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SUR L'ELIMINATION ALGEBRIQUE

PAR -

Ch. RIQUIEﬁ (Caen).

DeuxigmME PARTIE L

Conditions pour que n équations algébriques a l'inconnue x
admettent quelque racine commune.

1. — Nous commencerons par établir deux lemmes.
LEMME PREMIER. Considérons les n équations algébrigues,
a l'tnconnue X,

Alg) =A,x% + A2+ . 4+ A,_x+A,=0,
B(x) = Bya® + B2’ + ... 4+ B,_jx +B, =0,
Clx) = Cya® + C,a“' + ... +C,_,x+C, =0, (14)

Lix) =Lya*+ L2 + ...+ Lo+ L, =0,

dont les degrés (apparents), a, b, c, ..., 1, sont tous supé-
rieurs « zéro; on notera, au sujet de I'écriture adoptée pour
ces équations, que, dans le terme général de chacune d’elles,
I'indice du coefficient et I'exposant de x ont pour somme le
degré (apparent) de ’équation. Supposons maintenant gue
Pune au moins d’entre elles, par exemple la premicre,
A(x) =0, r'ait pas tous ses coefficients nuls; puis formons,
avec les n — 1 derniéres, la combinaison
AB(x) + pC(x) + ... + oL(x) =0,

ou -

Ao, o, o (15)

désignent n — 1 indéterminées.

1 Voir L’Enseign. mathém., t. XX, ne 6, p. 405-421.
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Cela étant, pour que les n équations (14) admettent quelque
racine commune, il faut et il suffit que, pour toutes valeurs
des indéterminées (15), les deux équations

Alx) =0 ,

(16)
AB(x) + pClx) + ... + wL(x) =0

admeltent quelque racine commune.

La condition est évidemment nécessaire, et nous avons 2
_ prouver qu’elle est suffisante.

[. Considérons un polynéme entier dépendant de va-
riables u, ¢, ... en nombre quelconque, et, dans les plans de
notation graphique de ces variables, décrivons, autour des
valeurs particuliéres w,, ¢,, ..., prises comme centres, un
systeme de cercles. Quelque petits que U'on suppose ces cercles,
pour que, a leur intérieur, le polynéme prenne la valeur
zéro indépendamment des valeurs attribuées aux variables
u, v, ..., i faut et il suffit que ses coefficients soient tous nuls.

La condition formulée est évidemment suffisante, et il nous
reste a4 établir qu’elle est nécessaire.

Or, elle I'est évidemment quand il s’agit d’'un polynéme
entier a une seule variable: car, si le polynéme n’avait pas
tous ses coeflicients nuls, il ne pourrait prendre la valeur
zéro que pour un nombre essentiellement limité de valeurs
de cette variable (n° 1). Il suffit alors de prouver que si la
condition formulée est nécessaire dans le cas d’un polynéme
entier & ¢ — 1 variables, elle I'est encore dans le cas d’un
polynome entier, F(u, v, ...), dépendant des ¢ variables
Uy 0y ...

A cet effet, ordonnons le polynéme F(u, ¢, ...) par rap-
port a u, et mettons-le sous la forme

fovs o) + filv, w4 fi(v, a4 .., (17)
ou '
Llvy s filv, o)y fylv, o), o (18)

sont des polynomes entiers (en nombre limité) dépendant
des ¢ — 1 variables ¢, ... Si, a l'intérieur du systeme de
cercles considéré, on attribue a ¢, ... un systéme déterminé
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de valeurs particuliéres, I'expression (17) s’évanouit quel que
soit u, et I'on a dés lors

v, .)=0, filv,.)=0, folv,...)=0, ..

Mais, les valeurs particuliéres que nous venons d’attri-

buer a ¢, ... étant, dans les limites imposées, complétement.

arbitraires, il résulte de ce qui est admis sur les polynémes
entiers & ¢ — 1 variables que les coefficients des divers poly-
nomes (18) sont tous nuls, et, par suite, ceux du polynéme
Flu,v,...).

II. Etant donné un nombre quelconque de polyndémes en-
tiers, dépendant d’un nombre quelconque de variables, et
dont aucun n’a tous ses coefficients nuls, il existe quelque
systéme de valeurs de ces variables n’annulant aucun des
polynémes. .

A. Lorsqu’un polynéme entier, F(u, v, ...), @ un nombre
quelconque de variables, prend une valeur différente de zéro
pour un systéme déterminé, (uy, vy, ...), de valeurs particu-
liéres de ces variables, il reste différent de zéro pour toutes
valeurs de a, v, ... suffisamment voisines de uy, v, ...

Effectivement, si I'on désigne par M, le module (non nul)
de F(u,, ¢y, -..), et par u une quantité positive (> 0) choisie
comme on voudra au dessous de M, il résulte de la conti-
nuité de F(u, 0, ,-.) que, pour toutes valeurs de u, ¢, ... suf-
fisamment voisines de u,, ¢,, ... , on-aura

mod [F(u, v, ..) — Flu,, vy, ....)] <M, — p .
et a plus forte raison

M, —mod F(u, v, ..)< My — @
c’est-a-dire
mod F(u, v, ...) > u .

B. Revenons a 1'énoncé formulé au début du présent
alinéa II.

Lorsque le nombre des polynémes se réduit a 1, la pro-
priété qu’il s’agit d’établir résulte immédiatement de P’ali-
néa I; pour prouver qu'elle est générale, il suffit donc de

v e gy
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montrer qu'en la supposant vraie pour p — 1 polynémes,
elle I'est nécessairement aussi pour les p polynémes

Qu, v, ..), ..o, R(u,v,...), S(u,v,..),

dépendant de variables u, ¢, ... en nombre quelconque. Or,
aucun de ces p polynomes, et, notamment, des p — 1 pre-
‘miers, n’ayant, par hypothése, tous ses coefficients nuls, on
peut, en vertu de ce qui est admis, assigner quelque systéme
de valeurs, (u,, ¢, ...), tel que les p — 1 polynémes

Qu, v, ...}, ..., R(u, v, ..)

soient tous différents de zéro pour

U, v, ...==u,, v

0’ g " 0

et parsuite (lemme 4) pour toutes valeurs de u, ¢, ... suffisam-
ment voisines de u,, ¢y, ... Cela étant, si 'on a S(u,, ¢,, ...)
# 0, le systéme de valeurs (u,, ¢,, ...) satisfait & toutes les
conditions requises. Sil'on a au contraire S(x,, ¢,, ...) =0,
il existe certainement, dans un voisinage aussi rapproché
qu'on le voudra de (u,, ¢,, ...), et par suite dans un domaine
ou aucun des p — 1 premiers polynémes ne peut s’annuler,
quelque systéme de valeurs, (u,, ¢, ...), n'annulant pas
S(u, ¢, ...): car, sinon, le polynéme S(u, ¢, ...) aurait, en
vertu de I, tous ses coeflicients nuls, ce qui est contraire a
I’hypothése; pour les valeurs u,, ¢,, ..., on aura donc a la
fois
Quy, vy, ...) 20, ..., Ruy, vy, ) 520, S(uy, v, ...) %20 .

II. Il existe, pour les n — 1 indéterminées (15), une infi-
nité de systéemes de valeurs,

4 /7 4

) N
[/

L T S

mo . m m

Mo, W,

(19)

)

tels que, dans le tableau (19), qui contient n — 1 colonnes et
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une infinité de lignes, n — 1 lignes arbitrairement choisies
forment un déterminant différent de zéro.

Effeclivement, 4 une premiére ligne, 2, p', ..., w, com-
posée de n—1 éléments arbitrairement choisis sous la
seule restriction de n’étre pas tous nuls, on peut, par 'ap-
plication de l'alinéa 11 & un polynome linéaire et homogene
dépendant de deux variables, adjoindre une deuxieme ligne,
2w, ..., @, telle que le tableau résuvltant,

’ ’
)\,{J.,.-.,(,L),

an—1 colonnes et deux lignes, contienne quelque déter-
minant du second ordre différent de zéro; puis, par l'appli-
cation de l'alinéa II a un polyndme linéaire et homogene
dépendant de trois variables, adjoindre & ce dernier tableau
une troisiéme ligne, 2", ", ..., ", telle que le tableau résul-
tant,

4 4 /’
PRI , 0,
)\H n n

J " ? ] w )

)\//I i/ 1/

a n — 1 colonnes et trois lignes, contienne quelque déter-
minant du troisieme ordre différent de zéro; et ainsi jusqu’a
ce que, par l'application de I’alinéa IT 2 un polynéme linéaire
et homogéne dépendant de n — 1 variables, on ait obtenu
un tableau carré,

’ }
o , o, |
- - (20)
a2 (n—2) N o B
1) i) )

3 e s e ’

formant un déterminant d’ordre n — 1 différent de zéro: il
est alors manifeste que, dans le tableau (20), toute associa-
tion de n —2 lignes contient quelque déterminant d’ordre
n — 2 différent de zéro.

Cela étant, on pourra, par 'application de I'alinéa II a plu-

sieurs polynémes linéaires et homogénes dépendant de

L’Enseignement mathém., 21¢ année; 1920. 7
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n — 1 variables, adjoindre au tableau (20) une ligne,

I I T
telle que, dans le tableau résultant, |
Mow o , \\1
Ao oo’ |
A2 e ey 121)
A1) , p‘(”——l) y e w1 ,
s(m) () ()

....... y ’

-

a n—1 colonnes et n lignes, toute association de n — 1
lignes forme un déterminant différent de zéro: il est alors
manifeste que, dans le tableau (21), toute association de
n —2 lignes contient quelque déterminant d’ordre 5 — 2
différent de zéro. _

Par une nouvelle application de I'alinéa 11 a plusieurs poly-
nomes linéaires et homogeénes dépendant de n — 1 variables,
on pourra maintenant adjoindre au tableau (21) une ligne,

)\(ll-f—l) , P'(,l+1) o w(n-{-’l)

’

telle que, dans le tableau résultant,

)\, EJ-,. .......... , (L), 3

Mo oo, "

(=2 (n—2) . o2 (22)
1(/1—1) (n—1) w1

A p.("), ....... , wl ,

)\(n—{-l)’ ‘U'(n—}-l), . 00(n--}—l) ,

. b

a n—1 colonnesetn + 1 lignes, toute association de n — 1
lignes forme un déterminart d’ordre n — 1 différent de Zéro:
il est alors manifeste que, dans le tableau (22), toute asso-
ciation de n — 2 lignes contient quelque déterminant d’ordre
n — 2 différent de zéro.

Par une nouvelle application de ’alinéa 11, on pourra de
méme, etc. '
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Ce mode de raisonnement peut, comme on le voit, étre
indéfiniment poursuivi.

[V. Revenons i notre énoncé général, et supposons que,
pour toutes valeurs des n— 1 indéterminées (15), les deux
équations (16) admettent quelque racine commune: il s’agit
d’établir que les n équations (14) admettent nécessairement
quelque racine commune.

En effet, puisque, pour toutes valeurs de 2, p, ... . o les
deux équations (16) admettent quelque racine commune, et
que, d’autre part, I'équation A(zx) =0 n'a pas tous ses coef-
ficients nuls, cette derniére admet un nombre, m, de racines
distinctes supérieur a zéro et au plus égalaa, etcesm racines
sont, naturellemeht, indépendantes des valeurs attribuées
aux indéterminées (15). Si, dans le tableau illimité (19), on
considere (n —2)m 4+ 1 lignes quelconques, par exemple
les (n — 2)m + 1 premiéres, il y aura, pour chacun des
(n — 2)m + 1 couples d’équations

Ax)=0, l'B(x)—}—pr(x}—{—...—}—w'[;(ﬂc):O ; '
Alx)=0, VB(x) 4+ "Clx) + ... + o' L{x) =0 ;

A(.’L‘) =0, )\[(iz—ﬁ)m—l—l] B (g(,) + \u[(n—-?,)m-{—l'] Cla) + ...
L, w[(n—.‘z)m—{—l] L{x) =0, |

quelque racine commune aux deux équations du couple.
D'ailleurs, 'équation A(x) = ayant exactement m racines
distinctes, il y aura, parmi ces (n — 2)m + 1 couples d’équa-
tions, n— 1 couples au moins pour lesquels la racine com-
mune coincidera avec une méme racine, x =&, de I'équa-
tion A(x)=0; en désignant donc par

A e 04
Ay P Wq
xn——l P‘n—l v w/z—1

un certain déterminant d’ordre n — 1 extrait du tableau (19),
par suite différent de zéro, et par Q,(x), Qq(x), ..., Qu—a(2)
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certains polynémes enliers en x, on aura les n — 1 1identités

ABlx) 4+ p, Clx) + ... .. + o, L{x) = (x — £)Q, (x) ,
MNB(x) + p,Ca) + ..o ... + w,L{x) = (x — £)Q,(x) ,

bt B®) A+ p Cla) + o+ 0, L) = (2 — 5)Q,_, (2) .

Or, la résolution de ces identités, effectuée conformément
a 'algorithme de Cramer par rapport aux n — 1 polynomes
B(x), C(x), ..., L(x), montre que ces derniers sont tous divi-
sibles par & — &; il en résulte, ainsi que nous l'avions an-
noncé, que les n équations (14) admettent quelque racine
commune. :

8. — LEMME sEconDp. Soient

Hoa" + H "' ¢ - H, x4+ H, =0, )

Koo + K"+ 4K, e+ K, =0, (23)

des équations algébriques a U'inconnue x, en nombre limité,
et dont les degrés (apparents) respectifs, h, k, ..., sont tous
supérieurs a zéro; on suppose que, dans quelgu’une d’entre
elles, par exemple dans la premiére, le degré apparent est
ausst le degré effectif, c’est-a-dire que le coeflicient H, est
différent de zéro.

Cela étant, pour que les équations (23) admettent quelque
racine commaune, il faut et il suffit que ces équations, mises,
comme il suit, sous forme homogéne,

Hya" + H 2"y + . 4+ H,_ o 4 Hy"=0,

Koot + K oy + . 4+ K, o + K 0% =0, (24)

admettent quelque racine commune.

Effectivement, si les équations (23) admettent la racine
commune x = £, les équations (24) sont manifestement véri-
fiées pour x* =¢, y = 1, et admettent dés lors la racine
commune (x, y) = (£. 1).

Inversement, supposons que les équations (24) admettent
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la racine commune (x, y) = (&', ¥), ou x, y' désignent des
valeurs numériques non a la fois nulles. On voit tout d’abord
que la valeur numérique y' ne peut étre nulle : car, si elle
I’était, «" serait différent de zéro, et la premiére équation
(24) donnerait Hyx™ =0, ce qui est impossible a cause de
H, == 0. Notre hypothése relative aux équations (24) et a leur
racine commune peut douc se formuler en disant que ces

’
equatlons sont toutes vérifiées pour X — —, Y = 1, ce qul
. ’)‘

revient a dire que les équations (23) sont toutes vérifiées

x’

pour £ ==;.
J

9 — Considérons maintenant n équations algébriques a
Pinconnue x, par exemple les n équations (14), dont les
degrés (apparents) respectifs, a, b, ..., 1, sotent tous supé-
rieurs & zéro, et proposons-nous de rechercher les condi-
tions nécessaires et suffisantes pour que ces n équations
admettent quelque racine commune. Dans cette recherche,
nous examinerons d’abord le cas de deux équations; nous
ferons voir ensuite que le cas de n équatioris (n > 2) se
ramene a celui de n— 1 équations.

I. Pour que Uéquation algébrique a I’tnconnue X,

Alx) = A, z® + A 2"+ A L+ A+ A=0

dont le degré (apparent) a est supérieur a zéro, admette
quelque racine, il faut et il suffit :

Ou bien que ses coefficients solent tous nuls;

Ou bien que Uon ait Ay 54 0;

Ou bien que Uon ait Ay=0, A, 70 |

Ou bien que Uon ait A, =0, Ay = 0, A,==0; Etc.;

Ou bien, enfin, que Uon ait A, =70, A, =0. A, =0, ...
Aa—2 — 0, Ag1 &£ 0.

Par exemple : Pour que I'équation

Aga? + Ax 4 Ay = 0

admette quelque racine, il faut et il suffit: ou bien que ses
coefficients, A,, A,, A,, soient tous nuls; ou bien que I'on
ait A, == 0; ou bien, enfin, que 1'on ait A, =0, A, =0.

Pour que 1’équation

Agx® + Ajx? + Ayx + A, =0
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admette quelque racine, il faut et il suflit: ou bien que ses
‘coeflicients, A;, A,, A,, Ay, soient tous nuls; ou bien que
Pon ait Ay == 0: ou bien que l'on ait A, = 0, A, =% 0: ou
bien, enfin, que I'on ait Ay=0. A, =0, A, =2 0.

II. Pour que les deux équations algébriques a Uinconnue x,

Alr) = Aga® + A 2% Ay A2+ A, =0,
Blx) = Bya’ + B,a®~1 4 B2t 4 4 B, x4+ B, =0,

dont les degrés (apparents) a, b sont tous deusx supérieurs a
zéro, admettent quelque racine commune, il faut et il suffit :
Ou bien que, la premicre ayant tous ses coefficients nuls,
la deuxi¢cme admette quelque racine (I);
Ou bien que Uon ait Ay 20, et que les deux formes binaires

Agx® + A 2%y 4 Agxy A, o4 Ay, )

B, x? + B, ‘x{)_1.7' + B, xb—?),z + .0+ B, 'Tyb_l =+ Bb.“b

atent un résultant nul;
Ou bien que l'on ait No=0, A 320, et que les deux
formes binaires

A%t Ayx® 2y 4 A, xoy" % 4 Ayt

Boxb + Blfl«'b—“')' + B2.'L'[)—29"2 + L + ]3\5-1 x,) b—1 + Bbﬂb

atent un résultant nul;
Ou bien que lon ait Ay =0, A, =0, A, ==~ 0, et que les
deux formes binaires

-9 -3 B
Ay |, + A, xy® " - Aag‘a ,

Boxb + Blrl'b——l)' + B2xb—-3).2 + L _+_ Bb__’l xj'b—l _,__ B[)yb

atent un résultant nul ; — Ete. ;
Ou bien, enfin, que lon ait A, = 0, Ay=0, A, =0, ...,
Aoz =10, Aey 52 0. et que les deux formes binaires

Au-1 X + Aa?‘ ?

Boxb + B, xﬁ*l}‘ 4 B, .xb_23‘2 + ...+ By, “'i)‘b—l + Bbyb

|
atent un résultant nul.

Le simple rapprochement des n* 8 (Lrmwue SECOND) et 3
suffit a metire en évidence l'exactitude de cet enonceé.
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[II. Supposons actuellement quelconque (> 2), et cher-
chons les conditions nécessaires et suflisantes pour que les
n équations (14) admettent quelque racine commune.

Notre proposition du n°® T (LEMME PREMIER) entraine tout
d’abord la conséquence suivante: |

Pour que les n équations (14) [dont les degrés apparents
a, b, ..., 1 sont supérieurs a zero] admettent quelque racine
commune, il faut et il suffit: -

Ou bien que, la premiére, A(X) = 0, ayant tous ses coeffi-
cients nuls, les n — 1 équations restanles,

B(x) =0, Clx)=0, ... , Lz =10,

admettent quelque ractne commune; |
Ou bien que, la premiére n’ayant pas lous ses coefficients
nuls, les deux équations
’ Alx) =0,

| (25)
\B(a) + pCla) + ... + oLz =0

admettent, pour toutes valeurs de k. p, ..., o, quelque racine
commune. ' '

Cela étant, désignons par W(x. ¥y, &, p. - w) ce que
devient le premier membre,

AB(x) + uCx) + ... + olx),
de la derniére équation écrite, lorsqu’on lui donne la forme
homogéne par lintroduction d’une variable auxiliaire y;
autrement dit, et en supposant, ce qui est évidemment per-
mis, que le degré b me soit inférieur a aucun des degrés

¢, ..., L, posons
' qu'(:)c,.)',)\,p.,...,m):

e X[Boxb —+ Bl:)cb“ly + ... + B, xyb—1 + Bbyb]

+ {J, [Cox()j,b'—() + Cl '%_(‘-——1 yb—C"l”l + . + (:C—--1 x‘)b‘—'i + Cc:)/-b]

_‘._

- w[Loxl_y'b——l + L, 2t yb_lH + ... ‘—}— L, 4 xyb_l -+ Llyb] )

En vertu de l'alinéa précédent, LI, pour que, Uéquation
A(x)=0 nayant pas tous ses coefficients nuls, les deux

e e e e oo e e e e e 2
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équations (25) admettent, pour toutes valeurs de . p, ... . w,
quelque racine commune, il faut et il suffit: |

Ou bien que Uon ait Ay~ 0, et que le résultant des deux
~ formes

Mg + A"y 4 Apa®Thyt 4 LA T AT

Wix,y, A, pov ooy 0),

aux indéterminées X, y, qui est lui-méme une forme de degré
a aur n — 1 indéterminées . u, ..., », s'annule pour toutes
valeurs de ces derniéres, c’est-a-dire (n° 7, I) ait tous ses
coefficients nuls;

Ou bien que Uon ait Ay—= 0, A, =0, et que le résultant
des deux formes

A A"y L+ A, ™ 4 Aay“"’ :

Wix, », i, b, ..., 0,

aux indéterminées x, y, qui est lui-méme une forme de degré
a—1lenk y, ..., w, ait tous ses coefficients nuls;

Ou bien que lon ait Ay =0, A, =0, Ay==0, el que le
résultant des deux formes

Azxa—2 _|_ . _I__ Aa—ixy,a——ﬁ + Aa:)_a—z ,

Wix, y, Ay g, ..., ),
aux indéterminées x,y, qui est lut-méme une forme de degré
a—2en ki u, ..., 0, alt tous ses coefficients nuls; — Eltc.;
Ou bien, enfin, que Uon ait Ay =0, A, =0, A, =0, ...,
Ap =0, Au_1 £ 0. et que le résultant des deux formes
A, x4+ Ay,
W, y, A, £, vv., 0)

aux indéterminées x, y, qui est lui-méme une forme linéaire
en A, u, ..., », it tous ses coefficients nuls.

La recherche des conditions nécessaires et suffisantes pour
I'existence de quelque racine commune a n équations données
se rameéne donc bien, comme nous l’avions annoncé, a une
recherche semblable effectuée dans le cas de n —1 équa-
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tions: et, comme elle a été résolue plus haut (II) pour le cas
de deux équations, elle pourra l'étre, de proche en proche,
pour des équations en nombre quelconque.

10. — II nous reste a établir une intéressante propriété
des relations obtenues par I'élimination de x entre les n équa-
tions (14); ces relations sont, comme nous allons le voir:
1° homogénes par rapport aux coefficients de chacune des n
équations (14), envisagée séparément; 2° isobares par rap-
port a Uensemble des coefficients de ces n équations, c ‘est-a-
dire qu’en adoptant pour ces équations 'écriture spécifiée
au début du n° 7, la somme des indices des divers facteurs
A. B, C, ..., L, évaluée tour a tour dans les divers termes
d’une relation déterminée provenant de I’élimination, garde
une valeur constante. |

Lorsqu'on suppose n = 2, cette propriété s'apercoit sans
peine: il suffit, en pareil cas, pour se convaincre de son
exactitude, de se reporter, d'une part, & nos énonces des

4 et 5, d’autre part, a l'alinéa Il du numero précé-
dent 9. Pour I'étendre au cas général ou n est quelconque,
nous avons donc a prouver qu'en la supposant vraie dans le
cas de n — 1 équations, elle I'est nécessairement encore dans
le cas des n équations (14). Finalement, si I'on se reporte a
’alinéa III du n° 9, dont nous adopterons les notations, on se
trouve ramené a prouver successivement : _

1° Qu’en ordonnant par rapport a A u, .... o le résultant
des deux formes |

Ajx® + Aa®ty + Ax® 292 LA, % Ay,
W‘(x,j‘, )k, U5 v wn 3 (u) .

i

(26)

tous les coefficients de 'expression obtenue jouissent de la
double propriété dont il s’agit; ,

2° Qu’en ordonnant par rapport a i, m, ..., w le résultant
des deux formes

A ATy L A T 4 AT
ia, g, %, g oes 0],
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tous les coeflicients de l'expression obtenue en jouissent
également;

3° Qu’en ordonnant par rapport a }, %, ..., » le résultant
des'deux formes |

A2xa—-2 4+ ... + Aa_l x‘).a——?) _I__ A-a,ya_Q ’ g
Wix, y« A, oo ..., ©),

(28)

tous les coeflicients de I'expression obtenue en jouissent a
leur tour; — Etec.

Nous nous bornerons a exposer cette démonstration pour
1° et 2°, et le lecteur en apercevra sans peine la généralité.

I. Considérant actuellement les deux formes (26), nous
adopterons pour la deuxiéme, ¥(r, y, }, u, ..., »), le chan-
gement de notations suivant. Le degré b étant supposé,
comme a l'alinéa III du n° 9, n’étre inférieur 4 aucun des
degrés c, ..., [ (ce qui est évidemment permis), nous dési-
gnerons provisoirement les coefficients |

CO' Cl’ s hm 8 Cc-—l’ CC y
I./O 0 IJl - “ e sy L[—l ) IJ[
par les notations respectives
7 ’? !’ ’
Coer Cpoqr- o5 Gy Gy,
’ ¥ ’ 7
Ly_yo Ly ooon Ly Ly

ou les indices des coeflicients C se trouvent tous augmentés
d’'un méme entier, b — ¢, etc., ..., ceux des coefficients L
d’'un méme entier, 6 — . Alors l'écriture de la forme
VY, ¥, A p ..., w) devient “

Y(x, y, A, o, ..., 0) =

= 1[By2" + B2"'y + ... + B,_ 0’ + By’

+ H[C;,__Cxc)’b—c 4 Cfb_c+1xc—1 ).b—c-{—l o+ C,b—l x‘)-b—l 4+ C'b),.b]
4+ w[L;_lxlyb_‘ + L,b—-l-[—l xl—lyb—l—}-l + ..+ L,b_-1x3‘b—l + L'b?”b] ,
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et Uon voit que l'indice de la letire B, ou C', ..., ou L' qui
figure maintenant dans chaque terme se trouve étre égal a
I’exposant de la puissance de y dans le méme terme. Si donc
on ordonne par rapport & x et y laforme Y (x, ¥, A, prs -+ ®)s
il suit de ce que nous avons vu au n° 4 que le résultant des
deux formes

— , 9 ) a—1 a
ona -+ Al x? lj‘ == A2xa )'2 1~ x ux = Aa—la:)a + Aa‘) ’

Y(x, yo h, b oons w)

est: 1° homogéne par rapport aux quantités

A, A A

0o’ "1

sr s A Ay (29)

O I‘ %7 4 > L 1
2 homogene par r’appmt aux expnessmns

\

2B, + uCh4 ... + ol .

2B, + pCy+ ... + ol

AB, 4 gC’b—}— —Jr-U)LIb',

3° isobare par rapport a I'ensemble des quantités (29) et des
expressions (30), celles-ci, (30), étant mentalement allectées:
la premiere, de l'indice zéro, commun aux quantités B,,
Cys ... s Ly, quiy figurent; la deuxiéme, de l'indice'l, com-
mun aux quantités B,, C',, ... . L';: elc.; la derniére de 'in-
dice b, commun aux quantités B,, C', ..., L's.

Si I'on ordonne maintenant ce résultant par rapport a
Aty -y @, 1l est aisé de voir que chacun des coeflicients
sera: 1° homogeéne par rapport aux quantités figurant dans
une seule quelconque des lignes du tableau

AO’AJ’A2’ ‘Aa—’l‘Aa’
B,. B,, B,. . B,_,. B, .
Co, Ci, Cy, of ’




100 CH. RIQUIER

2° isobare par rapport a 'ensemble des quantités figurant
dans ce tableau.

Finalement, si 'on revient aux notations primitives en
remplacant les lettres C', ..., L’ par leurs valeurs en fone-
tion des lettres C, ..., L, chacun des coeflicients que nous
venons de considérer deviendra: 1° homogeéne par rapport
aux quantités figurant dans une seule quelconque des lignes
~ du nouveau tableau

AO 2 Al ! A2 ¥ ’ Aa.—~-1 ’ Ad

Bo ’ Bl ’ B2 ’ ’ Bb—-1 b
CO ! (41 C2 ’ * Cc—l ’ C() ?
IJO N ]-Jl Y IJ2 3 e e ey Ll—l ’ IJZ p

2° isobare par rapport 4 l’ensemble des quantités figurant
dans ce nouveau tableau.

II. Considérant actuellement les deux formes (27), nous
adopterons pour la deuxiéme, V¥ (x, Y. A ps ooy w), le chan-
gement de notations déja indiqué dans I, et en méme temps
pour la premiére, '

Al ATy Ay oy Ay

celui qui consiste a remplacer les coeflicients

a—1 7

ou les indices se trouvent diminués d’une unité; dans la
nouvelle forme ainsi obtenue,

A K A ey AL gt

I'indice dont se trouve affecté le coefficient de chaque terme
se trouve étre égal a 'exposant de y dans le méme terme.
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Cela étant, il suit de ce que nous avons vu au n° 4 que le
résultant des deux formes

Agx® ! + Ay + .o+ Ala__2 ay®? 4 A'a[_ly“_'1 ,
Y(x, y, Ay gy eenr )
est: 1° homogéne par rapport aux quantités
Ab AL o AL AL (3

2° homogeéne par rapport aux expressions (30); 3° isobare
par rapport a 'ensemble des quantités (31) et des expressions
(30), ces derniéres, (30), étant mentalement affectées, comme
ci-dessus (I), des indices respectifs 0, 1, ..., b.

'Si lon ordonne maintenant ce résultant par rapport &
de thy -ev > w, 1l est trés facile d’apercevoir que chacun des
coefficients sera: 1° homogene par rapport aux quantités
figurant dans une seule quelconque des lignes du tableau

’ ! ! ’
AO* Ai, ey Aa——‘.)’ _Aa_1 ;
BO 3y Bl ) o s o 3 Bb__,l y Bb .
o’ ! ’ X ’
Co, (41, e v e s Cb———l' Cb9
’ !’ ’ 14
LO . ]41 y e e sy }Jb___l ’ I_Jb ; /

20 isobare par rapport a I'ensemble des quantités figurant
dans ce tableau.

Finalement, si 'on revient aux notations primitives en
remplacant les lettres A’, C'...., L' par leurs valeurs en
fonction des lettres A, C, ..., L, chacun des coefficients que
nous venons de considérer deviendra: 1° homogene par
rapport aux quantités figurant dans une seule quelconque
des lignes du nouveau tableau

A, oo A, A,
Bov Bly DECEEE ] Bb——l’ Bb >
'Coy C17 IR C(—1’ CC )
IJO N 111 , ) Ll—-l y IJZ )

S T e g e e




102 . CH. RIQUIER

2° isobare par rapport a I'ensemble des quantités figurant
dans ce nouveau tableaun.

III. Chacun des cas successivement énumérés au début
du présent numeéro 10 se traiterait, comme nous l'avons dit,
de la méme maniére que les deux premiers, examinés ci-
dessus.

11. — Exemples d’élimination.

I. Pour que les deux équations du second degré

Agx? 4 A x A, =0 ,

B, x% 4 Bx+ B, =0,
a I'inconnue x, admettent quelque racine commune, il faut
et il suffit :

Ou bien que, les coeflicients, A,, A, A, dela premiére
équation étant tous nuls, la deuxieme admette quelque racine
(n°9, I);

Ou bien-que, A, étant différent de zéro, le résultant des
deux formes quadratiques

Aga® + A xy + . L
B,x? + B xy 4 B, 12
soit égal a zéro, c’est-a-dire que l'on ait (n° 6, 1I)

(AoBz - B0A2)2 - (

AB, — ByA,) (A, B, — B,Ay) =0 ;

Ou bien, enfin, que, A, étant nul et A, différent de zéro,
le résultant des deux formes
Ax By ¥
B,x% 4 B, xy 4 B, y?
soit égal & zéro, c¢’est-a-dire que l'on ait (n° 6, I)

B,A; — A, (A, B, — AB) =0 .

II. Pour que les deux €quations
Aga® + 20 x + Ay =0,
B,x® + 3B, x? + 3Byx 4+ B, =0 ,

a l'inconnue x, admettent quelque racine commune, il faut
et il suffit : ‘
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Ou bien que, les coefficients, A,, Ay, Ay, de la premiere
équation étant tous nuls, la deuxieme admette quelque racine;
Ou bien que, A, étant différent de zéro, le résultant des

deux formes
Ayx® 4 28,2y + A,y?,

B,x% + 8B 2%y + 3B, xy? + Bgy?

soit égal a zéro, c’est-a-dire que Ion ait (n° 6, I'V)

] 0
A, 24, A, 3B, 3B [ =0
0 A, 24, B, 3B,
0 A, B,

Ou bien, enfin, que, A, étant nul et A, différent de zéro,

le résultant des deux formes

28,2 -+ Ay
B,a? 4 3B, 2%y + 382;70)'2 + B,;y?®

 soit égal a zéro, c’est-a-dire que I’on ait (n° 6, LII)

111. Pour que les trois équations du second degré

Ax? +Ax 4 A, =0,
B,2? +~ B,x 4+ B, =0 ,
Cyx?+ Cix+ C, =0,

a l'inconnue x, admettent quelque racine commune, il faut
etil suffit: -

Ou bien que, les coeflicients, A,, A,, A,, B,, B,, B,, des
deux premiéres équations étant tous nuls, la troisiéme ad-
mette quelque racine; :
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Ou bien que, A,, A,, A, étant nuls et B, différent de zéro,
le résultant des deux formes quadratiques

B, 2 + B, xy 4 B,y?
Cox® + C axy + Cy)?

soit égal a zéro, c’est-a-dire que 'on ait (n° 6, II)
(ByCy — CoBz)2 — (BeC — C,B) (B, Cy — C;By) =0 ;

Ou bien que, A, A, A,, B, étant nuls et B, différent de
zéro, le résultant des deux formes

B,x 4+ B,y ,
Cox? + C,xy +.C,y?

soit égal & zéro, c'est-a-dire que I’on ait (n° 6, I)
C,B; — B,(B,C, — B,C,) = 0 ;

Ou bien que, A, étant différent de zéro, le résultant des

deux formes
A0x2 + A xy 4 A, y?

(AB, 4+ 1.Cy)a? + (AB, + pC))ay + ARy 4+ 1n.Cy)y2

soit égal a zéro quels que soient 2, p (n°9, I11), c’est-a-dire que
I'on ait (n° 6, 1I), quels que soient A, u,

[Ag (ABy + 11Cy) — A (AB; 4 p.Cy)J?
— [Ag (2B, + pC) — A, ()‘Bo + wG)I[A, (ABy + 0Cy) — Ay(AB; 4+ pCy)] =0,

ou, en ordonnant par rappor t a A et u les quantités contenues
dans les divers crochets,

_ [A(AgBy — ByAy) + (A, Gy — CpAy)?
— [A(A,B, — BoAl) + u(4,C, — CyA))]
[MA By — B A,) + w(A, G — CiA))] =0,

ou, en égalant a zéro les coefficients des diverses puissances
de 2, L.
(A0B2 - BOA2)2 - (Ao B, — BOA1,\(A1Bz - B1A2) =0,
2(A0 By — BOA2) (A0C2 - CoAz) — A B, — ByA,) (A, Cz - C1 Az)
:  — (A, — CyA)(A,B, — B,A) =0,
(8,Cy — CoAy)? — (4,C, — CoAy)(8;Cp — CiAy) =0

0
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Ou bien, enfin, que, A, étant nul et A, différent de zéro, le
résultant des deux formes

Ay + Ay
(2B, + pCo)a? + B, + p.Cyay + (B, + pCy)y*

soit égal a zéro quels que soient A et u, c’est-a-dire que l'on
ait (n° 6, I), quels que soient A, u,

AT(VB, + pCy) — A, [A, (AB; + p.C) — A (ABy + pGo)] =0
ou, en égalant a zéro le coefficient de ) et celui de g,
AiB, — A,(A,B, — A,B) =0,
AIC, — A, (A,C, —A,C)) =0 .

TABLE DE CARACTERISTIQUES DE BASE 30030

DONNANT, EN UN SEUL COUP D’(EIL,
LES FACTEURS PREMIERS DES NOMBRES
PREMIERS AVEC 30030 T 1NFERIEURS A 901 800900

PAR
Ernest Leson (Paris).

(Extrait de UIntroduction)

Travaux anciens et modernes sur les nombres premiers.

Dans 'ancienne Gréce, les premiéres recherches sur les
nombres premiers ont été faites par EraTosTHENE qui, pour
trouver les nombres premiers, a donné la méthode, toujours
classique, du Crible, et par EucLipE qui a établi qu’il existe
up nombre premier supérieur a un nombre premier donné.

L’espace nous manque pour donner un apercu des recher-
ches faites, aprés ces deux promoteurs, sur la détermination
des nombres premiers, sur le nombre des nombres premiers

I’Enseignement mathém., 21¢ année, 1920. 3
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