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GOMMENT UN CONSERVATEUR
POURRAIT-IL ARRIVER

AU SEUIL DE LA MÉGANIQUE NOUVELLE?1

PAR

T. Leyi-Ciyiïa (Rome).

Ils ne sont pas nombreux ceux qui, en politique, aiment
à s'appeler purement et simplement conservateurs, parce
que conservateur est souvent synonyme de rnisonéiste. Ce

danger n'existe évidemment pas en science. Aucun
chercheur ne peut être rnisonéiste, mais bien des savants peuvent
et doivent être conservateurs, car leur mission est de garder
avec vigilance un certain patrimoine intellectuel bien consolidé

et d'examiner avec un esprit critique sévère tout ce qui
pourrait y apporter un changement.

A ce point de vue, je suis heureux de m'adresser à de
nombreux conservateurs et je me ferai un devoir d'être circonspect

dans cet exposé qui doit vous orienter vers la mécanique

nouvelle, pour ne pas éveiller votre méfiance par des
bouleversements choquants.

Je me propose de montrer, à travers quelques formules
classiques simples et concises, comment un désir légitime
de généralisation formelle d'une part et de synthèse de concept

de l'autre, rendent plausibles quelques modifications
de lois générales, quantitativement très légères, spéculati-
vement considérables, devinées par Einstein et rangées ces

1 Conférence tenue au Séminaire mathématique de l'Université de Rome, le 8 mars 1919.
Traduction de MM. Ferrkro et R, Berner (Genève), revue par l'auteur.
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dernières années par lui-même dans un ordre systématique 1.

Il en ressort une explication toute naturelle de plusieurs
faits expérimentaux, notamment d'une célèbre expérience
d optique et d'un fait astronomique (déplacement du
périhélie de mercure) devant lesquels les anciennes méthodes,
auxquelles on doit pourtant l'essor merveilleux de notre
science, restaient impuissantes malgré les plus grands efforts.

D'autres collègues vous illustreront prochainement tout
cela avec plus de verve. Je dois borner ma tâche à une
première initiation.

1. Le principe de Hamilton.
Partons des équations du mouvement d'un point matériel

dans un champ conservatif. Soit U la fonction des forces
(rapportée à l'unité de masse). Les équations du mouvement,

en coordonnées cartésiennes (rapportées à des axes
fixes yx, y2, y3) s'écrivent

ït ^ («' 1. 2. 3) (N)

le point superposé indiquant, comme d'habitude, une
dérivation par rapport au temps t.

Si l'on désigne par

le carré de l'élément linéaire (parcouru par le mobile dans
un temps infiniment petit) et par v la vitesse du point mobile
(en valeur absolue), on aura

dl2 3

1

Il est bien connu qu'en posant

L i e* + U

1 Voir par exemple les belles leçons professées par M. Wkyi. à l'Ecole polytechnique de
Zurich, recueillies dans liaum, Zeit und Materie [Berlin: Springer (2e édit.), 1919]; ou, en
résumé, les rapports de M. de Sitter [Monthly Notices, vol. LXXVI, 1916, pp. 699-728; vol.
LXXVII, 1916. pp. 155-181; vol. LXXVIII, 1917, pp. 3-28] et de M. Edmngton [«Report...
presented to the Physical'Society of London », Fleetway Press, 1918].
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les équations (N) peuvent être renfermées dans la formule
de variation

hjhdt 0 (H)

qui exprime le principe d'Hamilton.
Fixons un instant notre attention sur l'équation (H). Elle

implique un intervalle d'intégration (Y0, t{) qu'on assigne
préalablement et arbitrairement. Il y a équivalence parfaite
entre ces deux faits : 1° la formule (H) subsiste pour toutes
les variations §yt des y., nulles aux limites et du reste
arbitraires. 2° sont vérifiées les équations (N) dans le même
intervalle.

C'est la conception la plus simple du principe d'Hamilton,
dans lequel on ne fait pas varier /, c'est-à-dire on pose

it 0.

Sont aussi classiques quelques généralisations dans
lesquelles on soumet aussi t à variation avec ou sans liaisons.
Nous aurons bientôt à envisager une parmi ces généralisations
qui respectent l'équivalence de (H) avec les (N). Mais il
convient de faire auparavant quelques remarques. Si on change les
coordonnées d'une manière quelconque en substituant aux
trois coordonnées cartésiennes yA, y2, y3 des coordonnées
curvilignes quelconques ou encore plus généralement trois
paramètres de Lagrange xx, #2, x3 liés à yA, y2, y3 par des
relàtions qui peuvent contenir aussi le temps, régulières et
réversibles dans le champ considéré,

xh *h(l\ ' 3a ' 2« ' ') (Ä 1, 2, 3) (x3)

ou encore sous forme résolue par rapport aux y. (i 1, 2, 3)

ïi — yi iœi > > t) (* — L 2, 3) r3

et si l'on introduit ces expressions dans L, elle devient une
fonction L(.r | x | t) des variables xh, xh (h — 1, 2, 3), £,

quadratique (en général non homogène de x). Dès qu'on adopte
pour L cette expression transformée, la formule (H)
continue naturellement à subsister par rapport aux nouvelles
variables x, et donne lieu, en effectuant la variation, à trois
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équations différentielles équivalentes aux équations (N) et
qui ont la forme classique de Lagrange

d öL öL
: 0 (h 1, 2, 3) (M)

dt ö;rÄ

Cette forme présente la propriété remarquable d'être
invariante par rapport à un choix quelconque de paramètres de

Lagrange x (combinaisons indépendantes des y pouvant
éventuellement renfermer le temps).

Remarque I (sur la notion d'équations invariantes). La
qualification d'invariantes vis-à-vis d'un choix quelconque
et par suite aussi d'une transformation des x [de type (T3)]
dernièrement attribuée aux équations du mouvement, ne doit
pas être prise dans un sens absolu : c'est-à-dire dans le sens
que les équations différentielles restent matériellement
inaltérées (sauf un pur changement de symboles), quel que soit
le choix des variables, mais dans un sens relatif, c'est-à-dire
dans l'acception plus large d'une invariance subordonnée à

une certaine fonction (ou à un système de fonctions), base
des transformations, sur laquelle on effectue directement la
substitution imposée par le changement de variables. La
base des transformations (T3) pour les équations de la
dynamique est évidemment la fonction L, unique élément dont il
faut et il suffit de se procurer l'expression explicite

L (x | x | t)

dans les nouvelles variables x (et leurs dérivées x).
En faisant intervenir cet élément auxiliaire, la structure

des équations (M) reste toujours la même, quelles que soient
les coordonnées de référence.

Remarque II (sur la base commune à toutes les équations
de la physique mathématique). On notera que c'est encore
dans un sens relatif (parfaitement analogue à celui dont on
vient de parler) que les équations de la physique mathématique

ont un caractère invariant par rapport aux transformations

quelconques des coordonnées, qui ne renferment pas
le temps. Dans un système de cette forme apparaîtront géné-
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ralément certains paramètres physiques avec leurs dérivées

par rapport à des coordonnées de l'espace et au temps. Or,
d'une manière absolue, le système changera certainement
d'aspect (au moins dans la généralité des cas) quand, par
exemple, on substituera aux coordonnées cartésiennes les
coordonnées polaires. Mais si l'on prend comme base le dl
(carré de l'élément linéaire de l'espace) à exprimer chaque
fois en fonction des coordonnées x auxquelles on veut se

rapporter et avec lesquelles on a en général
3

dll=%kaikdxidxk >
-

on fera apparaître la forme différentielle quadratique (y), ou
plus explicitement ses coefficients etil sera possible
d'attribuer au système d'équations une forme qui reste littéralement

la même, quel que soit le choix des coordonnées.
Remarque III. La base dynamique L implique la base

géométrique dl\.
Des équations (T3) on obtient, en dérivant par rapport à t,

' öl 2 0.»;^.
lt'k

D'autre part, les équations (T3) elles-mêmes, considérées
comme formules de transformation de coordonnées, dans
lesquelles t figure comme simple paramètre, donnent, par
différentiation,

3 ör-
dr. — dxh

1 k*xk '

3

La substitution matérielle de ces dernières en d!\ — 2dy\
donne lieu à une forme différentielle quadratique, qu'on a

désignée tout à l'heure par (y).
3

La substitution analogue des y. dans L + U conduit

naturellement à un résultat du type

L2 + L, + L0
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1 <L2— — —étant du second degré, L1 du premier degré dans

les x, et L0 fonction seulement des x et de t.
De là nous voyons que la base dynamique L implique pour

chaque choix spécial des coordonnées, la connaissance des
trois termes L2, L1, L0, ou bien équivaut à l'ensemble de
trois bases : 1° une forme quadratique qui à moins du facteur
l

2^2 (constant par rapport aux coordonnées x) n'est que la

base géométrique (<j>) ; 2° une forme linéaire Ld [qui a trois
coefficients analogues aux six a£k de (<p)] ; 3° une fonction
L0(x 1t) qui est au fond un dixième et dernier coefficient
de L.

On pourrait en tirer quelques conclusions; mais il nous
suffira de retenir que la base géométrique est dans tous les
cas incluse dans la dynamique (non réciproquement).

2. Traitement de t au même pied que les coordonnées de

l'espace dans l'algorithme varialionnel. — Variété analytique

V4. — Terminologie à quatre dimensions.
Comme conséquence immédiate des équations (M) de

Lagrange,*on a l'identité

d \
y 4l ÖL • I öL

-r, \ l — y, — */ — o.dt \ 1
' te,- j Ö*

Ceci posé, imaginons d'attribuer dans l'intervalle (£0, £d) à

la variable indépendante /, une variation dt nulle aux limites
et du reste arbitraire. Puisque, par ce fait, les x. restent

dac.
inaltérés pendant que les x.— -^ subissent les accroissements

• d§t
~bx- — — x. —r—

1 ldt

on voit sans peine que la contribution provenant de la variation

de t dans l'équation (H), soit

'o 'o
1 ô'r*
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peut (en effectuant une intégration par partie) être mise sous
la forme

C'est zéro, en vertu des équations (M), d'après ce qu'on
vient de remarquer.

On peut donc, dans le principe variationnel (H), traiter de
la même manière les coordonnées de l'espace ,r;2, x3 et
aussi t.

Considérons, par simple convenance de langage, la variété
à quatre dimensions V4 correspondant aux quatre paramètres
xv if, variété à quatre dimensions dans laquelle sont représentés

simultanément l'espace et le temps.
Un système de trois équations

c'est-à-dire un mouvement, dans l'interprétation cinématique,

donne lieu à une courbe de V4, et réciproquement.
Une telle courbe s'appelle ligne horaire *, comme généralisation

naturelle du diagramme plan par lequel (en portant
en abscisses les temps et en ordonnées les espaces
parcourus), on a l'habitude de représenter l'allure du mouvement

sur une trajectoire préalablement établie. Adoptant
cette locution, on peut dire que les courbes intégrales des
équations (M) sont l'ensemble des horaires de V4, à partir
desquelles (les limites restant fixes) s'annule la variation de
l'intégrale

3. Le caractère invariant du principe de Hamilton ne peut
pas être rapporté et Vespace V4. La transformation la plus

I A l«i vérité, la dénomination plus répandue serait Ligne universelle, d'après Minkowski,
qui s est servi pour le premier de la représentation à quatre dimensions et des Weltliniendune maniéré systématique dans son article « Raum und Zeit » [Jahresbericht der Deutschen
Mathematiker-Vereinigung, B. 18, 1909, pp. 75-88].

II me paraît cependant préférable de se rallier à l'usage de la cinématique élémentaire oùIon appelle précisément ligne horaraire le diagramme dans le plan (s, t) d'un mouvementcurviligne quelconque défini par l'équation .ç s(t). Un mouvement dans l'espace, défini
par trois equations x£ Xi(t), donne lieu à un diagramme (à quatre dimensions)
parfaitement analogue, et je n'y vois aucune raison pour introduire une locution nouvelle.

x. ~ x.(t) [i — 1, 2, 3)
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générale de paramètres dans V4 comprend évidemment trois
équations du type (T3), moyennant lesquelles on substitue
aux coordonnées cartésiennes yi, y2, y3 trois combinaisons
indépendantes xi% x9, x3 pouvant renfermer aussi /; et, en
outre, une quatrième relation moyennant laquelle on substitue

au temps t une dernière combinaison x0[yx, y9, yz, t)
(indépendante des trois précédentes) : ce nouveau paramètre
x0 s appelle quelquefois temps local parce qu'il dépend non
seulement du temps ordinaire /, mais encore de la position.

On peut partant se représenter une transformation (TJ
sous l'aspect suivant :

^0 ^o(jl J2' J3' 0
i

(T.)
1

Tant que Ton prend L comme base, la forme de l'intégrale
n'a évidemment pas un caractère invariant vis-à-vis

d une (r4), clt étant en général remplacée par une expression
linéaire dans les différentielles des quatre variables x. On
pourrait chercher à substituer à la base L quelque chose de
plus général ; il serait alors possible d'atteindre le but, mais
d une manière complexe et inféconde, et on perdrait en
simplicité de concept et de forme bien plus qu'on ne gagnerait
en généralité.

Il n est, par contre, pas difficile d'arriver à une forme
expressive, invariante par rapport à toute (TJ, en regardant
le principe d Hamilton comme un résultat d'approximation,
si grande, bien entendu, que dans les applications courantes
non seulement techniques, mais encore astronomiques, on
ne rencontre pas des différences sensibles, en admettant, à

sa place, un autre principe regardé comme rigoureux. Une
telle circonstance se présentera manifestement toutes les
fois que les termes correctifs, introduits par le nouveau
principe hypothétique, auront, par rapport aux homologues
de la théorie ordinaire, un ordre de grandeur non supérieur
au centmillionième (10~8).

Voici une réalisation concrète de ce critère.
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4. Formé einsteinienne du principe d'Hamilton.
Soit c, une vitesse constante, très grande par rapport à la

vitesse maximum atteinte dans les mouvements dont nous
nous occupons. D'une manière précise, supposons que les
nombres purs

p2 U
- et

soient tous deux négligeables par rapport à l'unité. Il en est
bien ainsi, dès qu'on suppose c comparable à la vitesse de la
lumière, non seulement pour les problèmes ordinaires du
mouvement des corps terrestres, mais encore en mécanique
céleste. Pour s'en rendre compte, il suffit d'envisager le cas
(le plus défavorable) que c soit une vitesse planétaire et U
le potentiel newtonien qui la détermine, ce qui fait que U
(dans le champ du mouvement de la planète) est sensiblement

du même ordre de grandeur que c2.

Comme ordre de grandeur de c, on peut admettre 30 km.
à la seconde, ce qui convient au mouvement orbital terrestre.
c valant en chiffre rond 300 000 km./sec.* on aura - ^ 10~4

et donc

Cela posé, observons d'abord que, 9t devant s'annuler aux
limites de l'intervalle d'intégration

h
8 fdt 0

*o

de sorte qu on peut substituer à L comme fonction sous le
signe dans l'équation (H)

V 2 c* cy '

Entre parenthèses, les termes — H, tout en étant
négligeables par rapport à l'unité, sont essentiels pour quele principe variationnel ne se réduise pas à l'identité. Par
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contre, les termes d'ordre supérieur pourront être négligés
sans plus dans l'approximation convenue. Il sera donc permis
d'écrire

2U

et le principe de Hamilton qui, par la remarque précédente,
est équivalente à $j*(c2 — L)dt 0, peut, si Ton omet le lac-

df
teur constant c et si 1 on écrit ^ au lieu de c2, être remplacé
par

ou bien, en posant
ds2 — (c2 — 2U)di2 — dt (D;

par

sjds 0(H')

Puisque, en se rapportant aux coordonnées cartésiennes,
3

dl'vaut ^.dy\, le ds2qu'onvient d'introduire est une forme
1

différentielle quadratique quaternaire, indéfinie parce que
(même avec des valeurs réelles et infiniment petites de dt,
cty\, dy3) il est susceptible de prendre des déterminations

soit positives, soit négatives. Il faut en outre avertir
que, dans le domaine des phénomènes que nous considérons,
on a toujours ds2 ]> 0. Pour s'en convaincre, il suffit de
noter que, en mettant en évidence le facteur c*dt2 et en rem-

i dll
plaçant de nouveau ~ par c2, on peut écrire

A-=«*>( 1^-5
et ceci prouve l'assertion, puisque la quantité entre parenthèses

est certainement positive, tant que subsistent les
limitations quantitatives dont nous sommes partis.

Si on substitue aux arguments t, ys, y3 quatre quel-
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conques de leurs combinaisons x0, xi, #21 .#3, çn effectuant
une (T4), le ds3 conserve le caractère de forme quadratique
dans les différentielles des variables indépendantes. Les
coefficients changeront, on perdra en général la forme
orthogonale (absence de termes rectangles); mais de quelque
façon que Ton procède, l'expression explicite rentrera dans
le type

ds2 ^ gikdXidxk (E)
o

les coefficients gik gkr au nombre de dix, étant en général
fonctions des x.

Il importe essentiellement de retenir qu'en prenant le ds2

pour base, (FV) présente manifestement un caractère invariant
par rapport ci n'importe quel choix cle coordonnées dans V4.
Cela constitue une supériorité bien remarquable de (HA) sur
le principe originaire d'Hamilton.

5. Interprétation pseudo-géométrique.
La forme ds2 est indéfinie, comme nous l'avons observé

tout à l'heure, et a même pour indice d'inertie 31. Par
extension analytique à travers l'imaginaire, rien n'empêche
d'adopter les locutions géométriques, dont on fait habituellement

usage quand il s'agit d'une forme quadratique
essentiellement positive, en l'interprétant comme carré de la
distance de deux points très voisins d'une V4.

Les définitions et les équations (non en général les inégalités)

de la géométrie différentielle restent alors valables
au point de vue analytique, sauf quelques réserves provenant
du fait qu'en géométrie infinitésimale, d'après le caractère
défini du ds2, on peut exclure systématiquement que le ds2

s'annulle, tandis qu'avec un ds2 indéfini l'éventualité doit
être examinée.

Ceci posé, on peut bien dire que le ds2 d'Einstein [défini
par (D), ou, en coordonnées générales, par (E)] établit une
détermination métrique en V4, et que les géodésicjues de

cette métrique (courbes qui rendent minimum fds sans

1 Nombre des coefficients négatifs dans une expression canonique (quelconque).
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annuler ds) ne sont pas autre chose que les courbes horaires
du problème mécanique fondamental.

6. Une application particulière de (H') — Transformations
de Lorentz.

Les équations du mouvement sous la forme originaire
newtonienne (N) impliquent, comme on le sait, l'uniformité
du mouvement quand la force est nulle, ou, ce qui revient
au même (à moins d une constante non essentielle), quand
U 0. (H) qui équivaut rigoureusement aux (N), définit
donc, pour U 0, des mouvements uniformes. Cette
propriété continue à subsister aussi pour la nouvelle forme
einsteinienne (H') du principe d'Hamilton, qui n'est pourtant

pas rigoureusement équivalente aux équations (N). Pour
s'en rendre compte, on remarque d'abord que, pour U 0,
(D) se réduit à

dsl=c*dt>— dl\(D0)

de sorte qu'en se rapportant à des coordonnées cartésiennes
et en posant

L. >/«•-2,.'.
r 1

(H'), qui devient

8/^„ 0 (H'0)

peut être écrite

ifL* dt 0

Les équations de Lagrange correspondantes, par le fait
que L* ne dépend pas explicitement des y, donnent après
coup les trois intégrales premières

öL*
—— • constante (i rzr 1, 2, 3)

d'où la constance de tous les y, c. q. f. d.
Ceci posé, considérons une catégorie particulière, mais

très importante de transformations (T4) ainsi spécifiées. Du
quaterne (t, ?/2, yz) on passe à un nouveau quaterne
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(t\ yf yf y3), pour lequel la forme (D0) du ds*o reste
inaltérée : dans le sens, bien entendu, qu'en vertu des formules
de transformation on ait identiquement

3 3

ds] eW - 2/rî W ~ •

(Hé) nous montre alors que, aussi dans le nouveau qua-
terne, en considérant t' comme temps et y/, y2', y3' comme
coordonnées cartésiennes, le mouvement apparaîtra uniforme.

De telles transformations furent effectivement construites
par Lorentz, de sorte qu'on peut les appeler lorentziennes
nous les désignerons brièvement par (À).

M. Marcolongo vous en présentera prochainement une
belle illustration vectorielle. C'est lui qui remarqua le
premier 1 comment, en posant l/— lct y0, ce qui fait que

3

els] prend la forme euclidienne — 2*dy-, les transformations
0

3

de Lorentz laissent inaltérée la forme ^.dy\, de sorte que
o

1

(faisant ici encore abstraction d'un passage à travers
l'imaginaire) elles sont substantiellement identiques aux mouvements

d'un espace euclidien à quatre dimensions.
Je ferme la parenthèse au sujet de l'existence effective de

ces transformations spéciales (À), et je signale un important
corollaire. Chaque (A) transforme, comme il a été dit,

un mouvement uniforme quelconque en un nouveau mouvement

également uniforme; on ne peut cependant pas affirmer

que, par l'effet de la transformation, la vitesse reste
inaltérée. Mais il y a au moins un cas, dans lequel cette
circonstance se présente. Il se rapporte aux mouvements de
vitesse c (cette vitesse constante, très grande, que nous
avons introduite originairement pour modifier-, d'une manière
quantitativement insensible, mais théoriquement féconde en
conséquences, la formule d'Hamilton).

1 Dans la note « Sugli integrali delle equazioni délia elettrodinamica », Rendiconti dei
Lincei, ser. 5, vol. XV, 1906, pp. 344-349.

L'Enseignement mathém., 21e année; 1920. 2
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En effet, pour un mouvement de vitesse c (par rapport aux
dt

paramétrés /, yA, ?/2, y3) on a évidemment c2 ^ et par
suite

ds'Q c2dt2 — dl2 — 0

Vu Tinvariance (non seulement du ds\, mais encore de la
3

forme spéciale c2dt2 — ^e ce dernier) quand on passe
i

aux nouvelles variables accentuées par une transformation
de Lorentz, on a, aussi pour le mouvement transformé,

3

c2dt's — 0, et de là la vitesse c. C. q. f. d.
i

L

7. L'optique géométrique sous son aspect le plus élémentaire.

Dans la représentation géométrique des rayons lumineux
on admet, comme dans la mécanique newtonienne, un repère
absolu. Pour rendre la représentation expressive, imaginons
un milieu hypothétique en repos qui constitue comme le
support des phénomènes optiques : le soi-disant éther
cosmique. Dans les espaces vides de matière pondérable, la
lumière se propage en ligne droite avec une vitesse constante

c par rapport à l'éther, ou, ce qui revient au même,
par rapport à des axes fixes : nous entendons par fixes,
immobiles par rapport à Péther. c est donc la vitesse de la
lumière telle qu'elle apparaît à un observateur 0, en repos
par rapport à l'éther.

Considérons un solide C animé d'un mouvement de translation

de vitesse u, et un faisceau de rayons parallèles se

propageant dans le même sens que le mouvement.
Par rapport à l'observateur 0, le phénomène lumineux

(en se bornant à l'aspect cinématique) se présente — nous
l'avons rappelé tout à l'heure — comme un certain mouvement

uniforme de vitesse c.
En vertu des principes de la cinématique, la vitesse

analogue, par rapport à un observateur 0' invariablement lié
avec C, devrait être c — u.
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Or (si petit que soit, dans le domaine des vitesses

réalisables avec des corps matériels, le rapport " et encore plus
ii2

son carré -2, qui seul est accessible à un contrôle expérimental

effectif) on peut admettre comme sûrement acquis,
à la suite d'une expérience classique de Michelson, répétée
ultérieurement par d'autres physiciens et récemment, sur
de nouvelles bases, par M. Majorana, que la vitesse de

propagation est encore c aussi par rapport à 0'.
Pour expliquer cette constatation expérimentale, il suffît

évidemment que ce qui apparaît macroscopiquement comme
une translation d'un corps G doué de vitesse a, soit, dans
un stade plus perfectionné de mesure, une transformation
(A): résultant effectivement de l'étude de ces transformations

que chaque translation uniforme ordinaire peut, très
sensiblement, être confondue avec une (A) (à moins d'un

dixmillionième, pourvu que < 10~4).

Il s'ensuit que la loi classique de l'optique géométrique
(([ue la propagation est recti ligne, uniforme, de vitesse c),
ainsi que les expériences célèbres, auxquelles je faisais allusion

un peu plus haut, restent respectées pourvu qu'on
admette le principe suivant : la propagation de la lumière
(comme le mouvement d'un point matériel en l'absence de
forces), est régie par la loi

S 0 (mouvement uniforme) ;

avec la spécification

dsQ rr 0 (ce qui équivaut à dire mouvement de vitesse c)

et la remarque essentielle que le phénomène de la translation

des solides doit être conçu comme très légèrement
différent de la description cinématique ordinaire, de manière à

correspondre à une transformation (A). M. Castelnuovo l'a
déjà expliqué substantiellement dans une conférence qu'il a

donnée ici-même il y a quelques années1; M. Marcolongo en

1 «Il principio di relatività e i fenomeni ottici » in Scientia, vol. IX, 1911, pp. 64-86.
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reparlera prochainement. Quant à moi, il me suffit d'avoir
signalé que l'optique géométrique tend, même dans sa forme
la plus schématique —: non pas simplement par une
idéologie mathématique de plus grande généralité, mais par
vertu d'expérience — à attribuer une importance fondamentale

à la forme quaternaire

ds\ — c2dt2 — dl*Q (D0)

8. Rapprochement cles deux conclusions mécanique et
optique. — Induction naturelle concernant la valeur numérique
de c et l'optique géométrique dans un champ de force.

Pour les mouvements spéciaux qui correspondent à la
propagation de la lumière dans l'éther, en l'absence de circonstances

perturbatrices, la forme

c2dt2 — dé
0

joue le rôle de base, et la constante c y a une valeur bien
déterminée.

Pour les mouvements usuels (vitesse des planètes au maximum)

et sous l'action de forces conservatrices — nous disons
en présence de masses données — la forme

ds2 — (c2 — 2U) dt2 — déQ (D)

sert de base. Dans cette forme la constante c n'est soumise
qu'à la restriction qualitative d'être assez grande, et
l'influence des masses modifie quelque peu le coefficient de dt*.
Si on aspire à l'unité de conception des phénomènes
physiques, on en vient naturellement à admettre que, cœteris
paribus, une même forme différentielle ds2 domine à la fois
le mouvement des points matériels et la marche des rayons
lumineux, fonctionnant comme base dans les deux cas. On
devra pour cela attribuer à la constante c, dans le cas
dynamique général, la valeur qui lui convient dans le phénomène

optique susdit. Alors, tout d'abord, en l'absence de
circonstances perturbatrices, en particulier de masses à

distance sensible, c'est-à-dire si U 0, le ds2 mécanique s'identifie

effectivement avec le ds] de l'optique limite.
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De plus, puisque, quand U 0 (c'est-à-dire en l'absence
de masses à distance sensible), on a pu résumer l'optique
géométrique, grâce à l'intervention du ds\, en deux lois qui
se présentent comme limite de lois dynamiques, on est conduit

à étendre la même idée au cas où il existe des masses
(U y^O). La propagation de la lumière sera donc gouvernée
dans chaque éventualité par les postulats suivants :

1° (comme pour les mouvements matériels). Principe géo-
désique :

2° ds2 0, ce qui équivaut à dire qu'il s'agit de mouvements

pour lesquels le carré de la vitesse V2 44 vaut

La vitesse V en résulte légèrement différente de c, c'est-
à-dire (à moins de termes absolument négligeables) exprimée
par

On peut résumer les deux postulats en un énoncé géométrique

expressif, dû à M. Hilbert1 :

Dans notre métrique conventionnelle (D) les rayons lumineux

sont des géodésiques de longueur nulle.
9. Courbure des rayons lumineux sous l'action de masses

matérielles.
La présence de la fonction U dans le ds2 fait naturellement

présumer que la trajectoire des rayons lumineux ne sera
plus rigoureusement rectiligne, comme pour U 0.

Si nous explicitons les équations différentielles équivalentes

au principe variationnel et si nous éliminons dt au
moyen de l'équation ds2 — 0, nous définissons les rayons,
c'est-à-dire les courbes suivant lesquelles ils se propagent.
Celles-ci se trouvent ainsi caractérisées quantitativement

1 «Die Grundlagen der Physik» (zweite Mitteilung), Göttinger Nachrichten, 1917.
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d'une manière précise qui nous a été suggérée par la
représentation mathématique des phénomènes.

Une confirmation très expressive du passage de l'allure
rectiligne à l'allure curviligne, par l'effet d'un champ de

force, nous est fournie par des considérations physiques de

toute autre nature. Et voici comment.
Dans les corps radioactifs se trouve emmagasinée une

quantité énorme d'énergie : il suffît de penser qu'une masse
de radium, même petite, est capable de rayonner pendant
nombre d'années, sans modification sensible, assez de chaleur

pour porter, chaque heure, de 0° au point d'ébullition
une masse égale d'eau. Seulement au bout d'un temps
très long (plus de 2500 années pour le radium, et, pour
d'autres éléments radioactifs, comparable à la durée des

époques géologiques) la provision de chaleur tendrait à

disparaître. Quoique la radioactivité ne soit pas une propriété
générale des corps, elle rend manifeste que (au moins dans

quelques cas) la matière renferme une provision énorme
d'énergie, et, sous cette forme, la constatation est générali-
sable par induction à chaque atome de matière pondérable.
On peut même faire une évaluation quantitative qui nous
engage à prendre comme mesure de cette énergie me2,

m étant la masse de la matière dont il s'agit. Il en résulte
alors que cette énergie intrinsèque de la matière est d'un
ordre de grandeur bien autrement plus considérable que les
deux autres formes d'énergie qu'on fait intervenir en

mécanique élémentaire, l'énergie cinétique et l'énergie

potentielle (ou de position) dépendant de la place que la

masse m occupe dans un champ de force. Quoique de beaucoup

prépondérante sur ces deux formes, l'énergie intrinsèque

peut être ignorée de la mécanique ordinairè
précisément à cause de ce caractère intrinsèque, c'est-à-dire par
le fait qu'elle reste, au moins sensiblement, invariée par
rapport aux phénomènes du mouvement.

La proportionnalité entre niasse matérielle et énergie
admise, ces deux entités physiques deviennent concomitantes :

où il y a de la matière dans le sens ordinaire du mot, il y a
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aussi de l'énergie, même (par rapport aux appréciations
habituelles en kilogrammètres) beaucoup d énergie, à cause du

facteur c2; et, réciproquement, l'énergie implique la matière,

raréfiée parfois à un tel degré qu'on ne puisse pas la décelei

par des moyens relativement grossiers (comme les pesées

ou autres expériences statiques), mais cependant toujours
douée des caractéristiques mécaniques fondamentales de la

matière, telles que la gravitation (c'est-à-dire l'aptitude à

ressentir l'attraction newlonienne d'autres masses) et l'inertie.
Ceci dit, je rappelle que n'importe quelle théorie phjrsique

de la lumière (dans laquelle l'analyse est poussée au delà de

la simple schématisation cinématique), qu il s agisse de théorie

élastique ou de théorie électromagnétique, porte à considérer

les rayons lumineux comme des lignes de flux ou, si

l'on veut, des trajectoires de l'énergie se propageant le long
de celles-ci avec la vitesse c.

D'après la relation précédente de proportionalité, cela

revient à dire que le long des rayons lumineux il y a aussi un

flux de matière. Celui-ci est, certainement, dans des proportions

tellement réduites que l'ancienne explication corpusculaire

ne peut plus se justifier et que, comme première
approximation, c'est bien toujours la théorie ondulatoire qui
tient le champ; mais il y a quand même flux de matière.
Comme celle-ci est soumise à l'attraction newlonienne des

masses situées dans le champ, il en résulte la conclusion

générale que les rayons se courbent. Du reste, avec les seules

prémisses exposées tout à l'heure, on peut aussi passer au

quantitatif et former les équations différentielles des rayons.
Il suffit de noter que, pour un élément quelconque de notre
matière très subtile voyageant le long du rayon avec la vitesse

c(ou très rapprochée de c), sont valables (en négligeant dans

une première approximation la correction éventuelle à appor-

où n et b désignent les directions (à priori inconnues) de la
normale principale et de la binormale au rayon dans un
quelconque de ses points, et p le rayon de courbure en ce

ter à c) les relations
i
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point. Celles-ci coïncident (dans une première approximation)
avec les équations différentielles qu'on déduirait du principe
variationnel combiné avec ds2 0.

10. Correction einsteinienne des équations de la physique
mathématique. — Relativité de la première manière.

Les lois des phénomènes naturels, disons, pour fixer les
idées, d'une classe déterminée de phénomènes naturels (par
ex. la mécanique des systèmes continus, l'électromagnétisme,
la thermodynamique), telles qu'elles se trouvent traduites en
équations suivant les théories classiques de la physique
mathématique, présentent toutes, comme on l'a déjà dit [n° 1,

remarque II], caractère invariant par rapport aux changements

quelconques des coordonnées de l'espace, toutes les
lois qu'on prend le d!?0 spacial comme forme fondamentale,
c'est-à-dire comme base de transformation.

Dans ces équations apparaît (à moins qu'il ne s'agisse de
phénomènes statiques) aussi le temps t\ mais la variable t
ne pourrait être combinée avec les autres, dans une
transformation éventuelle, sans que disparaisse le caractère
invariant des équations.

Soit par exemple :

01 0 Qj 0 Qm 0 (Q)

le système qui, suivant le schéma habituel, traduit en équations

une théorie physique déterminée. Il y apparaîtra certains
paramètres p2, spécifiques de la théorie, outre
(au moins en général) les coordonnées d'espace et de temps.
Imaginant le système rapporté à des coordonnées générales
x\, x.2, ,x*3, il y apparaîtra ultérieurement les coefficients aik
du carré de l'élément linéaire exprimé au moyen des x :

3 3

K — dy' 2« atk dxk
1 1

Le système (Q) traduit des relations physico-géométriques
et a d'après cela un caractère invariant par rapport aux
transformations de coordonnées.

Permettez-moi à ce propos une brève digression, qui
pourra vous sembler oiseuse au premier moment, mais qui
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est par contre essentielle comme acheminement analytique
vers la relativité générale.

Dans les (Q) interviennent seulement les am et leurs dérivées

premières : ceci est au moins valable pour les exemples
les plus importants auxquels nous pouvons limiter notre
discours. La structure des (Q), par ce fait, n'est par
subordonnée à l'hypothèse que dl\ soit euclidien. Les (Q) peuvent
être interprétées, sans demander aucune modification
formelle, comme l'extension la plus spontanée, même (avec

certaines restrictions) la seule possible, des lois physiques
ordinaires à un espace de nature métrique quelconque, c'est-

à-dire ayant pour carré de l'élément linéaire une forme
différentielle quadratique définie

3

K *2iikaik dxidxk >

donnée à priori, et par suite en général non-euclidienne,
c'est-à-dire non réductible, par un choix opportun de varia-

3

bles, au type élémentaire ^.dy]-
1

1

Cette extension pouvait paraître jusqu'à hier de la

métaphysique pure ou tout au moins un médiocre exercice
mathématique, parce que rien ne poussait à renoncer à

l'hypothèse fondamentale, suggérée par des intuitions primordiales,

et mûrie à travers des constatations toujours plus
subtiles, que l'espace dans lequel nous vivons soit
rigoureusement euclidien. Aujourd'hui il n'en est plus ainsi.
Nous verrons même dans un instant quelles sont les
opportunités de synthèse de concept qui poussent à reconstruire
la philosophie naturelle sur une base plus large, réservant,
bien entendu, le jugement définitif sur la reconstruction au
moment où l'on pourra regarder suffisants le nombre et
l'entité des confirmations que lui apportent les faits.

Je reviens maintenant aux (£2) pour attirer votre attention
sur des modifications qu'il est possible de leur faire subir,
ici encore assez radicales dans la conception, mais teiles
qu'elles n'altèrent pas d'une manière sensible le contenu
quantitatif dans le domaine expérimenté jusqu'à maintenant.
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Le but est de substituer aux (Q) autant d'équations
R, 0 R2 — o nm — o (R)

identiques aux mêmes (Q) dans des conditions statiques
(dûment spécifiées), et douées plus généralement de caractère

invariant par rapport à toutes les transformations
quaternaires de variables indépendantes (non pas seulement les
changements de coordonnées). Pour atteindre ce but, il suffit,

en dernière analyse, de prendre comme base de transformation,

au lieu du dl2 spacial \ une forme (quelconque)
quaternaire ds2, qui se réduise à — dl2 pour dt — 0.

Le moyen pour établir effectivement le système (R), en
commençant par attribuer la forme la plus indiquée aux
(Û) dont on part, est fourni très facilement par les méthodes
du calcul différentiel absolu de Ricci (associées, bien entendu,
dans chaque cas, à quelque complément physique). Mais
laissons la partie exécutive en nous bornant aux passages
conceptuels. Supposant que les (û) originaires se rapportent
à l'espace euclidien de la physique classique, on peut prendre,

par exemple, comme nouvelle base la forme

ds' — c2dl2 — dt
o o '

qui, comme nous 1 avons vu, domine l'optique géométrique
limite, c'ëst-à-dire en l'absence de circonstances perturbatrices.

C'est ce qu'on faisait dans la relativité de la première
manière, dans laquelle — il importe de le noter — la
dynamique du point matériel doit être réformée, elle aussi, en se
rapportant au ds\, et non pas de la manière autonome que
je vous ai déjà indiquée, suggérée d'une manière si spontanée

par le principe d'Hamilton.
Je ne puis passer sous silence, à cause de son importance

intrinsèque et historique, le fait très remarquable qu'il existe
un système, celui qui régit les phénomènes électromagnétiques

dans les milieux impolarisables en repos, pour lequel
les équations (R), formées sur la base du ds] optique, s'iden-

1 Je dis d'une manière générale dlz et non dtQ, parce que l'observation précédente du texte
autorise à rapporter les (U) à un espace de nature métrique quelconque.
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tifient précisément avec les originaires (Q). Justement cette
coïncidence donna la première impulsion à la théorie de la

relativité, dans le sens restreint indiqué plus haut, ce qui
explique la place prépondérante accordée au point de vue
électromagnétique, dans les premières expositions
systématiques de la théorie.

Mais revenons à la base de transformation.
Déjà dans cette course rapide à travers les innovations

suggérées par le désir de s'affranchir d'un temps absolu
dans la dynamique du point matériel, nous avons été amené
à substituer au clsl de l'optique limite un ds2 un peu plus
général

qui varie dans chaque cas en dépendance du champ de force.
On pourrait, dans toute théorie physique, prendre comme
base un tel ds2 dans lequel on tient compte de U, ou bien
en substance des masses en présence desquelles ont lieu
les phénomènes considérés.

Et il serait ainsi possible de prévoir, et serait fixée
quantitativement par les équations (R), une influence (qui se superpose

à celle éventuellement envisagée par les théories
ordinaires), certainement très petite mais pas rigoureusement
nulle, du champ de force dans lequel se déroule la catégorie
des phénomènes examinés.

Mais il y a encore un dernier pas à faire pour une
synthèse compréhensive de tous les phénomènes..

11. Influence de tous les phénomènes physiques sur les
mesures de Vespace et du temps. — Relativité générale.

Il convient de généraliser le critère qui nous a conduit à

prendre comme base dynamique et optique le ds2 à quatre
dimensions de la formule (D), sur la nature duquel influe
essentiellement la matière environnante (par l'intermédiaire
du potentiel U), Spéculativement, le fait que la matière
influe permet de penser que non seulement La matière, mais
encore toute autre circonstance physique (mouvement, état
électrique, efforts locaux, etc.) peut exercer une influence
analogue, qui modifie très légèrement {toujours dans l'ordre
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c^e

^2 au pins, dans les conditions ordinaires) toute la structure

du ds2 (non seulement le coefficient du dt2). Ceci porte
en particulier à la conséquence (vu que pour dt 0, ds2 se
rapporte purement à l'espace) que l'espace géométrique
ambiant ne restera pas en général rigoureusement euclidien,
comme il fut toujours postulé jusqu'à maintenant dans toute
théorie concrète de phénomènes physiques, mais jqu'i 1 s'en
écartera plus ou moins suivant les influences extérieures.
Notons en passant que (pas à trois, mais) à deux dimensions,
on a un exemple concret de variabilité de l'élément linéaire
suivant les circonstances, en considérant une membrane
élastique. Le lien entre la nature du ds2, qui englobe les
mesures de l'espace et du temps, et l'ensemble des phénomènes

constitue le postulat qualitatif de la relativité générale.

La traduction quantitative est fournie parles équations
de gravitation d'Einstein, qui sont naturellement au nombre
de dix, comme les coefficients, a priori inconnus, du ds2

rapporté à des coordonnées générales (cfr. la (E) du n° 4).
Par cet aperçu reste établie une interdépendance entre

tous les phénomènes géométriques, cinématiques et
physiques. La géométrie et la cinématique cessent d'occuper
une place privilégiée parmi les différentes théories physiques
dans le sens que l'espace et le temps ne sont plus un simple
support immanent et intangible des phénomènes, mais ils
en subissent l'influence par l'intermédiaire du ds2, à la
nature duquel est d autre part subordonné le cours des
phénomènes eux mêmes. La mécanique de Newton, en introduisant

la gravitation universelle, a réalisé une interdépendance
générale entre le mouvement de tous les corps pondérables;
d'une manière plus générale, la mécanique nouvelle, au
moyen des équations des théories physiques particulières,
légèrement modifiées, et des équations de la gravitation,
lie entre eux tous les phénomènes naturels dans un tableau
unitaire. Ce tableau, dès qu'on prend pour base le ds2 ein-
steinien qui convient au cas considéré, présente un caractère
invariant par rapporta toutes les transformations des quatre
paramètres indépendants qui, dans l'ensemble, individualisent

la position et le temps.
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