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ANALYSE INDETERMINEE DU p™ DEGRE
SUR LES SOMMES DE PUISSANCES EGALES
DES NOMBRES

PAR

Edouard BarserTE (Liége).

Considérons les (p + 1) fonctions de z
M@ s L) s fola) s s £y (a) ; p(®) 5 fopq () .

Si nous soustrayons de chacune d'elles, la précédente,
nous obtenons les p différences

@) =) 5 [la) = fl@) 5 s fyla) = fo (@) 5 fppl@) — (o0

Si nous soustrayons de chacune de ces différences, la pré-
cédente, nous obtenons les (p — 1) différences

file) — 2, (%) + fila) i fila) — 2fy(a) + £ () ;
fopa @) — 2, (2) + [, (x) .

En continuant ainsi, p fois de suite, nous trouvons une

fonction
q=p

Fla) = (—1)7Clf,_ . ()

qg=0

et cette fonction, si elle est constante, a sa dérivée F'(x)
nulle.

Or, la fonction F(x) est constanle lorsque les fonctions f(x)
sont constituées par la suite des mémes puissances de
nombres en progression arithmélique et, en particulier, par
la suite des mémes puissances des nombres entiers consé-
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culifs ou a intervalles égaux, ou aussi par la suite des mémes
puissances des nombres polygonaux consécutifs ou a inter-
valles égaux.

Si nous prenons

flx) =[x + = 1))
nous trouvons 'égalité

Flaj= > (— 1/ Cle + (p — g =p! o (1)

et puisque cette fonction F(x) est constante, sa dérivée par
rapport a .r est nulle et nous obtenons 'identité

o]
|

14
(— 1 CHa + (p— gl =0 (2)

e
[l
<

Si, dans les relations (1) et (2), nous changeons r en kr,
elles deviennent respectivement

)

:p ’
2 (— ’l)qC;]) [x + (p — q)]cr]p: p! (kr)p (1)

g:

<

et

1Y
I
]

(—1'Cla+ (p— gk =0, (2

I

q

relations qui s’obtiendraient directement si dans les fonctions
f(x), au lieu de prendre les termes successifs pour consti-
tuer I'(x), on les prenait en méme nombre (p + 1) mais a
intervalle k.

En particulier, si nous prenons x — n —p+1etr=1,
c’est-a-dire si nous identifions les fonctions f(x) avec la suite
des (p + 1) puissances p™® suivantes |
)P

(r—p+1) 5 n—p+2"; (n—p+37;

r (n—i)p; np; (n+1)P,
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les identités (1) et (2) deviennent respectivement

9=_1"

(— 1 Ciin—g+1f=p!
q=0

0 d 2

ou  Cyln+ 1 —Cpnf 4 Coin—1f — . & Coin—p+ 1) =p!
et
q9=p -
D=0 —g+ 1 =0
q=0 )

0 p—1 1 p—1 2 —1
ou Cp(n + 1) — Cpnp + Cp(n — 1)p —

P p—1__
cECn—p+1f T =0.

Plus particuliérement encore, si dans ces deux derniéres
égalités, nous faisons n = p — 1, il vient

0 p 1 p 2 p — PP
Cpp —Cp(p——l) —I—Cp(p—Q) ———...+CP 1 =pl
et
0 p—1 1 p—1 2 p—1 — =1 p—1
pp —-—Cp(p-——i) —|-CP(p——2) -—-—)‘...+Cp 1 =0.

Les identités que nous venons d’établir permettent de
résoudre de nombreux problémes d’analyse indéterminée de
tout degré. En voici deux exemples :

1. Quelles sont les sommes de deux carrés égales au double
de la somme de deux carrés ?

L’équation a résoudre est

: x? 4y = 2(;2 + u? .
De l'identité -

0 2 1 2 2 2 2
C,(n + 2k — C,(n+ k) + C,n" = 24

ou
(n =4 2k 4 n® = 2([(n + k)2 + 47] ,

nous déduisons la solution
z=An4+20; y=in: z=An—4+k; w«=xk.

2. ()uelles sont les différences de deux carrés égales au
triple de la différence de deux carrés?
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L’équation a résoudre est

x? — v2 = 3(22 — u? .

De 'identité °
Cln + 34" — Cy(n + 26"+ Cl(n + B’ — Cin" =0
ou '
(n 4+ 3%)2 — n2 = 3[(n + 2k)® — (n 4+ k)*] ,
nous déduisons la solution

x=XAn-+3k; y=in; z=xtn-4 2k ; w=2»XAn-+ 4 .

Observation. Si nous représentons par ¢, le n™° nombre

. . n{n 1 . 4 A q
triangulaire ——(*—;:——)— et si nous opérons de méme que pré-
cédemment, nous trouvons en identifiant les fonctions f(x)
avec les triangulaires successifs :

- q=2p
— q9,~9 ,P
F(x) == 2(_ 1) C2p tn—-g — T
g=0 ’

ou y =1 pour les 1™ puissances, 6 pour les 2™, 90 pour
les 3me 2520 pour les 4™, etc.; dérivant par rapport a n, il
vient :

q=_‘-’-1p .
2(_ e 2n—2q+ 1) =0 .

q=0

Sinous prenons les triangulaires a intervalle %, nous obte-
nons respectivement :

q=2p

9~9 ,P 2p
2(_ 1) C2p tn—qk =YXk
q—0

et
9=2r

S 07cd2n —2gk + 17 =0 .

q=0
Et ainst de suite, pour tous les nombres polygonaux.

Liége, mai 1920.
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