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GENERALISATION DES COORDONNEES POLAIRES

APPLICATIONS

PAR

Edouard JaBronskr (Paris).

Professeur honoraire au Lycée St-Louis.

1. — Les formules classiques pour la transformation d’un
systéme de deux ou de trois coordonnées linéaires en coor-
données polaires peuvent aisément étre étendues 4 un sys-

téeme de n coordonnées, soit n variables Lyy Xy ..
arcs Ay, Ay ... Ap—q. Posons :

Xy = p.COS A;.COS A,.CO8 Ag.COS X, ... COS Ai_3+COSA, .
Zy = p.sin A;.cos X;.c0s A;.cos X, ... cos Ay_5+COS A _,.
g =p. 1 .sink;.cosA,.cos}, ... cos Ay_g.COSk, .
x,=p. 1 . 1 .sink.cos}, ... cos Ay_3.€OSK, .
g =p. 1 . 1 . 1 .sin}, ... cos Ap_3.COS X o,
x, ,=p.1 . 1 ., 1 . 1 ... sind,_ 4. cos ) S
x, ,=pe.1 .1 .1 1 . 1 .sind, .
x, =p.1 . 1 . 1 . 1 ... 1 . 1

La loi de formation de ce tableau est facile
Quels que soient les arcs, il en résulte :

p:l/a{:-}—x:—l— +1f,

.Xpetn—1

cos A,
cos A,
cos A, ,

cos X,

cosd, , (1)

cos, ,

cos A, ,

.sink, . .

reconnaitre.
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ps Ay Ay ..o Ap—1 sont, dans un espace idéal a n dimensions,
les coordonnées polaires du point dont les coordonnées
linéaires seraient x,, x,, ... L.

2. — L’intérét principal de la generahbatlon actuelle réside
dans celle qui en résulte pour l'expression de la force vive
| 'd’un systéme en coordonnées polaires, son expression en

’ % » » ’, . n dxp
coordonnées linéaires étant prise sous la forme 21 m\—") -

Faisons \/mp.xp::X,, et transformons les X, en coor-
données polaires conformément au tableau (1), puis posons

| U =opcosi.cosh, ... cosA, ,
1, U, = psin A .cos}, ... cos A, o
| | (2)
U_,=¢1. 1 ... sin}k, _,

Ce tableau (2) suit la méme loi que le tableau (1) ou l'in-
| dice majeur a été diminué d’une unité, mais p et les 2 n’y
‘ sont pas les mémes. Il en résulte

X, =T, cos Xn_l , X, = U, cos )‘n-—-l y
X,1=1U,  cos L X,=psink, (3) |
et y
2 2 2 1
U1 + U2 + e Un—l — 92 : ‘ (4) ¢

Par analogie avec 'la formule classique pour n = 3, je me
propose de démontrer que I'on a:

2
( ) —-l- p? cos®),.cos? ), ... cos? P (%) + o?cos?), ...

d\,\2 2
cos?A, , (ﬁ) + ... 4 pfeos?, ( 2 ( n_1) - (5

ou

. ) z 2 /
p—l/Xl—i—Xa—;— +Xn__-—_|/m1xf-l-m2x:+ L.

Il suflit de prouver que si 'égalité (6) est vraie pbur n—1
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elle est vraie pour n. Supposons donc que l'on ait

dU.\2 dU.\ 2 dUn___1 2 do\ 2

(“d;) + (‘“d:) = waw F ( a1 ) = (‘Jf‘) + p¥cos® Ay cos®hy L.
d)\2 dX,\?
<—0#> + p¥cos?d, ... cos? A, _o <Tl?2> + s

d)\n—3 2 dln—2 2
—I—pzcoszl”_g( a1 )+92( a1 ) (6)

de (3) et (4) on tire

2
cos* A,

dX, dU . dh,_y
dil = d—tl cosk, , — U, sin A,y ;t
dX dU dh,_, - (7)
n—1 n—1 s —1
= g5 cos )‘n—-l —_— Un_1 stn )‘n—i ‘—c,llt
dz, 4 dx, .
__ap . n—1
| avec dr — g sm An—1 I p cos )\"'—1 dt
et
du, du, U,y dp |
ot 22 — T =5 Y 8
Ui+ U2+ .+ U, =P g (8)

Le calcul s’achéve sans peine et, toutes réductions faites,
donne I'égalité (5) qui est ainsi démontrée. |
3. — L’expression généralisée de la force vive d’un sys-
teme permet d’étendre largement 'application de la méthode

de Jacobi pour la transformation d’un systéme canonique ou.
y

méme, dans certains cas, d’en faire 'intégration, comme on
le verra plus loin sur un exemple.

Considérons un systéme de n’ points matériels, les coor-
données rectilignes trirecta ngles de 'un d’eux, sont XirYiy 34,
les composantes de la vitesse Z;, Y;» z; et la masse m,. Nous
les désignerons généralement par X, X,, m, (p de 1 a 3n
ou n). Supposons que les équations différentielles du mou-
vement de ces points forment un systéme canonique

dx oH
m o
: L di bxp ' 1 G ’
; — SV Pl
, olt H—le m,(@,)? — Flay, xy, ... x,)
dxp oH
P At apl (F, fonction de forces)
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Si Tl'on fait, comme plus haut, z,.V'm,=X, dou

!/ I N , .
2,V m, = X,, le systéme des équations du mouvement
reste canonique et devient ‘

dX,  oH ‘
dt " oX! , X, X X
P on H:iz‘n(X'P—F S p—— i )
dx’ oH S Vg Vm Vm,
e JORU ] |
( dt oX

Cela posé, si I'on substitue aux coordonnées X les coor-
données polaires précédemment généralisées, la fonction H
prend la forme

] 1 dp\? di. \2
—5[<E-£> + p?cos?}, ... cos?h _, <~—d—tl> + o

2 23 dln——Q 2 2 d)\n—i ? A X X A
—i—p COS™ A, 4 gy 4+ ¢ o —-—}‘1(.9» 10 Ngr oo ,1_1) .

Appliquons alors la méthode de Jacobi. Soit ¢(p, A,, 2,. ...
An—t, &y, @gy ... ay) Une fonction quelconque des coordonnées
polaires généralisées et de n quantités « généralement
-variables mais ne contenant pas le temps ¢ explicitement,
puis faisons :

d d
i . pPcos?), ... cos?X, (dll> — o

dt ~— g dt) Tk, ]
‘ d 20 ’ dx 9 0
2 2 — % n .99
0 Qosz Ay ... cos?h, (W) =u 0? cos? )\12_17 =5
2d)\n_,1 %9
C T T

n—1

H prend la forme




=
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et, si d’autre part nous posons :

O P 0¢ (10)

oa, da, 27 7T da n

le systéme des équations différentielles reste canonique et
devient

B
dt — os_
d (11)
4, o,
dt aap '

La fonction transformante ¢ est quelconque, sous la seule
condition que les équations (11) définissent les |25 YRR POy W
en fonction des « et s. Convenons de prendre

2

o
? sz(P’ d,).do + % A +fd)‘2\/°‘:— ’E;j?)\“z +
\/ " = (12)
2 __ 2 , & . W==E
fd)\3 % cos? A + mfd)\n"1 *n—1 cos? )\"_1

On a alors

2
1 %pn—1 ,
H = §[ﬂp’ a,) + -'—;2—] —F.lp,a,a, .. % g0 Sys Sy e S,_4) - (13)

La fonction f{p, «,) est une fonction arbitraire de p de a,
et méme des autres « et ff(p, an)dp est prise comme si

était seule variable. Le choix de cette fonction dépend de la
question que 'on a en vue et peut conduire a l'intégration
compléte, ou 4 une transformation intéressante.

Exemple. Soit ‘le cas ou il y a une fonction de forces F

. — n' 2 2 2
ne dépendant que p = \/21 (m,x; + m,y; + m;z;) pour
F=K.p? K étant une constante on est dans un cas élémen-
taire classique).

Convenons de faire flp, ay...) = \/ZF1 (o) —

2
%

—1
o2 + 2a,
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alors, en vertu de (13), H, se réduit & «, et le' systeme (11)
devient

/dal—o %-—0 da’l—1—0 fljl‘-—
dtr T dt T Cdt T dt
(14)
dsl'—O dﬁ_o dsn—l — 0 is_r_l —
\ dt — 7 Tdt T T T dt T dt

L'intégration se fait donc complétement. Les intégrales
générales du mouvement avec 2n ou 6n’ constanles arbi-
traires sont les équations (10).

Royan, 31 mars 1920.

SUR LES SYSTEMES DE NOMBRES BICOMPLEXES

PAR

L.-Gustave Du PASQUIER (Neuchétel).

1. — A cé6té des nombres complexes ordinaires a -+ bz,
vulgarisés par les travaux de Gauss et de Cauchy, on a envi-
sagé d’autres nombres qui leur font en quelque sorte pen-
dant et qui ont d’intéressantes applications. Ce sont a 4 b
(nombres complexes de deuxieme espéce), et a+ bw (nombres
complexes de troisieme espéce) ou les symboles ¢, J, w,
appelés unités relatives, sont définis respectivement par

2 = — 4 , =41, w2 =10 (1)

tandis que a et b représentent toujours des nombres réels
dits coordonnées de ces complexes.

THEOREME. — Ces trois espéces de nombres représentent les
trois seules catégories possibles de nombres complexes a deux
coordonnées, quand U'égalilé des complexes est définie par
Uégalité des coordonnées correspondantes et que le systéme
doit contenir comme sous-groupe le corps des nombres réels.
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