, 31 aoitt 177920.

La Société mathématique suisse a tenu sa dixiéme réunion ordi-
naire a Neuchitel, le 31 aott 1920, sous la présidence de M. le
Prof. Louis CreLier (Berne), al’occasion de la cent-unieme assem-
blée annuelle de la Société helvétique des Sciences naturelles. Le
programme de la partie scientifique comprenait douze communi-
cations. En voici les résumés.

1. — D*Ch. WiLuicens (Berne). — Sur Uinterprétation du temps
universel dans la théorie de la relativité. — Si dans la transfor-
mation de Lorentz

x =B + au’) , =B+ ax’), = i z—1z ,

U=

¢, désignant la vitesse de la lumiére, on pose
wu—ct-+r W==ct—r

on arrive, tout calcul faitl, aux relations

x =" 4 vt ‘ (1)
¢ B —1 6 —1 ,
co-c__-BQt—{— o :cot--i—r)aB 2
. 2)
— 1. — o
co'c’:cot———@ :&t—ﬁ 1,

«f T B af

g ) , . -
Supposons 'observateur placé sur S. Comme tous les points de
S’ sont au repos, on a

Ax’ = 0 At = At . (3)

Les horloges marchent donc toutes également vite. Les for-

1 Qh: YVILLIGENS. Interprétation géométrique du temps universel dans la théorie de la
relativité restreinte. Archives des sciences physiques et naturelles, 5¢ période, vol. 2, juillet-
aott 1920. ‘
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mules (2) mettent en évidence le caractere de la relativité, a savoir
un déphasage par rapport 4 ’horloge locale de 'observateur. En
outre, il résulte de (3) que ce mode de mesure du temps doit con-
duire aux mémes équations différentielles que si I’on introduit le
parametre ¢.

Les relations (2), linéaires en x, 2', 7, 7’ et ¢ représentent des
droites dans les diagrammes de Minkowski. Ce sont des droites
de simultanéité absolue. L’auteur s’est proposé d’étudier len-
semble formé par ces droites, lorsque la vitesse ¢ de S’ prend

toutes les valeurs possibles. Il est commode d’introduire des ima-.

ginaires en posant

a a ¢ . b 1‘ 1—0
s & = — lCO ) ==
1 + a? ab

=m=1tgo

1

b = cos 2¢.

[La transformation de l.orentz représente la rotation du systeme
d’axes (v, ¢,7) d’'un angle 2¢ autour de lorigine. La premiére
relation (2) prend la forme

— — 14 m?

C,T == mx Ep bo———gp

0 + < 1 — m?
représentant une paralléle a la bissectrice de #0x'. Supposons ¢
constant et faisons varier m. La droite enveloppe une courbe
définie par les relations :

- &m — tl-—-—’imz—m"
(1 — m?%)2’ F = % (1 — m??

x:cot

Si ¢ varie on obtient des courbes homothétiques par rapport a
I’origine, le rapport d’homothétie étant ¢. Pour un systéme S’
donné on aura les droites de simultanéité en menant & ces courbes
les tangentes paralléles a la bissectrice de #Ox’. On n’a qu'une
seule de ces tangentes par courbe.

Si on n’introduit pas les imaginaires, les axes Oz’ et O«’ sont
conjugués par rapport aux hyperboles équilateres :

2 — w2 =1, 22— 2= — 1,

Les droites de simultanéité sont représentées par une rélation
de la forme :
1 — p? -1
1+ p? = a3

GT = & - € F

elles sont paralléles a la droite joignant les points d’'intersection
de Owu et Ou’ avec 'une des hyperboles et ont pour enveloppe

t1+[—*P-2"‘P-4
O N

T==C

B T T P Sy



CHRONIQUE 217

Ce sont des hypocycloides a trois rebroussements h9m0thé-
tiques par rapport a origine, ¢ étant rapport d’homothétie.

On voit que ¢ est indépendant de «, et que seules les droites de
simultanéité en dépendent.

En particulier, si =0 ona m=p=0. (=7 Les valeurs de
¢ sont donc identiques aux valeurs de T quand on ne s'occupe pas
du systeme S'.

9. — Prof. G. PoLya (Zuarich). — Sur les fonctions entieres. —
Soit g(z) =a, + a,% + a,2* + a,z* + ... une fonction entiére,

M (r) le maximum de | g(z)| dans le cercle |z| = 7,

N (r) le nombre de zéros de g(z) dans le méme cercle,

n(r) 'indice du plus grand des termes la, |, |alr, laglr?, ...

,—].0'1 M r
A= lim =5 — ? , r)
r—o 187
I. D’un théoréme général sur les suites infinies découlent les .

inégalités suivantes

Vordre apparent de g(z).

. n(r) —  n(r)
) o 1
N 4
lim — <A 2) -
—lgM(r) =

Il existe une fonction ¢{A) s’annulant pour £ =0, 1, 2, 3, ...
positive, quand A n’est pas entier, et telle que

. N(r) ‘
g = A %)
On a
o(A) = SmT_ﬂA ‘ pour 0 AT
1—A 1 A—1
1 A2 x dx ‘
o (14 x)

Les inégalités données ne sauraient étre resserrées davantage,
le signe = étant valable pour certaines fonctions particulieres.
Par exemple, les inégalités (2) et (3] se changent en égalités pour
o(z) respectivement pour £\/z); o(z) désigne la fonction de
Weierstrass, un carré étant pris comme parallélogramme des pé-
riodes, &(z) désigne la fonction de Riemann.

2 2 _ 2 .
_II. Si |2+ + .+ + ... converge, le genre de
0

g(z) est 0 ou 1. La démonstration de cette proposition se base sur

a’l _612 all+1

all

@,
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un théoreme d'algébre de M. J. Schur. Une autre démonstration
se basant sur des considérations moins particuliéres serait dési-
rable, parce qu’elle devrait probablement s’écarter des méthodes
usuelles.

3. — Prof. L. Licutexsrriy, (Berlin). — Swur les problemes mathé-
maliques concernant la forme des corps célestes. — Le probléme
de la forme des corps célestes a, depuis la découverte du calcul
infinitésimal, occupé nombre de mathématiciens éminents, au
XVIIIe siécle Mac Laurin, D’Alembert, Clairaut, Legendre et,
surtout, Laplace qui consacra i cet objet le tome II de sa « Méca-
nique céleste». Au XIX siécle, des recherches de Dirichlet,
Jacobi, Liouville et Riemann sur la figure ellipsoidique d’un
fluide tout d’abord, puis surtout, des travaux de Poincaré (1885)
et de Liapounoff (1884) amenérent un nouveau progres.

Dans un travail connu des Acta matematica (1885) Poincaré
énonce le théoréeme suivant: Soit T une figure d’équilibre d’un
fluide homogeéne tournant avec la vitesse angulaire w. En général
a toute valeur voisine de ®, disons o 4 Aw, correspond une
figure d’équilibre T, voisine de T. Dans certains cas cependant
a @ + 4w peuvent correspondre plusieurs ou aucune figure T,.
(4w >0 ou Aw << 0). En T se présente une « bifurcation de la
figure d’équilibre ». [La démonstration que donne Poincaré de
ses théoremes fondamentaux n’a guere qu’une valeur heuristique.
Dans le cas spécial des ellipsoides de Mac Laurin et de Jacobi, la
démonstration compléte a été donnée par Liapounoff dans une
suite de travaux fondamentaux, qui parurent entre 1903 et 1916.
Les travaux de Liapounoff contenaient en outre la solution
complete du probleme de la stabilité dans sa forme ordinaire, de
méme que de nombreuses considérations accessoires — tout cela
pour les ellipsoides fluides.

Dans deux travaux parus derniérement, [Mathematische Zeit-
schrift Bd 1 (1918) et Bd 7 (1920)] j’ai, entre autres choses, démon-
tré les théorémes de Poincaré pour une figure d’équilibre quel-
conque. I.a méthode de démonstration représente, en partie, ‘une
généralisation et une simplification de la méthode de Liapounoff;
d’autre part, elle introduit plusieurs points de vue nouveaux, en
particulier.quant a la théorie du potentiel. Les moyens dont on
dispose dés lors permettent d'obtenir la solution exacte d’un
grand nombre de problemes classiques. On peut considérer la
confirmation de la Théorie de Laplace concernant I'anneau de
Saturne comme le plus important de ces résultats. Laplace le
premier a étudié les figures d’équilibres possibles d’un anneau
fluide tournant autour d’un axe, et trouvé que sa section, en pre-
miére approximation, est elliptique. Plus tard, Madame S. Kowa-
lewsky a poussé l'approximation un pas plus loin. L’existence




CHRONIQUE - 219

de figures d’équilibres en anneau est aussi peu prouvée par ces
travaux que par ceux postérieurs de Poincaré.

Comme autre résultat, nous citerons la confirmation de la
théorie de la Lune, de Laplace.

On peut admettre qu’il serait maintenant aussi possible de
traiter, entre autres et de facon relativement simple, des anneaux
qui ne soient pas nécessairement homogenes, en particulier des
anneaux gazeux.

4. — Prof. L. G. Du Pasouier (Neuchatel). — Sur les idéaux de
nombres hypercomplexes. — En cherchant a étendre a tous les
systtmes de nombres complexes les propriétés des nombres
entiers, comme Gauss l'avait fait avec un plein succés pour les
nombres complexes ordinaires, les géometres découvrirent que
certains systéemes ne se prétent pas a cette généralisation. Par
exemple, la décomposition d’un nombre complexe entier en
facteurs premiers, décomposition teujours possible, n'est pas
toujours univoque. Il en résulte qu’'un produit peut é&tre divisible
par un nombre entier sans qu’aucun des facteurs ne le soit, et
quantité d’autres irrégularités. La théorie des idéaux, comme on
le sait, fait tomber ces anomalies'par un ingénieux changement de
méthode. En faisant intervenir des idéaux de nombres, c¢’est-a-
dire certains ensembles de nombres entiers, a propriétés caracte-
ristiques bien déterminées, au lieu d’opérer sur les nombres
considérés isolément, Dedekind réussit a rétablir la simplicité
arithnomique qui se manifeste dans l'arithmétique ordinaire. —
Le domaine ot la théorie des idéaux est applicable avec succes
embrasse tous les corps de nombres algébriques dont on s’est
occupé jusqu’'ici : d’une part, les systémes ou se maintient I'an-
cienne théorie des nombres, qui ne fait pas intervenirle concept
d’idéal, d’autre part une infinité de systémes ou cette ancienne
arithmétique n’est pas valable. Aussi croyait-on la théorie des
idéaux d’une efficacité absolue, lorsqu’il s’agissait d’obtenir une
arithnomie réguliere. Or, il existe des systemes de nombres
complexes & multiplication associative, distributive et commuta-
tive, et contenant les nombres réels comme sous-groupe, ou
méme la théorie des idéaux ne conduit pas a une arithmétique
simple comparable a la classique. — Soit, dans l'un de ces
systemes, @ un idéal non principal. Il peut arriver que la série de
ses puissances successives

a, a?, a®, ..... , ar, ... ad infin.

ne contienne aucun idéal principal. [.’'un des fondements de la
théorie de Dedekind est ainsi détruit. Le conférencier indique le
systeme le plus simple possible de nombres complexes ou cela se
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produit, et termine sa communication en signalant quelques
problémes nouveaux qui surgissent de ce fait dans le domaine
des nombres complexes généraux.

5. — D" G. Tirrcy (Genéve). — Une nouvelle propriété des
courbes orbiformes. — 1. On appelle orbiformes des courbes fer-
mées convexes, de largeur constante. Leur équation polaire tan-
gentielle s’écrit :

plw)=all 4+ f(w)] , avec flo + 7)) = — flo)

Considérons un point M de contact se mouvant sur une orbi-
forme, de telle maniere que I'angle polaire tangentiel augmente
proportionnellement au temps : 0 —=0¢t4 w,; la projection P du
point M sur un axe est animée d’un mouvement oscillatoire, au-
quel nous donnerons le nom de mouvement harmonique d’orbi-
forme.

2. Considérons plusieurs mouvements harmoniques d’orbiformes,
d’amplitude a, différentes, d’époques tangentielles ¢, différentes,
mais de méme période tangentielle : ‘

Pi = a;[1 4 fi{w)] By S gy,

Composons les normales p;; soient OS la résultante, OR sa
projection sur I’axe des 2, et ON sa projection sur ’axe des y.

Puis, donnons &4 m un accroissement 7 ; et composons les nou-

! . , . . aval . _

veaux rayons vecteurs tangentiels p,(w, 4 7); soient OS’ la résul

tante, OR” et ON’ ses projections sur les axes de coordonnées.
En posant :

Eaicossi:Acoss , Eaisinei:Asine ,

on obtient :

R’R = 2A cos (w + ¢) , NN = 24 sin (w 4 ¢)

On trouve donc la propriété que voici : le segment de droite SS’
est de longueur constante égale & 2A ; et langle qui l'oriente pré-
sente une différence constante (¢ — &) avec chacune des phases ..

D’ailleurs, le rayon vecteur tangentiel OS ne définit pas une orbi-
forme.
3. On trouve facilement que la distance de l'origine a la droite
SS’ vaut :
Pw) = a1l + f;] sin (e — &) s
or il vient :
Pl{w) 4+ Pl + 7 =0 .
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La courbe enveloppe de la droite SS' est donc une courbe d’en-
vergure nulle, c’est-a-dire n’admettant qu’une seule et unique
tangente parallele a une direction donnée.

Par conséquent, les courbes convexes paralleles a la courbe
P (w), et les développantes convexes de cette méme courbe, seront
de nouvelles orbiformes. _

4. Dans le cas ou les ¢, sont égaux, les rayons p, sont portés par

la méme droite ; alors :

et la résultante OS des rayons p, définit directement une nouvelle
orbiforme, de largeur 2A —=23a,.

Si P est le point animé du mouvement harmonique d’orbiforme
final, et si P, sont les points animés des mouvements harmo-
niques donnés, on a en outre:

OopP = XO0P, .
On remarquera que 1’énoncé de ce théoréme est identique a
celui de la loi de Fresnel, donnant la composition de plusieurs

mouvements harmoniques simples de méme période.

6. — Emcu (Urbana, U. S. A.). — Sur les incidences de droites et
de courbes algébriques planes dans Uespace et les surfaces qui en
résultent. — lLiiroth' a traité des problemes de cette sorte pour le
cas le plus simple des sections coniques. Par 'emploi systéma-
tique de formules d’incidence, sous une forme é'égante, Emch
réussit a obtenir, non seulement tous les résultats de Liiroth,
mais des résultats généraux pour les courbes de n™¢ ordre, par
une méthode analytique relativement simple. Voici quelques-uns
de ses principaux résultats :

. 3

1. Le systeme de plans, tels que chacun coupe %——'———) + 1

droites indépendantes dans Uespace en des points situés sur une
n® 4+ 3n% 4 2n
5 .

2. Les courbes planes den™ ordre, dont les plans passent par une

n(n 4 3)

droite fixze et qui coupent —— droites indépendantes dans ['es-

n® 4 3n% | 2n
3 .

courbe du n™ ordre est une surface de.la classe

pace, engendrent une surface d’ordre

3. Les courbes planes de n™ ordre qui coupent n(n;:—%) -+ 2

1 Sur le nombre des coniques qui coupent 8 droites dans espace. Journ. de Crelle,
p. 185-192 (1868).
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droites indépendantes dans Uespace, chacune en un point simple,
forment une surface développable de la classe

n®(2n* + 1203 4+ 1702 — 3n + 8)
18

4. Etant données — + 3 droites indépendantes dans [ es-

nn 4+ 3)
Z

pace, il existe

n®(n® 4 3n + 2) (n* 4 6n® 4 4n? — 15n + 4)
27

courbes de n™ ordre coupant chacune de ces droites. Dans le cas
n =2 (Liiroth) ce nombre est 9.
5. Soient les courbes planes de n™ ordre qui coupent une courbe

’ . 1 . . 14
plane donnée de n™ ordre en n points et - (o 2——) + 1 droites indé-
pendantes dans Uespace; les plans de ces courbes forment une sur-

2n? - 3 7
face de la classe n (2o +6 nt 7 .

A 14 ! ’ ’ 1 . .
6. Méme énoncé que le précédent avec % + 2 droites in-
dépendantes dans Uespace; la surface est dévelcppable et de la
n?(4n* 4 12n% 4 1902 4+ 24n + 49)
36

classe .
7. [l existe

n®(8n® 4- 36n5 + 66n* 4 99n3 L 12352 -+ 89n 4 343)
216

courbes planes de n™ ordre, qui coupent une courbe plane donnée

n(n + 1

de n™ ordre en n points et 5 ) + 3 droites indépendantes

dans l’espace.

En particulier :

8. Il existe 175 cercles coupant 6 droites indépendantes dans
lespace.

7. — Prof. F. Gonsern (Berne). — Sur une application de I'équa-
tion de Fredholm. — 1l s’agit de la détermination d’une solution
de ’équation différentielle
" y dn—l y - )

d;l:n a(x) dx"_.i +o T+ Hx)y = m(a)

lOl'S ue la f()nction inconnue doit our n valeurs données de x
’ ’
prendre n valeurs donnees d’avance.
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La méthode générale est exposée sur I’équation du 3° ordre :

B ax d2,. d.
“y Yy p & R 1
dx3+adx2+bdx T (1)

y prenant les valeurs y,, y,, Y5 POUr & = &y, ¥y, T
On considére 'expression

g

y = f A(ws)f(s)ds + V(x) | (2)

xy

ou la fonction A (xs), en général continue, a pour s—x une dis-

. o N DA (xs) 02 A (xs) , x
~continuité a(z). De méme ——— et —=5— présentent au meme

endroit les discontinuités §(z) et y(x).

Quant & la 3° dérivée partielle, elle est supposée identiquement
nulle.

Dans ces conditions, A (zs) est de la forme

L(x— )+ my(x —s)+ ny pour s < x
I (x — )% 4 my(x — s) + ny pour s > X

l,, m, n,; Ly, m, et n, étant des fonctions arbitraires de s, dont
1(s)

seules les différences l, — [, = - .- ete, joueront un role dans

la suite.
Dérivons I’équation (1) trois fois de suite : nous obtenons

y" 4 alx) f'(x) + [Blx) + 20/ (x)] (2) + [v(%) + F(x) + Y'(x)] /()
— V()
que nous identifions avec

Y+ alw) @) + blx)f(z) + cla)flz) = d() -

Les a, b, ¢ déterminent a(z), B(2) et y(x); quant a V(z) on peut
lui ajouter sans rien modifier & la derniére équation, une fonction
arbitraire dont la dérivée troisiéme soit nulle. Nous remplacons
donc (2) par:

Ly

y = [Alws) fls)ds + Cy(x — a) (@ — &) + Gyl — @)@ — @)

Zy

+ Cyle — ay)ix — a) + Vi@ (4)

exprimant que pour £ = z,, Z,, Z,, y prend des valeurs détermi-
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nées, on calcule Gy, C, et C,. Ceux-ci étant introduits, 'équation
(4) prend la forme :

xX,

3

y :fA(xs)f(s)d(S) +—V(7) ;

Zy

et la fonction f ne joue aucun réle dans A et V. Nous avons donc
la possibilité de remplacer / par y et 'équation de Fredholm

3

y(w) = [K(ws)y(s)ds + Va)

résout la question.
La méthode est susceptible de diverses généralisations.

8. — Prof. C. CarLLEr (Genéve). — Sur un théoreme relatif a la
série hypergéométrique et sur la série de Kummer. — L’auteur
donne diverses généralisations de Ia formule, obtenue par lui, il
'Y a quelques années

1
4y ’_‘1 ’ ’ ’
SETU =TT R, 8,y an) Pl 9, 7 (1 — 2
0

— )y — 1) 0B’ )
:(Y(Y _;-)Y,(L l}/ll} (1 —y) BF(“»@’Y‘*‘Y’ x +y — xy)

laquelle a lieu sous réserve des conditions
@t A=+ =1+,

Parmi ces extensions citons la suivante

1
sz-l(l ——z)Y—-lF(a, B, v, xz)Fa!, B/, v, 1 — z)dz
0

— 1! /_11 AW /_,11 , , , ) )
::nggiwljﬁglfiﬁEJN)FW+Y—“_¢’“T+Y““”W

qui a lieu moyennant la relation B4+8 =y -+, et

1
/ﬁ”u—%ﬂ”me;mwwcwyu_awz
0
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Dans cette derniére, F est la fonction de Kummer

L o a(a 4+ 1)x?
Fla,y; @)—1+‘?x+m§—l+

9. — Prof. C. CarLrer (Genéve). — Sur un théoréeme de cinéma-
tigue. — M. C. Cailler rappelle d’abord les définitions classiques
- pour la vitesse d’'un point, d’un plan et d’une droite. Cette der-
niére est une quantité complexe formée a I'aide d’une unité ¢ telle
que &2 = 0. '

Une droite appartient d un axe o« lorsqu’elle rencontre T’axe sous
un angle droit, un point et un un plan appartiennent au méme
axe s’ils.y sont contenus.

Ces définitions étant admises, imaginons qu’un point p, un
plan @, une droite d fassent partie d'un solide, tandis que l'axe @
auquel ils appartiennent soit fixe dans ’espace. ‘

Nous avons alors le théoréme suivant, en quatre parties, dont
seule la premiere est classique.

1° La projection sur a de la vitesse d’un point p, appartenant a
@, est la méme quel que soit ce point. Soit g” cette projection
constante.

20 La projection sur « de la vitesse angulaire d’un plan appar-
tenant & « est la méme quel que soit ce plan. Soit g’ cette projec-
tion constante.

3° La projection sur « de la vitesse linéaire d’'une droite appar-
tenant 4 « est la méme, quelle que soit la droite. Soit g cette
projection constante.

4° Entre les trois quantités g, ¢’, g”, dont la premiére est com-
plexe et les autres réelles, existe la relation

g§—=8 + 8" .

10. — Prof. Michel Prancuerer (Fribourg) et Edwin StrissLe
(Stans). — Sur l'integrale de Poisson pour la sphere. — 1’intégrale
de Poisson

| 1 1 — r?

U(r, 3, ) = /) o d
(r ) énJu(g c‘0)1——27*00503—}—:*2616

définit, lorsque u (¥, ¢) est intégrable au sens de Lebesgue sur la

surface sphérique S de rayon 1, une fonction harmonique a 1'in-

térieur de S et 'on sait que U (», &, ¢} > « (¥, ¢) presque partout,

lorsque 7—- 1, en particulier aux points de continuité de u (9, @).

Il ne semble pas que I’étude defla limite pour » —» 1 des dérivées
P +ayu

U(r, 9, ) =————— ait 6té faite. La méthode employée paf

D
p+gq >8P Dcpq
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M. de la Vallée Poussin dans le cas du cercle ne peut étre utilisée
sur la sphere. On peut, il est vrai, étudier ces dérivées par une
méthode directe ; malheureusement les calculs deviennent immé-
diatement trés longs et la méthode ne semble applicable avec
succés que pour les petites valeurs de p 4 ¢. Cette méthode a ce-
pendant Pavantage de conduire i des résultats trés généraux dans
lesquels interviennent les dérivées généralisées de u.

Une méthode plus simple repose sur la remarque suivante : Si
dans un domaine 3 de S, « est une fonction analytique du point
(3, 9), Ulr,3, ¢) est prolongeable analytiquement a travers 3. De
cette remarque, a conclure que dans le cas particulier ou « est
analytique, on a dans 3, Dp+qU(/', 7, @) — Dp+q w (3, ¢) lorsque
r—» 1,il 0’y a qu’un pas. ;

Si u posséde au point (Z, ¢) unc différentielle totale d’ordre
n=p + ¢, on décomposera a 'aide de la formule de Taylor « en
deux parties : u = n_4 r, telles que u ~soit analytique et qu’au

point (3, @) d, v, —d u (#=n). U se décomposera d’'une maniére
corrélative en deux parties : U :— U, 4+ R,. On aura au point (9, P)
D

U, —t Dp-!—q B, == Dp-l-q u". Or,’ on peut montrer, a I'aide des

ptq 1 )
s ., . . L, — r
proprietés du facteur de discontinuité % eos co 2 dUe
Dp+q R, = 0 lorsque r —» 1. On obtient ainsi le théoreme.

En tout point (9, ¢) ou u possede une différentielle totale d’ordre
n :p + q, orca Dp+qLT(r, I, ) — Dp_}_q u(d, @) lorsque r —» 1.
Laissant de c6té un théoréeme analogue concernant la conver-

gence uniforme de Dp-!—q U vers Dp+ 4 Nous remarquerons, pour
terminer, que si v ~~ IX (9, @) est le dévelo ement formel de «
) n 9 .I) pp

en série de Laplace, on a U (r, 9, ) =Z2," X (&, ¢). Par consé-
quent, le procédé de sommation de Poisson est applicable au
calcul des dérivées de tout ordre de u, la ou elles existent.

l.La méme méthode peut s'appliquer & 1'étude des dérivées dans
d’autres procédés de sommation, tel celui dans lequel le facteur

de convergence /" de Poisson est remplacé par e (1 —» 0).

11. — Prof. Michel Prancurrer (Fribourg). —- Une question
d’Analyse. — lLors de recherches sur I'inscription d’un carré dans
une courbe plane fermée et d’un octaédre regulier dans une sur-
face fermée, j'ai été amené a résoudre dans un cas particulier le
probléme suivant.

Soit ¥y = f(x) une courbe continue et univoque dans I'intervalle
a < & < b, telle que dans cet intervalle flz) 20 et que f{a) =7(d)
= 0. Soient M,, M,, deux points mobiles sur cette courbe, assu-
jettis & avoir a chaque instant ¢ les mémes ordonnées. A Dinstant

= 0, M, se trouve au point (a, o), M, au point (,0). Peut-on
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coordonner les mouvements de ces deux points de maniere a ce
qu’ils se rencontrent? "

[.e probléme est équivalent & la détermination de deux fonc-
tions @, (), @,(t) continues dans l'intervalle 0 < ¢ < 1, telles que
pour0sts 1

et que, pour £ =20

et pour.i =

Si /() n’a qu’'un nombre fini d’extrémas dans («, b), la résolu-
tion du probleme est immédiate. Il s’agirait de savoir si la seule
hypothése de la continuité de f(x] est suffisante pour assurer la
possibilité du probléme; si non, quelles conditions supplémen-
taires devraient étre ajoutées.

12. — R. Wavee (Neuchatel). — Sur les developpements d'une
fonction analytique en série de polynomes. — Soit

f(.:t‘) — i ayx,

n=0

une fonction analytique définie par son développement de Taylor
au voisinage de x = 0:

On sait, en vertu d’un important théoréme de Mittag-lLefller,
que 'on peut donner de f(x) un développement en série de poly-
nomes représentant cette fonction dans tout le plan sauf sur des
droites joignant ses points singuliers au point a I'infini.

Soit

M[flx)] = 2 (con@o + a2 + ... +¢,,a,x")

- n=0

un tel développement.

M. PaiNLEVE posait en 1905 la question suivante!: Existe-1-il un
développement M tel que, quel que soit f(x),

M’[flz)] = M[f'(2)] .

La réponse est négative. En effet, un pareil développement serait

! Legons sur les fonctions de variables réelles, par M. E. Borel, Note de M. Painlevé.

LI’Enseignement mathém., 21¢ année; 1920. 15
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de la forme

(> o]

e o}
. . 'l‘ : e
2 (cop @ + Conet) G + o+ cooa, ") avec 2 b =1 ,

n=0 n=>0

appliqué a la fonction ——r il divergerait pour |z| > 1.

Remarque. — 1’auteur a obtenu, peu apres la réunion de Neu-
chatel, des résultats plus importants en cherchant des développe-
ments en série de polyndmes d’un type particulier.

13. — D" S. Bays (Fribourg). — Sur les systemes cycliques de
triples de Steiner. — La question de déterminer le nombre des
systemes de triples de Steiner différents semble encore ioin d’étre
résolue. White! a montré que pour N = 31 déja, le nombre des
systemes de triples différents dépasse 37 >< 1012, Cole, avec White
et Cummings?, a obtenu les systémes de triples différents pour
N=15; leur nombre est 80. Pour une classe particuliere de solu-
tions du probléme des triples de Steiner, les systémes de triples
cycliques, la question parait déja plus aisée. Pour N — 6n + 1,
premier (ou de la forme p*),j’aiune méthode permettant d’obtenir
les systemes cycliques de Steiner différents. Elle est basée princi-
palement sur 'emploi des substitutions métacycliques (substitu-
tions de la forme |z, @ + B.x|, B premier avec N); etelle donne en
meéme temps les groupes de substitutions qui appartiennent a ces
systemes. Jusqu’ici, a deux exceptions prés, ces groupes ne sont
jamais que des diviseurs du groupe métacyclique. Dans un pre-
mier travail®, j’avais obtenu les systémes cycliques différents pour
les premiéres valeurs de N, jusqu’a N = 31; jai depuis appliqué
la méthode aux cas N =37 et N =43. Mes résultats jusqu’ici sont
ainsi contenus dans le tableau suivant :

N n N N S

S — nombre des systémes cycliques de
711 1 1 . o e

triples de Steiner différents.

13| 2 1 1 1
19| 3 2 4 S’ = nombre des systémes de caractéris-
31| 5| 8 64 80 tiques.
3716 52 0 820 S”= nombre des systémes de caractéris-
431 7 157 | 3067 | 9514 tiques irréductibles.
25| 4] 2 15 | 12

! Transactions of the Amer. Mathem. Society, vol. XXI, (1), 1915, p. 13.
? Proceedings of the National Academy of Sciences, vol. IlI, 1916, p. 197.
* Comptes-Rendus, tome 165, p. 543, du 22 oct. 1917,
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Le nombre S”, nombre des systénies de caractéristiques irré-
ductibles Uun & lautre par les substitutions d’'un groupe cyclique
que je note Hx, a.xl}, a premier avec N, et ou j’entends par 1’élé-
ment a la valeur absolue du plus petit reste positif ou négatif de a
(mod. N), est maintenant le nombre intéressant du probléme. Le
nombre S des systémes cyeliques de Steiner différents n’est plus
qu’une fonction simple des systemes S”. J'entrevois une simplifi-
cation dans la recherche de ces systemes S” qui permettra d’effec-
tuer encore la recherche pour le nombre premier suivant N =61,
sans exiger trop de temps. Peut-étre alors les données seront-elles
suffisantes pour chercher a découvrir la fonction S” de N (N pre-
mier) ?

Etats-Unis. — Théses de doctorat.

Pendant I’année universitaire 1919-1920, les universités améri-
caines ont décerné 16 doctorats és sciences, traitant plus particu-
licrement de sujets de mathématiques. En voici la liste d’apres
 The American math. Monthly (XXII, 11): E. M. Berry (lowa):
Diffuse Reflection. — J. D. Boxp (Michigan): Plane trigonometry
in Richard Wallingford’s Quadri partium de sinibus demonstratis.
— J. Doucras (Columbia) : On certain two-point properties of ge-
neral families of curves. — T. C. Frx (Wisconsin): The use of
divergent integrals in the solution of differential equation. —
G. Gissens (Chicago): Comparison of different line-geometric
representations for functions of a complex variable. — C. F. Greex
(Illinois) : On the summability and regions of summability of a
general class of series of the form Z¢,g(x 4+ n). — J. W. LasLry
(Chicago): Some special cases of the flecnode transformation of
ruled surfaces. — E.J. McFarrano (California): On a special
quartic curve. — J.J. Nassau (Syracuse): Some theorems in alter-
nates. — C. A. NeLsox (Chicago): Conjugate systems with con-
jugate axis curves. — E. L. Post (Columbia): Introduction to a
general theory of elementary propositions. — M. Ramso (Michi-
gan) : The point at infinity as a regular point of certain difference
equations of the second order. — L. L. Stemvrry (Illinois): On a
general class of series of the form Y(n) = C, 4+ =C,g(nz). —
J. L. Wacsu (Harvard) : On the location of the roots of the jaco-
bian the two binary forms. — R. Woobs (Illinois) : The elliptic
mocular functions associated with the elliptic norme curve E’.
— 1. Yaxe (Syracuse): A problem in differental geometry.

Nouvelles diverses. — Nominations et distinctions.

Allemagne. — M. J. Bauscuinger, anciennement professeur
d’Astronomie a I'Université de Strasbourg, a été appelé a la chaire
d’Astronomie de I'Université de Leipzig.
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