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t

2- Egalité. — Deux systèmes de vecteurs S et S' sont dits
égaux, s'ils ont même résultante générale et même moment
résultant en un point O : ils ont alors même moment résultant

en tout point de l'espace. J'écrirai

s s'

Un couple est formé de deux vecteurs parallèles et de sens
contraires ayant même grandeur. Deux couples sont égaux,
s ils ont même axe G. Je représenterai par la notation [G] un
couple ayant pour axe le vecteur G.

3. Addition. — Je désignerai par la notation S + S' le
système formé par les vecteurs du système S et ceux du
système^S'. Si le système S est formé de n vecteurs Yr
V2, v„, j écrirai, conformément à cette définition,

« \ \ ++ v„
Il est évident cjue si, dans une somme, on remplace un

terme par un terme égal (§ 2), on obtient une somme égale à
la primitive.

La définition est commutative et associative1.

Une première espèce de multiplication.

4. Définition. Rappelle produit de première espèce de
deux vecteurs Ü et V, et je représente par la notation

— —

u-v

le nombre algébrique, dont la valeur absolue mesure six
fois le volume du tétraèdre construit sur les deux vecteurs;
le signe est +, si les deux vecteurs ont le sens direct l'un
par rapport à l'autre; le signe est — dans le cas contraire.

J appelle produit de premiere espèce de deux systèmes de
vecteurs S et S' et je représente par

S-S'

1 II est évident que cette définition n'a rien de commun avec celle de la somme fréomé
trique. &



THÉORIE DES VECTEURS 119

la somme algébrique des produits de première espèce de

chacun des vecteurs Ud, U2, U« de S par chacun des

vecteurs V,, V2, Vp de S'1 :

Propriétés.
5. Dans un produit de première espèce, on peut remplacer

l'un des facteurs par un système égal. En effet, le transport
d'un vecteur U du système S en U' le long de son support
ne modifie évidemment pas la mesure du tétraèdre construit

sur ce vecteur et sur l'un quelconque V du système S'.

D'autre part, si l'on remplace deux vecteurs AU,, AU2 du

système S, ayant la même origine A, par leur somme
géométrique AU, les trois tétraèdres construits sur l'un
quelconque BV des vecteurs de S' et sur chacun des vecteurs

U,, U2, U ont même base ABV, la hauteur du troisième est
la somme algébrique des deux autres, d'où

> - > — >

AU,' Y + AU2- V AU • V

Ces opérations élémentaires ne modifiant pas la valeur du

produit S*S', la proposition est établie.
6. Le produit de première espèce est évidemment commu-

tatif:
-+ -f -+

S-b'= S'-S

7. Le produit de première espèce est distributifpar rapport

à l'addition (§ 2) :

— — -> - — -f •+

S-(S'+ S'7) S-S'+ s • s

(Le signe -(- du second membre est évidemment celui de

l'addition algébrique.)
On voit donc que les règles de calcul de ces produits de

première espèce sont celles des produits algébriques de
deux facteurs.

1 Ce produit de première espèce s'appelle généralement moment relatif des deux systèmes.
Il est commode de le considérer comme un produit.
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Applications.
8. Leproduit de deux vecteurs de même origine est nul.
9. Si deux vecteurs U et V ont respectivement pour

symétriques par rapport à un point ou à un plan deux vecteurs
U' et V, on a

U-Y — U'-v'
10. Le produit de deux couples est nul, car on peut donner

à ces deux couples le même centre de symétrie; la propriétérésulte alors du § 9.

il. Le produit cl'un vecteur AV
et d'un couple d'axe G est égal au
produit scalaire des deux vecteurs
V et G. Cette proposition est en
évidence si l'on donne à l'un des
vecteurs $, $' du couple le point
A comme origine. On a alors

Y-[G] r= Y-!'
On vérifie immédiatement sur la figure que le tétraèdre

construit sur Y et est mesuré parle produit scalaire V. G.
On a donc

Y* [G] Y. G

12. Produit de deux systèmes et S' en fonction de leurs
éléments de reduction R, G, 11', G' en un même point 0. On
a évidemment

S'S'= (R -f [G])-(R'+ [G']j.
— R-R' + R-[G'] + [G]-R' + [G]-[G7]

En utilisant les §§ 8, 10, 11, on en déduit

S-S'= R.G'-f R'.G

Si X, Y, Z, L, M, N et X', Y', L', M', N' sont les
coordonnées de S el S par rapport à trois axes rectangulaires
issus de 0, cette formule s'écrit

s-b'= LX' + MY' + NZ' + L'X + M'Y + N'Z
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13. Carré d'un système de vecteurs. On a, d après le § 12,

-f
S2 2R.G

On peut donc exprimer l'égalité d'un système de vecteurs
à un vecteur unique ou à un couple en annulant son carré.

Application aux complexes linéaires.
14. On sait qu'un complexe linéaire T peut s'identifier avec

la famille formée par les droites D de moment nul d'un

système de vecteurs S. Si donc V désigne un vecteur porté par
l'une de ces droites D, l'équation du complexe s'écrit

v-s 0 (1)

Les droites du complexe T qui rencontrent une droite Ai
s'obtiennent en prenant les solutions communes aux équations

Y'SrzO, V-V1 0 (2)

Ui désignant un vecteur porté par /Si.
L'une de ces équations peut se remplacer par une combinaison

des deux :

Y- S + XV-U, — 0 on V-(S + XUJ 0 (3)

Si je détermine À par la condition

(S 4- XUJ2 zz 0 c'est-à-dire S2 -f- 2X8*1^ 0 (4)

— -> t

le système S + 1 U., est égal à un vecteur unique U2 ; on est
alors conduit à prendre les solutions communes aux équations

V-Ö^ 0 v-u2 0 (5)

Les droites du couple T qui rencontrent une droite Ai
rencontrent donc une deuxième droite A2. A! et A2 sont dites
co njhg liées.

L'égalité
S + XU, U2 ou S u2 — XU, (6)

—

montre qu'on peut réduire le système S à deux vecteurs
(—XU4 et U2) portés par deux droites conjuguées.

L'Enseignement mathém., 21e année; 1920 9
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15. On vérifie de même que les droites communes à deux

complexes linéaires T et r' rencontrent deux droites fixes;
le système formé par le.s équations des deux complexes

V-3 0 V-S'= 0 (7)

équivaut, en effet, aux deux équations

V'(S + X,«') 0 Y-(S + 0 18)

X, et Xs étant racines de l'équation

(S -|- XS')2 0 (9)

16. Soient trois complexes linéaires r, T',T", définis par
trois systèmes de vecteurs S', S". Il existe une infinité
de systèmes de la forme S + X'S' + ~S" égaux à un vecteur
unique. La condition est, en effet,

(S + X'S'+X"S")2 0 (10)
c est-à-dire

X'2S'2 + 2X'X"S'-S" + X"2S"2 + 0 (11)

Si l'on prend trois solutions (a, X", ; X"3) de
cette équation, on obtient ainsi trois systèmes S + X'S' + / "S"
réduits respectivement à des vecteurs U,, Ua, U3. Les droites
communes aux trois complexes rencontrent les trois droites
supports de U,, U2, U3. Elles forment donc la moitié d'une
quadrique. Les résultantes des systèmes S + X'S' + X"S",
qui vérifient l'équation (11), forment l'autre moitié.

Une deuxième espèce de multiplication.

17. Définition. — J'appelle produit
de deuxième espèce de deux

vecteurs U et V, et je désigne par
la notation UXV, le système de

vecteurs P défini de la manière
suivante :

Son axe central est la
perpendiculaire commune MN à U et V.
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