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alors, en vertu de (13), se réduit à et le système (11)

devient

' ih 0 ^ 0 o —' 0
dt dt'' ' dt dt

(«)
ÉÎ1 —o ^ — o

rfs"~1
— o — — i

\ dt dt dt dt

L'intégration se fait donc complètement. Les intégrales
générales du mouvement avec 2ti ou 6n' constantes
arbitraires sont les équations (10).

Royan, 31 mars 1920.

SUR LES SYSTÈMES DE NOMBRES B1COMPLEXES

PAR

L.-Gustave Du Pasquier (Neuchâtel).

1. — A côté des nombres complexes ordinaires a + bi,
vulgarisés par les travaux de Gauss et de Cauchy, on a envisagé

d'autres nombres qui leur font en quelque sorte pendant

et qui ont d'intéressantes applications. Ce sont a + bj
(nombres complexes de deuxième espèce), et a-\-bo) (nombres
complexes de troisième espèce) où les symboles i, j, &>,

appelés unités relatives, sont définis respectivement par
i2 — 1 y2 + 1 w2 0 (1)

tandis que a et b représentent toujours des nombres réels
dits coordonnées de ces complexes.

Théorème. — Ces trois espèces de nombres représentent les
trois seules catégories possibles de nombres complexes à deux
coordonnées, quand l'égalité des complexes est définie par
l'égalité des coordonnées correspondantes et que le système
doit contenir comme sous-groupe le corps des nombres réels.
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Tout système de nombres bicomplexes à multiplication

associative et avec unité principale est donc équivalent à l'un
des trois systèmes

a + hi a -f- bj a b m (2)

tandis qu'il est impossible de ramener ceux-ci l'un à l'autre
en choisissant une basedifférente dans le corps de nombres
envisagé.

2- Montrons d'abord le sens de ce théorème par quelques
exemples. Le premier se présente de suite à l'esprit, quand
on cherche à épuiser les possibilités. Ce sont les couples

cl -f- be^

où l'unité relative e2 est définie par

«; «,• (3)

Le signe (doublement égal) se prononce « égal par
définition». Si yy,-|- y2e2 et sont de ces
nombres (que nous appellerons ici nombres complexes de
4e espèce),l'égalité xy entraînera par définition les deux
égalités simultanées entre nombres réels

XX Jl X2= h
Soumettons ces nouveaux nombres au calcul «selon les

règles de l'algèbre ordinaire», en tenant compte de (3). On
voit que l'addition, la soustraction et la multiplication, résumées

par les formules

x±y— (sc,±,Tl) + ± j2) e2

xy yx xty, + (x,y2+ +

sont toujours possibles et univoques. De plus, l'ensemble
de ces nouveaux nombres contenant comme sous-groupe le
corps des nombres réels, un nombre de 4e espèce est dit
réel, lorsque sa deuxième coordonnée est nulle. Au complexe
arbitrairement choisi x,on fera correspondre, comme

conjugué, le nombre complexe x'+ xs) — x2e2. On constate

que le conjugué du conjugué du nombre x est ce nombre



NOMBRES BICOMPLEXES 177

x lui-même, et que le produit d'un complexe x par son
conjugué x est un nombre réel que l'on appellera la norme de

x, en formules :

N (x) xxf — x1 (x1 + x2)

La norme d'un produit est égale au produit des normes
des facteurs. La norme d'un nombre complexe de 4e espèce
est donc nulle dans deux cas: lorsque la première coor-
don née est nulle, ou lorsque les deux coordonnées sont
opposées. Dans ces deux cas, le nombre x est diviseur de
zéro. Un produit peut donc être nul sans qu'aucun des
facteurs ne le soit :

re3.(r — re2) ?-2e2 — r2e2 0

quel que soit le nombre réel /'. C est d'ailleurs la seule infraction

aux dix règles fondamentales de l'algèbre ordinaire.
Le nombre complexe x sera dit « quotient de a par b » et

l'on écrira x — a : b ou ^ si, a et b étant des complexes
donnés de quatrième espèce, d'ailleurs quelconques, x satisfait

à l'égalité bx a. Lorsque b n'est pas diviseur de zéro,
la division par b est toujours possible et univoque et l'on
voit que

a a. a. b9 — b, a9
TT - s; - b1(b1 + b9{ e* '

Si b est diviseur de zéro, le quotient a : b est ou indéterminé,

ou inexistant.
En résumé, les quatre opérations rationnelles sont

toujours possibles et univoques dans le domaine de ces nombres
complexes, sauf la division par des diviseurs de zéro.

3. — C'est «l'équivalence» de ces nouveaux nombres bL
complexes avec l'un des systèmes (2) qui nous intéresse ici.
Dans le corps constitué par l'ensemble de tous les nombres
complexes de 4e espèce, prenons comme nouvelles unités
relatives

1
' f2 1 — 2e2 > doù j([ — h) •

Il s'ensuit :

il (l- 2e2)2 1 - 4,2 + 4e2 1
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Tout nombre de quatrième espèce, xx peut donc

s'écrire à l'aide de cette nouvelle base

X1 + *2 — (x 1 + ^ — ^t2^ mt + w2 t2

Gomme /J 1, on peut remplacer mi -f- m2t2 par mx + m2y,
avec y2. 1. C'est précisément ce que nous appelons un
nombre complexe de deuxième espèce

La transformation inverse n'est pas plus difficile. Dans le
corps des complexes de deuxième espèce, prenons comme
nouvelles unités relatives

*i i. *. {(i-/)
Il s'ensuit :

hlT*1 -j)2 |(2 - 2y) |(1 -j) bt(4)
et tout complexe de deuxième espèce, rl + r2/, [>eut s'écrire :

ri + r2 f1 — 2/'s) (ri + r2) — 2r2 ô2 Ti + y* h2 -

En vertu de (4), on peut remplacer l'écriture b2 parc2, en
tenant compte de (3), et l'on voit i\ -j- r2y, complexe de
deuxième espèce choisi arbitrairement, apparaître sous
forme d'un complexe de quatrième espèce yx + y^e^.

4. — La correspondance est uni-univoque. On démontre
facilement que toute équation R(a, ô, c, 0 entre
nombres complexes de deuxième espèce reste exacte si l'on
y remplace a, 6, c, par leurs correspondants dans le corps
des complexes de quatrième espèce, à condition que R
symbolise un nombre fini d'opérations rationnelles. C'est ce que
nous entendons en disant que les règles de multiplication
résumées par les tableaux

^0 eo e2

ao ^0 et ''o eo e2

*1 *1 e0 e2 e2 e2

II
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ou plus simplement, eu désignant l'unité principale par 1

(au lieu de l'écrire e0), les règles de multiplication

e2 — 1 et e\ •=. e2
1 2 "

définissent deux systèmes équivalents de nombres bicom-
plexes.

5e — Gomme second exemple, soit le système des nombres

x ,x'0e0 + xxel (nombres complexes de cinquième espèce),
où les unités relatives e0 et el satisfont aux relations

< <=* j (6)

eoei eieo 0

résumées par le tableau

/ e0

eo eo 0

0

En calculant sur ces nouveaux nombres «selon les règles,
de l'algèbre ordinaire» et tenant compte de (6), on constate
que l'addition, la soustraction et la multiplication sont
toujours possibles et univoques et que, dans ce système, c'est
(e0 + ei) fi11! joue le rôle du nombre 1, puisque

(co + eiYl eo + e, et x.(e0 + et] x •

On peut donc poser
eo + ei 1 (7)

et adopter cette définition: un nombre complexe de
cinquième espèce est dit réel, lorsque ses deux coordonnées sont
égales.

Pour introduire la division comme opération inverse de
la multiplication, on est amené à faire correspondre au com-

L'Rnseignement mathém., 21® année ; 1920 12
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plexe x =: x0e0x{ex, comme conjugué, le complexe xf
^1^0 + «^0^1 -, car le produit

*0*1 K) + <0 *0*!

est réel, en vertu de (7). C'est la norme de x. Dans ce
système, la norme d'un nombre complexe est donc égale au
produit de ses deux coordonnées :

N (x) zî xx' — xQx1

Si une coordonnée est nulle, le complexe est diviseur de
zéro. Si b b0e0 + biei n'est pas diviseur de zéro, on voit
qu'il faut entendre par « le quotient a : b » le complexe

et 1 on aura ainsi défini les quatre opérations rationnelles
dans ce nouveau système. Un produit peut y être nul sans
qu aucun des facteurs ne le soit, par exemple eQei — 0. Mais
ici encore, l'existence des diviseurs de zéro constitue la
seule infraction aux dix règles fondamentales de l'algèbre
classique.

6. — Pour montrer l'équivalence de ces nombres
complexes de cinquième espèce avec l'un des systèmes (2),
choisissons, dans le corps qu'ils constituent, comme nouvelles
unités relatives

h e0 + e1 t2 e0 — e1

On voit qu'alors, t\ e0 + ei 1 et que tout complexe de
cinquième espèce, x m x0e0 + xiei, peut s'écrire :

Ci + g + *, 4 ^~v (f + + (1° -
"i 'i + h h

Comme joue le rôle du nombre 1 et que 1, on peut
écrire : 1 au lieu de ttetj au lieu de t„. Dès lors, le
complexe envisagé, x,apparaît sous forme de complexe de
deuxième espèce : zx -p z2/.

Les formules précédentes permettent immédiatement le
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passage inverse. En prenant, dans le corps comme
nouvelles unités relatives

e0 +j) ex =i(l —j)

tout nombre de deuxième espèce, ri + apparaît sous
forme d'un complexe de cinquième espèce, t0e0 -f- tiei avec
les règles de multiplication (6), et l'on démontre aisément
que toute équation algébrique telle que R(a, ô, c, 0,
reste exacte en regard de cette transformation, au sens de
l'article 4 ci-dessus.

7. — Envisageons le cas général d'un système de nombres
bicomplexes a^i^, où l'égalité et l'addition des
complexes sont définies respectivement par l'égalité et
l'addition des coordonnées correspondantes, et la multiplication
par les formules

% — <x1 it + a2 i2 il a3 it + aj2
• (o)

h h a5 h + a6 f2 h h a7 h 4- a8 h

Comme les huit nombres an sont réels quelconques, il existe
une infinité octuple de systèmes différents de nombres bi"
complexes. On les a classifiés.

Deux systèmes sont dits équivalents, ou holoédriquement
isomorphes, s'il est possible de choisir, dans les corps de
nombres qu'ils constituent, à la place de des unités
relatives telles que l'un des systèmes se ramène à l'autre,
comme dans les exemples ci-dessus traités. Entre les nombres
de deux systèmes holoédriquement isomorphes, on peut établir

une correspondance uni-univoque qui satisfasse aux
conditions suivantes :

1° A tout nombre x du premier correspond un et un seul
nombre £ du second, et réciproquement.

2° A la somme x + z et au prodnit xz (ou zx) de deux
nombres complexes quelconques, x, z, de l'un des systèmes
correspondent respectivement la somme £+~Ç et le produit
£Ç (ou Ç£) des deux nombres correspondants £, Ç, de l'autre
système. Il suit de là que toute équation algébrique

F (a b x) — 0
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entre nombres du premier système reste exacte si l'on
remplace les complexes a,b,x, qui figurent dans cette
equation par leurs correspondants respectifs de l'autre
système apai a, b par ß, etc. ; x par £. On dit aussi, dans ce
cas, que les deux corps de nombres envisagés sont une
permutation l'unde l'autre.

11 est aisé de démontrer que deux systèmes équivalents
à un même troisième sont équivalents entre eux. Ainsi, les
trois systèmes de nombres que définissent les deux tableaux
(5) et le tableau (6') sont holoédriquement isomorphes. Quand
deux systèmes de nombres complexes sont équivalents, onconvient de dire qu'ils « appartiennent à la même forme ».

Voici 1 un des théorèmes fondamentaux de cette théorie :
si l'onpose comme condition que le système doit contenir

comme sous-groupe les nombres réels, il n'y a que trois
formes distinctes de nombres biCesont les formes
que représentent les systèmes ci-dessus définis par (1) et (2).Ilssont tous à multiplication co.Si 1 on ne pose pas la condition de contenir comme sous-
groupe le corps des nombres réels, on admet des systèmes
sans unité principale, systèmes où n'existe aucun complexe
jouissant des propriétés caractéristiques du nombre 1
(systèmes nilpotents).Ily a parmi eux des systèmes à multiplication

non commutative. On en obtient quand, par exemple,
dans les formules (8) on ne fait pas simultanément

a5 oc7 et a6 — ag

11 est remarquable que, pour ces systèmes bicomplexes, la
non-commutativité de la multiplication soit incompatible avec
l'existence d'une unité principale, .1.

8. — En nous plaçant au point de vue de l'arilhnomie,
nous allons compléter le théorème fondamental ci-dessus
énoncé. A cet effet, dans chaque système de nombres
bicomplexes, envisageons le corps jR} constitué par
l'ensemble de ceux dont les deux coordonnées sont rationnelles.
Pour ériger une arithnomie dans j R J, le premier pas à faire
consiste à scinder ce corps en deux ensembles, mettant d'un
côté les complexes « entiers », de l'autre les complexes « non
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entiers». Pour cela, comme nous l'avons montré ailleurs, il
faut déterminer préalablement « le domaine holoïde maximal

» de { R }, puis définir « nombres entiers » les complexes
qui en font partie, à l'exclusion des autres qui sont réputés
« nombres non entiers ». En combinant ceci avec le théorème
cité, nous pouvons énoncer cette proposition : Dans les
systèmes de nombres bicomplexes contenant comme sous-groupe
les nombres réels, il ny a que trois possibilités au point de

vue de la définition du complexe « entier ».
1° Le domaine holoïde maximal du corps { R } est constitué

par l'ensemble des complexes à coordonnées entières. Dans
ce cas, la définition du complexe entier est univoque et coïncide

avec la définition habituelle: complexe entier
complexe à coordonnées entières.

2° Le domaine holoïde maximal de { R j comprend, en plus
de tous les complexes à coordonnées entières, encore
d'autres à coordonnées fractionnaires. Dans ce cas, la
définition du complexe entier est encore univoque, mais un
nombre bicomplexe peut être «entier» quoiqu'ayant des
coordonnées qui ne le sont pas toutes.

3° Le corps {R} est dépourvu de domaine holoïde maximal.

Dans ce cas, la définition du complexe entier est
indéterminée. L'arithnomie qui en découle cesse de présenter la
simplicité de la théorie classique des nombres.

Ajoutons que dans les nombres hypercomplexes à plus de
deux coordonnées, il s'introduit une quatrième possibilité :

le corps {r} peut contenir plusieurs domaines holoïdes
maximaux différents. Dans ce cas, la définition du complexe
entier devient plurivoque.
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