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EXTENSION
DU PROBLEME DES TRIANGLES HERONIENS

PAR

C.-A. Larsant (Paris).

1. — Le probleme des triangles héroniens a pour objet
la résolution en nombres entiers de I’équation indéterminée

CZ__aZ

Il se résout, on le sait, x, y étant deux entiers quel-
conques, par les expressions

c=ax? + y?, a— x%® — y2 | b = 2xy .

o %

On peul aussi, ce qui revient au méme, prendre une frac-

. x . . 3 .
tion quelconque ¥ a fermes eniliers, son 1nverse % puis

k)

former la demi-somme et la demi-différence de ces deux
. X , .
fractions P —i— Les deux résultats qu'on obtient sont les
. c S a
fractions — et —.
b b \ ,
2. — La question que nous nous proposons d’examiner ici
consisle dans la résolution du systéme

o5 b,

bb

1

¢, @, b, b, devant étre des nombres entiers, et 1, p deux
nombres donnés commensurables. Pour A — x =1, elle se
confond avec le probleme des triangles héroniens.

’ "y

Soit 1_—_:7, v :5;; formons les fractions <—;£, 2) et dé-

N4
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terminons en la demi-somme et la demi-différence

’

xy’ + a2’y xy — x'y
2py" 2y

e 3, . . x i ,
Considérons maintenant les deux fractions (;,, 3—,) résul-

tant de la permutation des deux éléments y, &', et répétons
les mémes opérations. Les résultats obtenus seront

xy’ 4+ x'y xy — x'y
2x'y" ’ 22"y’ '

Posant ¢ = ,Ty’_l_ x’y’ a —= .,L.yl__ xry’ b— 2yy/’ b1 — 2x1y/’
nous avons c‘~"-- a?— hrvx' v ¢#—a® _ _x b
po— ./3/-)(',3/ 9 [)[)1 -—-y,, b — ‘7 .

On peut évidemment, si ;—,, :— sont des fractions irréduc-
tibles, remplacer (x, ') d’une part, et («, y) de l'autre, par
des équimultiples quelconques de ces termes.

Lorsque l'on est conduit a des résultats ¢, @, b qui ont un
facteur commun, il y a lieu de les diviser par ce facteur pour
obtenir la solution la plus simple. Cela se produit notam-
ment quand les quatre nombres x, y, &', 3’ sont impairs,
car on trouve alors des nombres pairs pour ¢ et pour a, et
b, b, sont pairs par définition.

Réciproquement, une solution (¢, @, b, b,) étant connue,
on en a une autre en multipliant ces quatre éléments par un

nombre entier quelconque. Nous dirons qu’une solution est

primitive quand c, @, b, b, sont premiers dans leur en-
semble, par analogie avec les triangles héroniens primitifs.
Comme c et @ sont de méme parité, cela entraine cette con-
séquence qu’ils doivent étre impairs dans une solution pri-

mitive, pulsque b et b, sont pairs.

c2 — a?

3. — Revenons aI'équation —;— =}, ol A est un nombre

, o X
commensurable donné. Si ):;, formons les deux frac-

. X ’ ’ g s .
tions L %, y étant un nombre entier quelconque, et x, z

pouvant étre remplacés par des équimultiples quelconques
s’ils sont premiers entre eux. Formant ensuite la demi-




TRIANGLES HERONIENS - 83
somme et la demi-différence de ces deux fractions, nous

» C a -
avons comme résultats —. % . donnant une solution de

b’ b
2 — a? x

Péquation —5— == — = ). Les expressions de ¢, a, b sont

¢ =2xz + %, a == (xz — )% , b= 2z .

Pour & — z, elles se confondent avec la solution d’un tri-
angle héronien.

Parmi les solutions, en nombre infini, qu'on peut ainsi
obtenir, il y a lieu de distinguer celles qu'on peut appeler
triangulaires, c'est-a-dire telles que ¢, @, b expriment les
trois cotés d’un triangle. Cela exige la condition que & soit
compris entre ¢ — a et ¢+ a. Les autres sont non-triangu-
laires. A la limite, on rencontre les solutions linéaires, cor-
respondant a des triangles aplatis en ligne droite, dans les-
quels b est égala c— a ou a ¢ + a.

Si xz > y?, y doit étre inférieur a x et & z pour qu’une
solution soit triangulaire; si xz < y?% ¥ doit surpasser a la
fois & et z. Posons y —=x, ou y =2z, on a des solutions
linéaires.

4. — Applications numeériques. — Nous allons montrer,
sur quelques exemples simples, comment on peut obtenir

des solutions des questions indiquées ci-dessus.
c2 . g2

bb
x=17, y =2, &' =5, y =3, et formons les fractions

1(7 B 1(7 5 31 11
2\273) 2\3 73 ° 13 13

11+_2_ 1/7 2 31 11
o\5 7 3) 33\5 73 ou 30 30 °

Nous avons ainsi

\ 7 2
Systéme = A, ~b—1——p, — Soit A=5, p=1. Posons

puis

312 — 112 7 t 12 2
12.30 — 3 € 30 5

En remplacant 7 et 3 par 21 et 9, on obtiendrait
' 1992 — 1792 7 36 2

et e = =

36.90 3 90 — 5 °

B e

e TR
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g . 7 .
Si on se donnait A = p = 3, On pourrait poser

o= , ye=7, ' =3, ¥y =9,

et cela donnerait ¢ = 210, @ = 168, & — 54, b, = 126, ou
(solution simplifiée) ¢ =35, @ =28, b = 9, b, = 21

352 — 282 21 7
9.21 9

3 -

¢* — a? . 12
g — A — Soit 1 = - . En formant les frac-

Equation

tions @, o

¥y 7m
effectuant les opérations indiquées, on trouvera notamment
les résultats indiqués ci-dessous, et sur lesquels les vérifi-
cations sont faciles. Si y est compris entre 12m et 7m, on
aura une solution non triangulaire; si y est inférieur a 7Tm
ou supérieur a 12m, la solution sera triangulaire; enfin,
pour y = 7m, ou y = 12m, on aura des solutions linéaires

, m et y étant des entiers quelconques, et en

¢ a b

85 83 14 Solution triangulaire.

31 25 14 » » (simplifiée).

19 5 14 » linéaire (simplifiée).

55 1 42 » non triangulaire (simplifiée).
205 37 154 » » »
337 335 28 » triangulaire.

: : 12 o 7 :
Si, au lieu de A = = on avait pris 1 = i3+ On rencontrerait

les solutions qui suivent, et qu’on pourra rapprocher des
précédentes, les éléments ¢ et @ restent les mémes :

c a b

85 83 24  Solution triangulaire.

31 25 24 » » (simplifiée).

19 5 24 » linéaire (simplifiée).

55 1 72 » non triangulaire (simplifiée).
205 37 264 » » »
337 335 48 » triangulaire.

Mars 1920.
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