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122 TH. ROUSSEAU

15. On vérifie de méme que les droites communes a deux
complexes lindaires T et TV rencontrent deux droites fixes:
le systéme formé par les équations des deux complexes

-> >

-
V'S=0, VS =20, (7)
équivaut, en effet, aux deux équations
- - - 5
Vi(S4+3S)=0, V(S+1S)=0, (8)
A, et 4, étant racines de I’équation
- -
S+ 282 =0. (9)

16. Soient trois complexes lmealres I', I', T”, définis par
trois systémes de vecteurs S, b S”. Il existe une infinité

de systémes de la forme S + 1S’ 4+ 173" égaux a un vecteur
unique. La condition est, en effet,

, (S + NS FA"8"2 =0 , (10)

c’est-a-dire :

V2SS S g oareSe L — ¢ (11)
Si I'on prend trois solutions (X,, 1",; X,. _A}"g; X’i. )',) de

cette équation, on obtient ainsi trois systemes S 4+ }'S" -+ )" S

réduits respectivement 4 des vecteurs 61, U}, [_33. Les droites

communes aux trois complexes rencontrent les trois droites
supports de U,, U,, U,. Elles forment donc la moitié d’une

-+ -> -
quadrique. Les résultantes des systéemes S 4+ }'S’ 4 3”S”,
qui vérifient I’équation (11), forment Pautre moitié.

Une deuxiéme espéce de multiplication.

34 17. DEFINITION. ——J’appelle pro-
y y duit de deuueme espéce de deux
MA . ' vecteurs U et V _et je désigne par
7 R la notatlon U*V, le systeme de
0 vecteurs P défini de la maniére
i suivante :
A Son axe central est la perpen-

x dlculalre commune MN a U et V
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Sa resultante R est le produit vectoriel U.V; son moment
résultant II porté par "\M\ est le produit du vecteur MN par
le produit scalaire U.V.

- ——

iV ;= (0.V)MN .

C‘-L

-
R =

Je vais chercher les coordonnées de ce systeme P.Je place
U suivant Oz, et je suppose que Ox rencontre v en un point
A (OA = a). Soient X, Y, Z, les projections de V sur les

axes.
Les coordonnées z, (3, y du point N sont définies par les
équations

| aia—i—pX, B=10pY, Y= oZ , aX 4+ 3Y =0 ;

}

d’ou l'on tire

__aY? _ . . XYy _ — aXZ
— Xz Y’ P=—am v T=xe e

. ’ -’ .
On en déduit les six coordonnées du vecteur R et les trois
. - . . - .
projections du moment II, d'ou, pour le systéme P, apres
‘réductions, les six coordonnées |

—UY, UX, 0, aUZ, 0, O .

Etant donnés deux systémes de vecteurs

j'appelle produit de deameme espece de ces deux systemes,

et je désigne par la notation xS Je systeme de vecteurs P
formé par tous les produits de deuxisme espéce des vecteurs

-5

Rad
U par les vecteurs V:

Sx§ — éﬁ.x‘

PROPRIETES. .
18. Dans un produit de deuxiéme espéce, on peut rem-
placer un facteur par un systéme égal. En effet, le transport

e S S R T S e,




124 TH. ROUSSEAU

du vecteur VJ- en \7} le long de son support ne change évi-
demment pas la définition du produit UX _\7]-. D’autre part, si
I'on remplace deux vecteurs K_V“ AV, du systeme S’ de
méme origine, par leur résultante AV, les coordonnées des
trois systemes {_jx-’\/“ GX—VQ I-:”‘K/ par rapport aux axes par-
ticuliers utilisés au § 17 sont respectivement de la forme

—UY,, UX,, 0, aUZ
—UY,, UX,, 0, aUz,,
—U(Y,+Y,), UX,+X,), 0, aU(Z +2,), 0, 0.

0, 0;

1

On a donc évidemment
- -> - - >
UxV, + UxV, = UxV .

La proposition en résulte.
19. Le produit de deuxiéme espéce est semi-commutatif :

§23 = _ %3

20. Le produit de deuxiéme espéce est distributif par rap-
port a Uaddition :

Sx(% 4 8 = 8xF 4 33 .

Les régles de calcul sont donc celles des produits algé-
briques de deux facteurs, sous la réserve de la semi-com-
mutativité.

APPLICATIONS.

21. 1l résulte de la semi-commutativité que le carré d’un
systeme de vecteurs est nul :

- > - > o
S2 = SXS = — SXS — 0 .

G 22. Produit d’un couple par un vec-
teur. Soit G l'axe du couple, porté par
Oz; je prends pour Ox la perpendicu-
laire commune 4 G et au vecteur donné
V: je représente le couple par deux
vecteurs 1_31 et ﬁg paralléles a Oy, dans

le plan 20y (U, issu de O, U, issu de A
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* ’
origine de V). Cela posé, on a

- - -

GV = UV 4 UV .

Les deux pr oduits U* V et U,*V ont méme axe central Ox;
les résultantes generales qui sont U1x\/ et sz\/ se dé-
truisent ; il ne reste que le couple ayant pour axe _()U%> )OA
On reconnait dans cet axe le produit vectoriel G«V. On a

donc _
- > =
[G1*V = [GxV] .
On aurait de méme
- >
VX[G] —= [VXG] )

Le produit d’'un couple par un vecteur est donc un couple,
dont Uaxe est le produit vectoriel de Uaxe du couple par le

vecteur.
93. Produit de deux couples. Ce produit est nul, car de

I'égalité
, - -
_ . [Gl=V,+ V;,
je déduis
X [ 7 v
(GIX[G] = [G]*V, + [G]*V,
Les deux couples du second membre ont une somme nulle
d’apres le § 22.
24. Produit de deux SJstez7zes en fonctions de leurs élé-
ments de réduction R, G, R, G' en un point. On a

& = (R + [G)*(R + (67)) = BxR + Bx[6] + [G] R

Le produit a pour résultante générale le produit vectoriel
R R/, issu du point donné O ; le couple de réduction a pour
axe
(RxG) + (GxR") .

25. Produit de deux systémes en fonc-
tton des éléments ﬁ, é, 15;’, G’ de leurs
réductions canoniques. Soient A et A
les axes centraux des deux systemes
donnés S, §'; MN = d leur plus courte
distance; ¢ 'angle de R avec R, posi-
tif si les deux vecteurs ont le sens direct
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'un par rapport a l'autre, négatif dans le cas contraire. Je
pose
G = kR ; G’ — W'R’ .

Une rota tlon de 180° autour de MN change de sens les deux
systemes S et §, donc ne change pas leur systeme produit;
MN est, par suite, 'axe central de ce systéeme. D’ailleurs,
on a

- - -> - - - - >
SxS" = RxR’ 4 [GxR]| + [ExG'] ;

I 3 .o s

la résultante générale est celle du produit R*R’, soit R«R'.
Le moment résultant, mesuré avec le sens positif MN, a pour
valeur

- > — —— :

(R.R")d 4+ {GR" + RG’) sino ,
ou

RR’(d cos ¢ + (h + A')sing) .

Pour que le produit 5xS' de deux systemes soit egal a zéro,
il faut et il suffit, ou blen que I'un des facteurs Sou§ 501_:[
égal a zéro, ou que S et §' aient méme axe central, ou que S
et S soient égaux a deux couples
-~ 26. EXFRCICF — Un systeme S peut se réduire a deux

vecteurs U, et U,. De I'égalité

je déduis

><

- - -
U, = UL, ,
puisque le carré d un vecteur Ua2 est nul. En exprimant que

les deux produits b U et U . U ont méme axe central, j'ob-
tiens la propriété connue: La pe/pen,dlculaue commune a
—)

U, et a U, rencontre a angle droit Uaxe central du systéme
que forment ces deux vecteurs. En etudlant de plus prés
Pégalité des deux prodmts Sx U et U UQ, on aurait des rela-
tions 1ntelessantes entre U et U d'une part, et, d’autre part,
les éléments R, G de la réduction canonique.

27. EXERrCICE PROPOSE. — Démontrer |’égalité

-

Sx(3/x87) 4 $x(3x8) + §(8x§) =0 .
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(On établira d’abord la propriété pour trois vecteurs de
méme origine; il sera commode de décomposer 'un des
deux vecteurs en deux vecteurs perpendiculaires, dont 'un
soit perpendiculaire au plan des deux autres vecteurs don-
nés: dans le cas de trois systémes, on utilisera leurs élé-
ments de réduction en un méme point.)

Vecteurs aires.

98. Soit A une aire plane limitée a un contour G orienté,
c'est-a-dire sur lequel un sens de parcours est choisi. Je
considére cette aire comme une grandeur géométrique que
jappelleral vecteur-aire, et que je

désignerai par la notation A; cette Ay 0
D o ' //
grandeur sera caractérisée par les { S
définitions de 1'égalité et de 1'ad- L G
dition qui seront données plus ALl
loin. c

-

Je désigne par A un vecteur
linéaire perpendiculaire au plan P qui contient 'aire, dirigé
dans un sens tel que le sens de parcours choisi le long de G
soit le sens de droite a gauche pour un observateur placé
suivant A), et mesuré par le méme nombre que Paire A elle-
méme. |

S'il s’agit d’une aire polygonale abcd ... k, le vecteur
linéaire A est la moitié de I’axe du couple représenté par le
systeme de vecteurs ZZ, ZZ, Z’-C—Z e ka.

29. MOMENT D'UN SYSTEME DE VECTEURS-AIREs. — Ktant
donné un vecteur-aire f_} ‘et un point O, je prends dans le

plan P du vecteur-aire un point I arbitraire; j'appelle mo-

ment du vecteur-aire A par rapport au point O le produit
. ->
scalaire
‘ O
M. A = OLA .
-

Ce produit est évidemment indépendant de la position du
point I dans le plan P. o |

Le moment d'un vecteur-aire est nul, si le point O est
dans le plan P du vecteur-aire. |




128 TH. ROUSSEAU

-

La somme algébrique des moments par rapport a un point
O des vecteurs-aires d’un systeme S est le moment du sys-
téme S par rapport au pount O, ”

30. "EGALITE. — On dit que deux systémes S et S’ de vec-

-
- ->

teu_{‘s-aires sont égaux, siles vecteurs linéaires A, A, ., A
et B, B,, ..., E-;P, correspondant aux vecteurs-aires de cha-
cun d’eux ont méme résultante générale, et si, d’autre part,
les deux systémes ont méme moment en un point O.
Justification : Si les deux systemes ont méme moment en
un point O, ils ont méme moment en tout autre point O’; on

a, en effet, pour 'un des vecteurs-aires,

—_—— -> > —_—
O.A — OI.A = 0'0.A ,
et, pour le systéme donné S,
-
n —
Mg S — M!S =N 00.4, .
- ->

pas

i

Ce second membre est le produit scalaire de O'0) par la

-

résultante généréle des vecteurs linéaires K“ A,, ..., A,
Cette résultante étant la méme pour les systemes S et &,
on voit que la définition de I’égalité est bien indépendante
du point O.

3l. Appirion. — Je désigne par S 4- S’ le systeme formé
par les vecteurs-aires du systéme S et ceux du systéme %’.

» ’, . ¥ , oy o
On peut écrire, conformément a cette définition,

S:A1+A2—I—. .—l—-Any
-> -> - -

si Ay, Ay, ..., A, sont les vecteurs-aires qui constituent le
sys—tgmz S. -

APPLICATIONS.

32. Egalité de deux vecteurs-aires. — Deux vecteurs-aires

sont égaux, s’ils ont méme plan, méme orientation dans ce
plan et si leur aire est mesurée par le méme nombre. Cette
proposition résulte immédiatement du § 30, si P'on choisit le
‘point O dans le plan de I'un des vecteurs-aires.

33. Un vecteur-aire é est égal a la somme A, + A3 de deux

e b
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vecteurs-aires, si le plan P de A passe par I'intersection des

plans P, et P, des vecteurs-aires A, el A,, et si, en outre, le
vecteur hnealre A est la somme oreom_é_[mque des vecteurs
linéaires A, et A,. Cette proposition est évidente, si ’on
choisit le point O (§ 30) sur I'intersection des plans P, et P,.
Ceci suppose que les plans P,P, ne sont pas paralléles.
S’ils sont paralleles, les vecteurs-aires A, et \ forment un
systéme égal a un seul vecteur-aire A7, dont le plan P est
parallele a P, et P, et divise une perEendlculalre I,1, a ces

plans dans le rapport défini par

>< A, + 11,

f—
e

oy
>

[3)
<

Le vecteur linéaire A est, ici encore, la somme géomé-
trique des vecteurs A, et A,. 11 suffit, ‘pour établir ces pro-
priétés, d’exprimer au point I leoahte des deux systemes
(AU A ) et A

347 Si les deux aires A, et A, sont situées dans deux plans
paralléles, ont méme mesure, et des sens opposés, les vec-
teurs-aires correspondants forment un couple de vecteurs-
aires; il n'existe aucun vecteur-aire égal a un couple. Le
moment d’un couple par rapport & un point O est le méme
dans tout 'espace. Un déplacement quelconque effectué sur
un couple donne un couple égal.

35. REDUCTION D'UN SYSTEME DE VECTEURS-AIRES. — Un
systéme de vecteurs-aires S est égal a un vecleur-aure unique,
ou, exceptionnellement, a un couple. Sl en effet, ]a résul-
tante générale des vecteurs linéaires Ai, AQ, - An n’est
pas nul[e il est facile de construire un vecteur-aire A ayant
méme moment que le systeme S en un point O, et tel que le
vecteur linéaire A soit celte résultante générale.

Si cette résultante générale est nulle, on peut construire
un couple égal au systeme donné.

36. NoTiON DE VOLUME. — Soit un polyédre fermé, limi-
tant une portion E d’espace. Sur le contour de chaque face,
je choisis, comme sens de parcours, le sens contraire des
aiguilles d’'une montre, pour un observateur placé a 'exté-

e R
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rieur du polyédre. Les différentes faces du polyédre coansti-
tuent, ainsi orientées, un systeme de vecteurs-aires S.

Ce systéme S est égal & un couple de vecteurs-aires. En
effet, les vecteurs linéaires r_\z, f—‘:g, - f_\’n correspondant a
ces vecteurs-aires représentent, au facteur 2 prés (§ 28), les
axes des couples conslilués par les vecteurs ab, be. cd. ...
qui limitent chaque face. Ces couples
forment un systéeme égal a zéro, car les
vecteurs dont ils sont formés sont deux
a deux égaux et directement opposés (ZZ
et ZEZ, be et cb, ...); lasomme géométrique
des vecteurs linéaires f-_\)1 \ KQ, e K,l élant
nulle, le systéme S estbien égala un couple.

Cela posé, on dit que les volumes de deux polyédres sont
égaux, si les couples de vecteurs-aires constitués par les faces
de ces deux polyédres sont égaur. |

Le volume d’un polyédre E est la somme des volumes de
deux polyédres E, et E,, sile couple de vecteurs-aires cons-
titué par les faces de & est égal a4 la somme des couples de
vecteurs-aires constitués par les faces de E, et de E,.

Le polyedre constitué parla juxtapositionde deux polyédres
E, et E,, avec suppression de la cloison qui les sépare, a
pour volume la somme des volumes des polyédres E, et E,.
En effet, le systéme de vecteurs-aires formé par les faces de
E, et de E, n’est pas altéré par la suppression de cette cloi-
son qui figure deux fois dans ce systéme avec des orienta-
tions opposées. |

La grandeur volume d’un polyédre E est ainsi parfaitement
définie; le moment du couple S de vecteurs-aires formé par

les faces de ce polyedre est constant dans tout I'espace. La
valeur de cette constante est une mesure directe de ce vo-
lume; car, & des volumes égaux correspondent des moments
égaux; et, d’autre part, si un volume est la somme de deux
autres, le moment correspondant au premier est la somme
des moments correspondant aux deux autres. Tout autre
nombre proportionnel 4 ce moment est aussi une mesure
directe.

Si on prend comme volume-unité celui du cube construit
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sur 'unité de longueur, le moment de ses faces est 3, comme
on le vérifie immédiatement en prenant ce moment en I'un
des sommets. Il en résulte que le volume dun polyédre
quelconque est mesuré, avec cette unité, par le tiers du
moment du systéme de vecteurs-aires formé par ses faces.

On concoit facilement que cette théorie peut s’étendre a
des volumes de forme quelconque.

CALCUL DES RACINES REELLES
D'UNE EQUATION ALGEBRIQUE ou TRANSCENDANTE
PAR APPROXIMATIONS SUCCESSIVES

PAR

Mladen-T. Birircu (Belgrade).

Le procédé par approximations successives appliqué a
’extraction de la n™ racine d’un nombre réel et indiqué dans
une Note précédente! peut étre, sous certaines conditions,
généralisé et appliqué au calcul des racines réelles d'une
équation algébrique ou transcendante.

Soit flx) =0 l'’équation donnée, algébrique ou transcen-
dante, dont on cherche une racine réelle simple, que nous
désignerons par a. Considérons deux fonctions :

PSP R VALY Y .l
e ] ] B (T

(Ces deux fonctions se réduisent aux fonctions o(x) et ¢(x)
de la Note citée en remplacant f{x) par * — A.)

Supposons que la racine cherchée @ soit dans un intervalle
(m, M) dans lequel : 1° la fonction f{x) n’a pas de singularités ;

1 M.-T. BiritcH, Enseign. mathém., T. XX, 1918, p. 194-198.
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