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ANALYSE INDÉTERMINÉE DU DEGRÉ
SUR LES SOMMES DE PUISSANCES ÉGALES

DES NOMBRES

PAR

Edouard Barbette (Liège).

Considérons les (p + 1) fonctions de x
ft(x) ; f2(x);f3(x);; ; ; fp+l(x)

Si nous soustrayons de chacune d'elles, la précédente,
nous obtenons les p différences

/i(*) fp\oc) - fp__x(x) ; fp+1(x) — fp(x\

Si nous soustrayons de chacune de ces différences, la
précédente, nous obtenons les {p — 1) différences

f3(x) — 2f2(.x) -f- /i (x) ; f^(x) — 2fs(x) -f- f2(x) ;

" ; fp+\ix) — 2fp(x) + fp—iW •

En continuant ainsi, p fois de suite, nous trouvons une
fonction

F M =2<-^ C2/}-,+! (*>

q= 0

et cette fonction, si elle est constante, a sa dérivée F\x)
nulle.

Or, la fonction F(,v) estconstanle lorsque les fonctions f{x)
sont constituées par la suite des mêmes puissances de
nombres en progression arithmétique et, en particulier, parla suite des mêmes puissances des nombres entiers consé-
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culifs ou à intervalles égaux, ou aussi par la suite des mêmes
puissances des nombres polygonaux consécutifs ou à

intervalles égaux.
Si nous prenons

fx(x) [x+ (X — 1

nous trouvons l'égalité

q=p
F(*)=2 l-1>? cl [* + ip — q) rf (1)

q=o

et puisque cette fonction F(.r) est constante, sa dérivée par
rapport à x est nulle et nous obtenons l'identité

q=p

2 1'?C^ + {P —?)rf
1

0 • (2)

q=0

Si, dans les relations (i) et (2), nous changeons r en kr,
elles deviennent respectivement

q=p

2 1 ^ Cp & + {P — — P (1')
q= 0

et
q=p

^(~ if Cp[x + (p ~ qïkrf^1 0,(2')
î=0

relations qui s'obtiendraient directement si dans les fonctions
f(x), au lieu de prendre les termes successifs pour constituer

F (x),onles prenait en même nombre + 1) mais à
intervalle k.

En particulier, si nous prenons x — n —p -|- 1 et r — 1,
c est-à-dire si nous identifions les fonctions f(x) avec la suite
des {p + 1) puissances pmes suivantes

(n — p + lf.(n_/) + 2)P; (n — p + 3)P ;

; (n — l)F ; n' ; + l)p
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les identités (1) et (2) deviennent respectivement

2(-1)îC^(»-î + i)P P\
q— 0

ou Cp(n + 1f — Cpnp + C* (/i — 1 f — + Cp (n — p + if— p

et

2 ^ cp~~ $ +1>/7~4 — °
<7=0

ou C°p(n + if-1 - C*tT1 + cj (h - 1 f"1 -
••• ± cp(n — P +

Plus particulierement encore, si dans ces deux dernières
égalités, nous faisons n p — 1, il vient

<i/- C> - 1)'+ C* (p _ 2)"- q= Cf1i' p
et

^Z"1- c> - c> - *rl-... + c;-v-l= o.

Les identités que nous venons d'établir permettent de
résoudre de nombreux problèmes d'analyse indéterminée de
tout degré. En voici deux exemples :

1. Quelles sont les sommes de deux carrés égales au double
de la somme de deux carrés

L'équation à résoudre est

*2 + f 2 (z2 -f u2)

De l'identité

Cl(n + 2k)*- C> + *)a+ Cy= 2k*

ou
(n + 2*)2 + n2 2[(n + *)2 + /,-2]

nous déduisons la solution

x — X(ri -j- 2k) j j — \n ; z X{/i + ^) ; m XX*

2. Quelles sont les différences de deux carrés égales au
triple de la différence de deux carrés
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L'équation à résoudre est

— J2 3 (*2 — u2) •

De l'identité

C?(/z -f~ 3A) — C2(n + 2/f) -}- Gg(71 -j~ A) C? n 0

OU

+ 3A-)2 — /I2 3[(/i + 2A)2 — (/I + A)2]

nous déduisons la solution

# nr X(ra -f- 3A) ; y zzz \ïi ; z nz \ [n -{- 2A) ; u — \(ii -{- A)

Observation. Si nous représentons par tn le /2rae nombre
n(n -f- 1) 1

triangulaire v —L et si nous opérons de meme que

précédemment, nous trouvons en identifiant les fonctions f(x)
avec les triangulaires successifs :

F (*) 2 (— 1)? Clp T '

q—0

où y l pour les lres puissances, 6 pour les 2mes, 90 pour
les 3mes, 2520 pour les 4rnes, etc. ; dérivant par rapport à n, il
vient :

2(2,i - + 1)P_1 0 •

g=0

Si nous prenons les triangulaires à intervalle k, nous obtenons

respectivement :

?—0

et

2 <- i)ï°ï (2,i -2?* +1>?_1=0 •

?=°

Et ainsi de suite, pour tous les nombres polygonaux.

Liège, mai 1920.
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