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118 TH. ROUSSEAU

2. EGALITE. — Deux systémes de vecteurs S et § sont dits
égaurx, s'ils ont méme résultante générale et méme moment
résultant en un point O : ils ont alors méme moment résul-
tant en tout point de 'espace. J’écrirai

->

S=75.

Un couple est formé de deux vecteurs paralléles et de sens
contraires ayant méme grandeur. Deux couples sont égauc,
s'ils ont méme axe G. Je représenteral par la notation [G] un
couple ayant pour axe le vecteur G.

3. AbprrtioN. — Je désignerai par la notation S —}—-S’ le
systeme formé par les vecteurs du systéme S et ceux du
systeme . Sile systeme S est formé de n vecteurs Vi.

-

V,o ..., Vo, jécrirai, conformément a cette définition,
2 ) J

* 9 > >

S=V, +V, + ... + L

Il est évident que si, dans une somme, on remplace un
terme par un terme égal (§ 2), on obtient une somme égale a
la primitive.

La définition est commutative et associative .

Une premiére espéce de multiplication.

4. DEFINITION. — J'appelle produit de premiére espece de
-> - . i .
deux vecteurs U et V, et je représente par la notation

S

v ,

le nombre algébrique, dont la valeur absolue mesure six

fois le volume du tétraédre construit sur les deux vecteurs ;

le signe est 4, si les deux vecteurs ont le sens direct 1'un

par rapport a 'autre; le signe est — dans le cas contraire.
J'appelle produit de premiére espéce de deux systémes de

vecteurs S et S/ et je représente par

3%

LIl est évident que cette définition n’a rien de commun avee celle de la somme géomé-
trique.
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la somme algebrlque des produu’rs de premlere espéce de

chacun des vecteurs U“ U,, ... U de S par chacun des vec-
- - - -

teurs V,, V,, ..., Vp de S’ *:

> > TP, o
S’ZEEUL-'V

=1 j=

p—

PROPRIETES. )

5. Dans un produit de premiére espéce, on peut remplacer
Cun des facteurs par un systeme egal En effet, le transport
d’un vecteur U du systeme Sen U le long de son support
ne modifie évidemment pas la mesure du tetraedre constrult
sur ce vecteur et sur 'un quelconque V du systeme g.
D’autre part, si I'on remplace deux vecteurs AU,, AU du
systéme S,  ayant la méme origine A, par leur somme géo-
métrique AU les trois tetraedres construits sur l'un quel-
conque BV des vecteurs de S’ et sur chacun des vecteurs

U1, Uo, U ont méme base ABYV, la hauteur du troisieme est
la somme algébrique des deux autres, d’ou

C—— > —_— > —_ =
AUV + AU, V = AU-V .
Ces opérations élémentaires ne modifiant pas la valeur du

produit S-S, la proposmon est établie.

6. Le produit de premiére espéce est évidemment commu-
tatif:
- > =
S-g 5°S .

Il

7. Le produit de premiére espéce est distributif par rap-
port a Uaddition (§ 2):

- = -

- = - -
S (S'+ S = S'§" 4 S-5" .

(Le signe 4 du second membre est évidemment celui de
I'addition algébrique.) |
On voit donc que les régles de calcul de ces produits de

premiére espéce sont celles des produits algébriques de
deux facteurs.

1 Ce produit de premiére espéce s’appelle généralement moment relatif des deux systémes.
Il est commode de le considérer comme un produit.
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APPLICATIONS.

8. Le produit de deux vecteurs de méme origine est nul.

9. Si deux vecteurs U et V ont respectivement pour symé-
triques par rapport a un point ou a un plan deux vecteurs

%Y i
U' et V', on a
> - -
UV=—TU"V" .
10. Le produit de deux couples est nul, car on peut donner

a ces deux couples le méme centre de symétrie; la propriété
résulte alors du § 9.

1. Le produit d’un vecteur AV

Gy et d’un couple d’axe G est égal au
Vv produil scalaire des deux vecteurs
Vet G. Cette proposition esl en
__-="/® évidence si 'on donne & l'un des
‘:,_/:::__/ vecteurs @, @ du couple le point

A A comme origine. On a alors

o o
ViGl= V-3 .
On vérifie immédiatement sur la figure que le tétracdre

construit sur V et ¢’ est mesuré par le produit scalaire V.G
On a donc

> > -
VGl =V.G .

12. Produit de deux systémes S et S en fonction de leurs

SR 2, 2 s :
éléments de réduction R, G, R, G' en un méme point O. On
a évidemment

58 = (K + [6))® + o).
= RR+ R (6] + [6] ' + [6]']67] .

En utilisant les §§ 8, 10, 11, on en déduit

-

- -+ - - >
S'S= R.G'+ R".G .

St X, Y, Z. L, M. N et XY, 72, L', M', N’ sont les coor-

- -> . .
données de S el S’ par rapport a trois axes rectangulaires
issus de O, cette formule s’écrit

§'8'= LX'4 MY’ 4 NZ’'+ L’X 4 MY 4 N7 .
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13. Carré d’'un systéme de vecleurs. On a, d’aprés le § 12,
Sz — 2§-é .
On peut donc exprimer I'égalité d'un systéme de vecteurs
3 un vecteur unique ou a un couple en annulant son carré.
APPLICATION AUX COMPLEXES LINEAIRES.
14. On sail qu'un complexe linéaire T peut s'identifier avec
la famille formée par les droites D de moment nul d’un sys-

- . = , . ’
teme de vecteurs S. Si donc V désigne un vecteur porte par
'une de ces droites D, ’équation du complexe s’écrit

> > ;
V'S=20. (1)

Les droites du complexe T qui rencontrent une droite A,
s'obtiennent en prenant les solutions communes aux équa-
tions

->

-
=0, VU =0, (2)

1 =

Ny

V-

U, des1gnant un vecteur porte par A
h) ’ M .
L'une de ces équations peut se remplacer par une combi-
naison des deux:

> - - - - - —
V34wl =0, ou V(S+3U)=0. (3]
Si je détermine ) par la condition
S +20)2=0, Ccest-a-dire 24 nST, =0, (4

. - _— , . . -
le systeme S 4 AU, est égal a un vecteur unique U,; on est
alors conduit a ‘prendre les solutions communes aux équa-
tions

. : ' > o
V.U =0, vV-U,=20. , (5)

Les droites du couple I' qui rencontrent une droite A, ren-
contrent donc une deuxiéme droite A,. A, et A, sont dites
conjuguées.

L’égalité

- -

a g o %
S+U, =0, ou S=0U,—2\U (6)

. . i = \
montre qu'on peut réduire le systéeme S a deux vecteurs
- ->
(— AU, et U,) portés par deux droites conjuguées.

L’Enseignement mathém., 21 année; 1920
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15. On vérifie de méme que les droites communes a deux
complexes lindaires T et TV rencontrent deux droites fixes:
le systéme formé par les équations des deux complexes

-> >

-
V'S=0, VS =20, (7)
équivaut, en effet, aux deux équations
- - - 5
Vi(S4+3S)=0, V(S+1S)=0, (8)
A, et 4, étant racines de I’équation
- -
S+ 282 =0. (9)

16. Soient trois complexes lmealres I', I', T”, définis par
trois systémes de vecteurs S, b S”. Il existe une infinité

de systémes de la forme S + 1S’ 4+ 173" égaux a un vecteur
unique. La condition est, en effet,

, (S + NS FA"8"2 =0 , (10)

c’est-a-dire :

V2SS S g oareSe L — ¢ (11)
Si I'on prend trois solutions (X,, 1",; X,. _A}"g; X’i. )',) de

cette équation, on obtient ainsi trois systemes S 4+ }'S" -+ )" S

réduits respectivement 4 des vecteurs 61, U}, [_33. Les droites

communes aux trois complexes rencontrent les trois droites
supports de U,, U,, U,. Elles forment donc la moitié d’une

-+ -> -
quadrique. Les résultantes des systéemes S 4+ }'S’ 4 3”S”,
qui vérifient I’équation (11), forment Pautre moitié.

Une deuxiéme espéce de multiplication.

34 17. DEFINITION. ——J’appelle pro-
y y duit de deuueme espéce de deux
MA . ' vecteurs U et V _et je désigne par
7 R la notatlon U*V, le systeme de
0 vecteurs P défini de la maniére
i suivante :
A Son axe central est la perpen-

x dlculalre commune MN a U et V
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