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SUR LA THÉORIE DES VECTEURS

essai de calcul symbolique

PAR

Th. Rousseau1 (Dijon).

1. Notations. — Un vecteur sera représenté par la notation

Y ou Aß; sa mesure, avec une unité de longueur et

un sens positif choisi sur une parallèle, sera représentée

par V ou ÄB. Un système de vecteurs sera représenté par la

notation S.

A désignant un nombre positif ou négatif, je représenterai

par AV le vecteur ayant même origine que V ,jmême support,

et, pour mesure algébrique, le produit A X V.

V désignant un vecteur défini en grandeur, direction et

sens, mais d'origine indéterminée (on dit souvent vecteur

libre), je désignerai par VA celui de ces vecteurs qui a le

point A pour origine;
Le moment d'un vecteur Y par rapport à un point 0 sera

t -*

représenté par la notation M0V.

Le produit scalaire des deux vecteurs U et V (nombre

égal au produit UVcosa des grandeurs des deux vecteurs

par le cosinus de leur angle) sera représenté par la notation

U .V.
Le produit vectoriel de deux vecteurs U et V (vecteur libre

perpendiculaire à Û et à V, ayant pour grandeur UV sin

sera représenté par la notation Ü X V.

1 Th. Rousseau, professeur au Lycée de Dijon, tué à Avocourt le U avril 1916. Les éléments

de ces Notes ont été trouvés depuis dans ses papiers; H. Bkghin, professeur à l'Ecole
navale (Brest), les a rassemblés et rédigés. Th. Rousseau fut d'ailleurs, de son vivant, un
collaborateur de L'Enseignement mathématique (t. XI, 1909, pp. 81-97). — Rèd.
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t

2- Egalité. — Deux systèmes de vecteurs S et S' sont dits
égaux, s'ils ont même résultante générale et même moment
résultant en un point O : ils ont alors même moment résultant

en tout point de l'espace. J'écrirai

s s'

Un couple est formé de deux vecteurs parallèles et de sens
contraires ayant même grandeur. Deux couples sont égaux,
s ils ont même axe G. Je représenterai par la notation [G] un
couple ayant pour axe le vecteur G.

3. Addition. — Je désignerai par la notation S + S' le
système formé par les vecteurs du système S et ceux du
système^S'. Si le système S est formé de n vecteurs Yr
V2, v„, j écrirai, conformément à cette définition,

« \ \ ++ v„
Il est évident cjue si, dans une somme, on remplace un

terme par un terme égal (§ 2), on obtient une somme égale à
la primitive.

La définition est commutative et associative1.

Une première espèce de multiplication.

4. Définition. Rappelle produit de première espèce de
deux vecteurs Ü et V, et je représente par la notation

— —

u-v

le nombre algébrique, dont la valeur absolue mesure six
fois le volume du tétraèdre construit sur les deux vecteurs;
le signe est +, si les deux vecteurs ont le sens direct l'un
par rapport à l'autre; le signe est — dans le cas contraire.

J appelle produit de premiere espèce de deux systèmes de
vecteurs S et S' et je représente par

S-S'

1 II est évident que cette définition n'a rien de commun avec celle de la somme fréomé
trique. &
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la somme algébrique des produits de première espèce de

chacun des vecteurs Ud, U2, U« de S par chacun des

vecteurs V,, V2, Vp de S'1 :

Propriétés.
5. Dans un produit de première espèce, on peut remplacer

l'un des facteurs par un système égal. En effet, le transport
d'un vecteur U du système S en U' le long de son support
ne modifie évidemment pas la mesure du tétraèdre construit

sur ce vecteur et sur l'un quelconque V du système S'.

D'autre part, si l'on remplace deux vecteurs AU,, AU2 du

système S, ayant la même origine A, par leur somme
géométrique AU, les trois tétraèdres construits sur l'un
quelconque BV des vecteurs de S' et sur chacun des vecteurs

U,, U2, U ont même base ABV, la hauteur du troisième est
la somme algébrique des deux autres, d'où

> - > — >

AU,' Y + AU2- V AU • V

Ces opérations élémentaires ne modifiant pas la valeur du

produit S*S', la proposition est établie.
6. Le produit de première espèce est évidemment commu-

tatif:
-+ -f -+

S-b'= S'-S

7. Le produit de première espèce est distributifpar rapport

à l'addition (§ 2) :

— — -> - — -f •+

S-(S'+ S'7) S-S'+ s • s

(Le signe -(- du second membre est évidemment celui de

l'addition algébrique.)
On voit donc que les règles de calcul de ces produits de

première espèce sont celles des produits algébriques de
deux facteurs.

1 Ce produit de première espèce s'appelle généralement moment relatif des deux systèmes.
Il est commode de le considérer comme un produit.
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Applications.
8. Leproduit de deux vecteurs de même origine est nul.
9. Si deux vecteurs U et V ont respectivement pour

symétriques par rapport à un point ou à un plan deux vecteurs
U' et V, on a

U-Y — U'-v'
10. Le produit de deux couples est nul, car on peut donner

à ces deux couples le même centre de symétrie; la propriétérésulte alors du § 9.

il. Le produit cl'un vecteur AV
et d'un couple d'axe G est égal au
produit scalaire des deux vecteurs
V et G. Cette proposition est en
évidence si l'on donne à l'un des
vecteurs $, $' du couple le point
A comme origine. On a alors

Y-[G] r= Y-!'
On vérifie immédiatement sur la figure que le tétraèdre

construit sur Y et est mesuré parle produit scalaire V. G.
On a donc

Y* [G] Y. G

12. Produit de deux systèmes et S' en fonction de leurs
éléments de reduction R, G, 11', G' en un même point 0. On
a évidemment

S'S'= (R -f [G])-(R'+ [G']j.
— R-R' + R-[G'] + [G]-R' + [G]-[G7]

En utilisant les §§ 8, 10, 11, on en déduit

S-S'= R.G'-f R'.G

Si X, Y, Z, L, M, N et X', Y', L', M', N' sont les
coordonnées de S el S par rapport à trois axes rectangulaires
issus de 0, cette formule s'écrit

s-b'= LX' + MY' + NZ' + L'X + M'Y + N'Z
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13. Carré d'un système de vecteurs. On a, d après le § 12,

-f
S2 2R.G

On peut donc exprimer l'égalité d'un système de vecteurs
à un vecteur unique ou à un couple en annulant son carré.

Application aux complexes linéaires.
14. On sait qu'un complexe linéaire T peut s'identifier avec

la famille formée par les droites D de moment nul d'un

système de vecteurs S. Si donc V désigne un vecteur porté par
l'une de ces droites D, l'équation du complexe s'écrit

v-s 0 (1)

Les droites du complexe T qui rencontrent une droite Ai
s'obtiennent en prenant les solutions communes aux équations

Y'SrzO, V-V1 0 (2)

Ui désignant un vecteur porté par /Si.
L'une de ces équations peut se remplacer par une combinaison

des deux :

Y- S + XV-U, — 0 on V-(S + XUJ 0 (3)

Si je détermine À par la condition

(S 4- XUJ2 zz 0 c'est-à-dire S2 -f- 2X8*1^ 0 (4)

— -> t

le système S + 1 U., est égal à un vecteur unique U2 ; on est
alors conduit à prendre les solutions communes aux équations

V-Ö^ 0 v-u2 0 (5)

Les droites du couple T qui rencontrent une droite Ai
rencontrent donc une deuxième droite A2. A! et A2 sont dites
co njhg liées.

L'égalité
S + XU, U2 ou S u2 — XU, (6)

—

montre qu'on peut réduire le système S à deux vecteurs
(—XU4 et U2) portés par deux droites conjuguées.

L'Enseignement mathém., 21e année; 1920 9
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15. On vérifie de même que les droites communes à deux

complexes linéaires T et r' rencontrent deux droites fixes;
le système formé par le.s équations des deux complexes

V-3 0 V-S'= 0 (7)

équivaut, en effet, aux deux équations

V'(S + X,«') 0 Y-(S + 0 18)

X, et Xs étant racines de l'équation

(S -|- XS')2 0 (9)

16. Soient trois complexes linéaires r, T',T", définis par
trois systèmes de vecteurs S', S". Il existe une infinité
de systèmes de la forme S + X'S' + ~S" égaux à un vecteur
unique. La condition est, en effet,

(S + X'S'+X"S")2 0 (10)
c est-à-dire

X'2S'2 + 2X'X"S'-S" + X"2S"2 + 0 (11)

Si l'on prend trois solutions (a, X", ; X"3) de
cette équation, on obtient ainsi trois systèmes S + X'S' + / "S"
réduits respectivement à des vecteurs U,, Ua, U3. Les droites
communes aux trois complexes rencontrent les trois droites
supports de U,, U2, U3. Elles forment donc la moitié d'une
quadrique. Les résultantes des systèmes S + X'S' + X"S",
qui vérifient l'équation (11), forment l'autre moitié.

Une deuxième espèce de multiplication.

17. Définition. — J'appelle produit
de deuxième espèce de deux

vecteurs U et V, et je désigne par
la notation UXV, le système de

vecteurs P défini de la manière
suivante :

Son axe central est la
perpendiculaire commune MN à U et V.
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Sa résultante R est le produit vectoriel UXV; son moment

résultant ff porté par MN est le produit du vecteur MN par
le produit scalaire U.V.

K UxV ; n (U.V)MN

Je vais chercher les coordonnées de ce système P. Je place

U suivant 0z, et je suppose que Ox rencontre V en un point
A (OA a). Soient X, Y, Z, les projections de V sur les

axes.
Les coordonnées a, ß, y du point N sont définies par les

équations

a =: « -t" pX ß — pY y — P Z
> aX-f-ßY — 0;

d'où l'on tire

«Y2
0

XY — «XZ
ß — —

X2 + Y2 ' H ~ X2 + Y2 ' ' ~ X2 + Y2 '

On en déduit les six coordonnées du vecteur R et les trois

projections du moment II, d'où, pour le système P, après
réductions, les six coordonnées

— UY UX 0 aUZ ,0,0.
Etant donnés deux systèmes de vecteurs

S Uj -f- U2 -j- + Uw

s — X ^2 + • • • + »

j'appelle produit de deuxième espèce de ces deux systèmes,
et je désigne par la notation SXS' le système de vecteurs P

formé par tous les produits de deuxième espèce des vecteurs
-> i ->

U par les vecteurs V :

i— 1 j—\
Propriétés.
18. Dans un produit de deuxième espèce, on peut

remplacer un facteur par un système égal. En effet, le transport



124 TH. ROUSSEAU
du vecteur Vy en Vy le long* de son support ne change
évidemment pas la définition du produit UV* Vy. D'autre part, si
Ion remplace deux vecteurs A V4, ÂV2 du système S' de
même origine, parieur résultante ÂV, les coordonnées des
trois systèmes UXY1, UXV2, UXV par rapport aux axes
particuliers utilisés au § 17 sont respectivement de la forme

- UYj UX1 0

— uy2 ux2 0

-U(Y1 + Y2) U(X1 + X2)

On a donc évidemment

«UZX 0 0 ;

aUZ2 0 0 ;

0 '

«U(Zt + Z2) 0 0

U x Yj -j- U x V2 — U x V

La proposition en résulte.
19. Le produit de deuxième espèce est semi-commutatif :

S S' — S' S

20. Le produit de deuxième espèce est distributifpar
rapport à raddition :

Sx(S'-f S") — S*S'+ SX S"

Les règles de calcul sont donc celles des produits
algébriques de deux facteurs, sous la réserve de la semi-com-
mutativité.

Applications.
21. Il résulte de la semi-commutativité que le carré d'un

système de vecteurs est nul:

SxS=z — S x S =: 0

22. Produit d'un couple par un
vecteur. Soit G l'axe du couple, porté par
0z; je prends pour la perpendiculaire

commune à G et au vecteur donné
V ; je représente le couple par deux
vecteurs Ui et U2 parallèles à Oy, dans
le plan xOy (U4 issu de 0, Ûs issu de A
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origine de Y). Gela posé, on a

[G] * Y U,* V + Ü2G

Les deux produits Utx V et U2X V ontjnême axe central Ox-,

les résultantes générales, qui sont UlXV et U2xV, se

détruisent; il ne reste que le couple ayant pour axe (U.^.V)OA.

On reconnaît dans cet axe le produit vectoriel GXY. On a

donc
[G] x V rr [GxV] •

On aurait de même
Y*[G] [VxG]

Le produit d'un couple pcir un vecteur est donc un couple,

dont l'axe est le produit vectoriel cle l'axe du couple par le

vecteur.
23. Produit cle deux couples. Ce produit est nul, car de

l'égalité
[G'] % + V2

je déduis
[G]x[G'j [G]x^ + [G]x V2

Les deux couples du second membre ont une somme nulle

d'après le § 22.
24. Produit de deux systèmes en fonctions de leurs

éléments de réduction R, G, IV, G' en un point. On a

SX S' (K + [G])x(K'+ [G']) R*R' + RX[G'] + [G]XR''.

Le produit a pour résultante générale le produit vectoriel
RXR\ issu du point donné 0; le couple de réduction a pour
axe

(KxG') + (GxR')

25. Produit de deux systèmes en fonc-
don des éléments R, G, R', G de leurs
réductions canoniques. Soient A et A'

les axes centraux des deux systèmes
donnés S, S'; MN d leur plus courte
distance ; <p l'angle de R avec R', positif

si les deux vecteurs ont le sens direct
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l'un par rapport à l'autre, négatif dans le cas contraire. Je

pose
G ÄK ; G' h'W

Une rotation de 180° autour de MN change de sens les deux
systèmes S et S', donc ne change pas leur système produit;
MN est, par suite, l'axe central de ce système. D'ailleurs,
on a

8*8' RXR' + [Gx R'J + [KxG'J ;

la résultante générale est celle du produit RXR', soit RXR'
Le moment résultant, mesuré avec le sens positif MN, a pour
valeur

(R.R')d + (GR' + RG') sin «p

OU
RR' [d cos cp -j- (h -j- h') sin ©)

Pour que le produit SXS' de deux systèmes soit égal à zéro,
il faut et il suffit, ou bien que l'un des facteurs S ou S' soit
egal a zéro, ou que S et S aient même axe central, ou que S

et S' soient égaux à deux couples.
26. Exercice. — Un système S peut se réduire à deux

vecteurs Ut et U2. De l'égalité

8 Uj + U2

je déduis
3xö2 ij1x u2

puisque le carré d'un vecteur U2 est nul. En exprimant que
les deux produits SXU2 et LY U2 ont même axe central,
j'obtiens la propriété connue : La perpendiculaire commune à
U1 et à U2 rencontre a angle droit l'axe central du système
que forment ces deux vecteurs. En étudiant de plus près
l'égalité des deux produits SXÎJ2 et (J/ U2, on aurait des rela-

t — —

tions intéressantes entre \Ji et U2 d'une part, et, d'autre part,
les éléments R, G de la réduction canonique.

27. Exercice proposé. — Démontrer l'égalité

+ S'*(s^x 8) + s'qs^sq ~ o
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(On établira d'abord la propriété pour trois vecteurs de

même origine; il sera commode de décomposer 1 un des

deux vecteurs en deux vecteurs perpendiculaires, dont 1 un

soit perpendiculaire au plan des deux autres vecteurs donnés

; dans le cas de trois systèmes, on utilisera leurs

éléments de réduction en un même point.)

Vecteurs aires.

28. Soit A une aire plane limitée à un contour G orienté,

c'est-à-dire sur lequel un sens de parcours est choisi. Je

considère cette aire comme une grandeur géométrique que

j'appellerai vecteur-aire, et que je
désignerai par la notation A ; cette A

grandeur sera caractérisée par les

définitions de l'égalité et de

l'addition qui seront données plus
loin.

Je désigne par A un vecteur
linéaire perpendiculaire au plan P qui contient 1 aire, dirigé
dans un sens tel que le sens de parcours choisi le long de G

soit le sens de droite à gauche pour un observateur placé

suivant Â, et mesuré par le même nombre que l'aire A elle-

même.
S'il s'agit d'une aire polygonale abcd k, le vecteur

linéaire Ä est la moitié de l'axe du couple représenté par le

système de vecteurs ab, be, ccl, ka.
29. Moment d'un système de vecteurs-aires. — Etant

donné un vecteur-aire A et un point 0, je prends dans le

plan P du vecteur-aire un point I arbitraire; j'appelle
moment du vecteur-aire A par rapport au point 0 le produit

-¥

scalaire
Ml A 01. A

Ce produit est évidemment indépendant de la position du

point I dans le plan P.
Le moment d'un vecteur-aire est nul, si le point 0 est

dans le plan P du vecteur-aire.
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La somme algébrique des moments par rapport à un pointO des vecteurs-aires d'un système S est le du sys-

teme S par rapport au point O.
30. Egalité. — On dit que deux systèmes S et S' de

vecteurs-aires soni égaux, si les vecteurs linéaires 2S, Ân
et B4, B,, Bp, correspondant aux vecteurs-aires de chacun

d eux ont même résultante générale, et si, d'autre part,les deux systèmes ont même moment en un point O.
Justification : Si les deux systèmes ont même moment en

un point O, ils ont même moment en tout autre point O'; on
a, en effet, pour l'un des vecteurs-aires,

Ö'I.A-ÖI.A^Ö'O.A
et, pour le système donné S,

-f

M'0,S—
1=1

Ce second membre est le produit scalaire de Ö'O par la
résultante générale des vecteurs linéaires A4, A2, Aw.
Cette résultante étant la même pour les systèmes S et S',
on voit que la définition de l'égalité est bien indépendante
du point O.

31. Addition. —Je désigne par S + S' le système formé
pai vecteurs-aires du système S et ceux du système S'.
On peut écrire, conformément à celte définition,

^ — A + A2 -f- -f- An

s* " ' sont les vecteurs-aires qui constituent le
système S.

Applications.
32. Egalité de deux vecteurs-aires. — Deux vecteurs-aires

sont égaux, s'ils ont même plan, même orientation dans ce
plan et si leur aire est mesurée par le même nombre. Cette
proposition résulte immédiatement du § 30, si l'on choisit le
point O dans le plan de Tun des vecteurs-aires.

33. Un vecteur-aire A est égal à la somme A1 -f A2 de deux
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vecteurs-aires, si le plan P de A passe par 1 intersection des

plans P4 et P2 des vecteurs-aires Aj el A2, et si, en outre, le

vecteur linéaire Â est la somme géométrique des vecteurs

linéaires Â4 et Â2. Cette proposition est évidente, si Ton

choisit le point 0 (§ 30) sur l'intersection des plans Pi et P2.

Ceci suppose que les plans P4 P2 ne sont pas parallèles.
S'ils sont parallèles, les vecteurs-aires A, et Ag forment un

système égal à un seul vecteur-aire A, dont le plan P est

parallèle à P4 et P2 et divise une perpendiculaire I412 à ces

plans dans le rapport défini par

nt xÂ, + ll2 x Ä 0

Le vecteur linéaire A est, ici encore, la somme géométrique

des vecteurs Â, et Â2. Il suffit, pour établir ces

propriétés, d'exprimer au point I l'égalité des deux systèmes

(At, A2) et A.
~~34T Si les"*deux aires A4 et A2 sont situées dans deux plans

parallèles, ont même mesure, et des sens opposés, les

vecteurs-aires correspondants forment un couple de vecteurs-

aires; il n'existe aucun vecteur-aire égal à un couple. Le

moment d'un couple par rapport à un point 0 est le même

dans tout l'espace. Un déplacement quelconque effectué sur
un couple donne un couple égal.

35. Réduction d'un système de vecteurs-aires. — Un

système de vecteurs-cdres S est égal à un vecteur-aire unique,
ou, exceptionnellement, a un couple. Si, en effet, la résultante

générale des vecteurs linéaires A4, Â2, Atl n'est

pas nulle, il est facile de construire un vecteur-aire A ayant
même moment que le système S en un point 0, et tel que le

vecteur linéaire A soit cette résultante générale.
Si cette résultante générale est nulle, on peut construire

un couple égal au système donné.
36. Notion de volume. — Soit un polyèdre fermé, limitant

une portion E d'espace. Sur le contour de chaque face,

je choisis, comme sens de parcours, le sens contraire des

aiguilles d'une montre, pour un observateur placé à l'exté-
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rieur du polyèdre. Les différentes faces du polyèdre constituent,

ainsi orientées, un système de vecteurs-aires S.
Ce système S est égal à un couple de vecteurs-aires. En

effet, les vecteurs linéaires A1, A2, An correspondant à

ces vecteurs-aires représentent, au fadeur 2 près (§ 28), les
axes des couples constitués par les vecteurs ab\ bc, cd,

qui limitent chaque face. Ces couples
forment un système égal à zéro, car les
vecteurs dont ils sont formés sont deux
à deux égaux et directement opposés (ab
et ba, bc et cb, ...); la somme géométrique
des vecteurs linéaires Â4, Â2 An étant
nulle, le système S est bien égala un couple.

Cela posé, on dit que les volumes de deux polyèdres sont
égaux, si les couples de vecteurs-aires constituéspar les faces
cle ces deux polyèdres sont égaux.

Le volume d un polyèdre E est la somme des volumes de
deux polyèdres E4 et E2, si le couple de vecteurs-aires constitué

par les faces de E est égal à la somme des couples de
vecteurs-aires constitués par les faces de Ei et de Es.

Le polyèdre constitué par la juxtaposition de deux polyèdres
E4 et E2, avec suppression de la cloison qui les sépare, a

pour volume la somme des volumes des polyèdres E4 et E2.
En efïet, le système de vecteurs-aires formé par les faces de
E4 et de E2 n'est pas altéré par la suppression de cette cloison

qui figure deux fois dans ce système avec des orientations

opposées.
La grandeur volume d'un polyèdre E est ainsi parfaitement

définie; le moment du couple S de vecteurs-aires formé par
les faces de ce polyèdre est constant dans tout l'espace. La
valeur de cette constante est une mesure directe de ce
volume; car, à des volumes égaux correspondent des moments
égaux; et, d'autre part, si un volume est la somme de deux
autres, le moment correspondant au premier est la somme
des moments correspondant aux deux autres. Tout autre
nombre proportionnel à ce moment est aussi une mesure
directe.

Si on prend comme volume-unité celui du cube construit
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sur l'unité de longueur, le moment de ses faces est 3, comme

on le vérifie immédiatement en prenant ce moment en 1 un

des sommets. Il en résulte que le volume d'un polyèdre

quelconque est mesuré, avec cette unité, par le tiers du

moment du système de vecteurs-aires formé par ses faces.

On conçoit facilement que cette théorie peut s étendre à

des volumes de forme quelconque.

CALCUL DES RACINES RÉELLES

D'UNE ÉQUATION ALGÉBRIQUE ou TRANSCENDANTE

PAR APPROXIMATIONS SUCCESSIVES

PAR

Mladen-T. Béritch (Belgrade).

Le procédé par approximations successives appliqué à

l'extraction de la nme racine d'un nombre réel et indiqué dans

une Note précédente1 peut être, sous certaines conditions,
généralisé et appliqué au calcul des racines réelles d une

équation algébrique ou transcendante.

Soit/^r) 0 l'équation donnée, algébrique ou transcendante,

dont on cherche une racine réelle simple, que nous

désignerons par a. Considérons deux fonctions :

- / »
f(x) i /'"N r/'NT + ytn \ <*-

/*N

(Ces deux fonctions se réduisent aux fonctions y{x) et ty(x)
de la Note citée en remplaçant f{x) par tn — A.)

Supposons que la racine cherchée a soit dans un intervalle
(m, M) dans lequel : 1° la fonction f(pc) n'a pas de singularités ;

1 M.-T. Bbritch, Enseign. mathèm., T. XX, 1918, p. 194-198,
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