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EQUATION FONCTIONNELLE 265

17 >< 41 » 43, au nombre de 1 ;
19 ><23 » 29,31, ... .. , 67, » 10 ;
19><29 » 31,37, . . ... , 53, » 6 ;
19 >< 31 » 37, 41, 43, 47, » [/
19 >< 37 » 41, » 1 ;
23 >< 29 » 31, 37, 41, 43, » 4 ;
23 >< 31 » 37, 41, » 2 ;

en toul, 71 produits. :

Par suite, 8 = 2385 + 61 + 71 = 2517; de 1 4 30030, il y
a donc ¢(N) 4+ a — f3="5760 + 6 — 2517 = 3249 nombres
premiers.

Liége, 1920.

SUR L'EQUATION FONCTIONNELLE
fle: ()] = [lg2(0)]

PAR

Rolin Wavre (Neuchatel).

A la quinziéme réunion! de la Société mathématique
suisse, tenue a Neuchatel le 31 aoat 1920, M. le Prof.
PLANGHEREL a posé la question d’analyse suivante :

« Soit y = f{x) une courbe continue et univoque dans l'inter-
valle a S < b, telle que dans cet intervalle f(z) >0 et que
[la) = f(b) = 0. Soient M,, M,, deux points mobiles sur cette
courbe, assujettis a avoir a chaque instant £les mémes ordonnées.
A Vinstant ¢ =0, M, se trouve au point (a, o), M, au point (6, o).

Peut-on coordonner les mouvements de ces deux points de ma-
niere a ce qu’ils se rencontrent? »

M. Plancherel ajoute:

« [.e probléme est équivalent & la détermination de deux fonc-

1 Voir L’Enseignement mathématique, Nos 3-4, t. XXI, p. 226-227 ; 1920.
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tions ¢, (f), @,(¢f) continues dans 'intervalle 0<t<1, telles que
pour0<¢<1

ase(t)Sbh, alq(t)<h

ITe: (8)] = flga(2)] (1)

et que, pour t =0

I

?:(0) =a, ,(0)=24b

et pourz =1 :
1) =0, ¢(1)=a .

« 81 f(z) n’a qu'un nombre fini d’extréma dans (a, ), la réso-
lution du probléme est immédiate. Il s’agirait de savoir si la seule
hypothése de la continuité de f(z) est suffisante pour assurer la
possibilité du probléeme; si non, quelles conditions supplémen-
taires devraient étre ajoutées. »

Je montrerai ici que la seule hypothése de la continuité de
la fonction f(x) est suffisante.

Le principe de ma démonstration est fondé sur le fait que
Pon peut former une suite de fonctions f,(x) convergeant
uniformément vers f(x) pour lesquelles la résolution de
’équation fonctionnelle

o (0] = fu[el (0] (2)
est possible. De la suite des fonctions
o) oM (e) (n=1,23..)

attachées a chaque f,(x), on pourra extraire deux fonctions
limites satisfaisant a ’équation (1).

1. — Remarque préliminaire. — Soit y = f(x) une fonc-
tion continue et univoque telle que

f0)=0 f1)=0 flx)>0 (<x<t

et qui n’ait qu'un nombre fini d’extréma.

La résolution du probléme étant possible pour une telle
fonction, on pourra toujours choisir un mouvement des deux
points M, et M, tel que ces deux points ne se trouvent jamais
adeux instants différents en deux mémes points de la courbe.

[l en résulte que le nombre de fois ol un des points se
trouve en un point M de la courbe au cours du mouvement,
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est au plus égal au nombre de points de la courbe ayant
méme ordonnée que M.

Si I'on fait 'hypothése conforme a la nature de la ques-
tion, que la fonction envisagée n’est constante dans aucun
intervalle, ce nombre de points est nécessairement borné,
quel que soit M sur la courbe.

2. — Définition. — Je dis qu’une courbe continue traverse
un intervalle (x = x,, £ = Z,41) OU (Y = Y4, Y = Yq41) d'un
point @ 4 un point & de la courbe lorsque tous les points
de la courbe situés entre @ et & sont a l'intérieur de l'in-
tervalle; a et b extrémités de la traversée sur la courbe
étant sur les deux frontiéres opposées-de 'intervalle.

En tenant compte des propriétés d’'une fonction continue,
on verra que cette définition a un sens parfaitement bien
défini. '

Pour fixer les idées, je donnerai I'exemple de la courbe
donnée par le dessin suivant :

Hqﬂ

courbe qui traverse l'intervalle (y,, 7,11), dans les inter-
valles sur la courbe

(a, b) (al’ [)II-' (a"’ b") (a”[b”') ]

3. — Soit une fonction continue y = f(x) n’ayant qu’un
nombre fini d’extréma et satisfaisant aux conditions aux
limites. _

Résolvons le probléme, puis considérons un intervalle
(.rf,,. Zg41) quelconque, et 'intervalle (y,, y,41), oU 7, et y,41
désignent la borne inférieure et la borne supérieure de f(x)

L’Enseignement mathém., 21¢ année; 1920. . 18
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dans 'intervalle fermé (g, Zg41). On sait, en vertu d’un théo-
reme classique, que ces bornes sont effectivement atteinles
dans l'intervalle fermsé,.

HA

A/\ |
9.1 A o
WY i

Fig. 2.

Lemme. — Pour que 'un des deux points M,, M, traverse
Iintervalle (x,, x,44), il faut que Iautre point traverse l'in-
tervalle (y,, y,41) correspondant, au moins une fois.

C'est immédiat.

TutorEME. — Etant donné une courbe {(x) n‘ayant qu’un
nombre fini d’'extréma, le nombre de fois qu'un des mobiles
iraverse un intervalle quelconque (Xq, Xqp1) est au plus égal
au nombre de fois ou la courbe traverse Uintervalle corres-
pondant (yq, Yern)

En effet: chaque fois que 1'un des mobiles traverse
(g, Zgt1), Pautre traverse (y,, y,41), mais si le nombre des
traversées de (x,;, x,41) était supérieur a celui des traversées
de (¥4, Yg41), il y aurait au moins une traversée de l'inter-
valle (y,, y,41) faite dans (z,, 2,44) qui correspondrait 4 deux
traversées de 'intervalle (y,, y,44) faites sur le méme inter-
valle (a, b) de la courbe. ‘

Mais les bornes inférieure et supérieure se correspon-
dant, les mobiles occuperaient, a deux instants différents, la
meéme position, ce qui doit étre écarté en vertu de la remarque
préliminaire.

4. — Considérons une fonction continue f(z) qui n’est.
constante dans aucun intervalle, telle que :

pour laquelle nous chercherons a résoudre le probléme.
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Soit d’autre part une suite infinie de polynomes qui converge
uniformément vers f(x)

dont I'existence est assurée par un théoréme classique de
Weierstrass. |

Lemme I. — la fonction f(x) ne traverse quun nombre
fini de fois un intervalle quelconque (y4, ¥q+1)-

En effet, s’'il n'en était pas ainsi, il existerait au moins
une abcisse x, au voisinage de laquelle la courbe traversant
'intervalle une infinité de fois ne saurait étre continue.

Lemme II. — Chaque polyndome d’approximation P,(x) ne
traverse l'intervalle qu'un nombre de fois inférieur a un
nombre fini. |

Ceci se démontrerait aisément en toute rigueur en tenant
compte que f(x) ne traversant qu'un nombre fini de fois 'in-
tervalle, il en est de méme pour tout polynéme P,(x), com-
pris dans aire limitée par |

flx) + ¢ et4f(x)——-s =351

pourvu que ¢ soit assez petit, c'est-a-dire a partir d'un n
assez grand.

5. — Construction des fonctions ¢- — Je considére la
courbe f,(x) formée de la partie de P,(x) qui est située
entre les droites x =0, y =— 0, £ =1, et des parties de ces
droites qui joignent les points ol la courbe les coupe aux
points (0, 0), (1, 0) respectivement de maniére que-/,(x) satis-
fasse aux conditions aux limiltes.

Pour une telle fonction f,(x) qui n’a évidemment qu'un
nombre fini d’extréma, la résolution de 1'équation fonctlon-

nelle
fle (0] =1, [8 (0]
est possible.

Jadopterai pour la construction des q;(")(t) le mode de
représentation suivant:

Je porte en abcisse la longueur / du chemin parcouru dans
le mouvement de chaque point (qu’il ne faut pas confondre
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avec la longueur de la trajectoire géométrique) et en ordon-
née les x correspondants.

(Pour une courbe f,(x), la longueur du chemin parcouru
est nécessairement finie. de plus on a toujours

Ax

27 =
Al 1

les longueurs totales des mouvements des deux points sont
les mémes.)

J'obtiens ainsi deux courbes
q)l(n) (l) (D£n) (l)
données par deux fonctions continues et univoques. .

x A

(nj
¢, ()

(I)](E.) ‘ ' E
0 . ! L

Y

Fig. 3.

Puis j'opére la méme construction pour toutes les fonc-
tions /,(x). J'obtiens ainsi deux suites infinies de fonctions

oy el =123, .

6. — Il résulte du théoréme du § 3 et du lemme II du § 4
le théoréme suivant :

THEOREME. — Le nombre de fois qu’une fonction o™ () tra-
verse un intervalle quelconque (Xq, Xq1) est inférieur, quel
que soit n, a une borne finie.

Je vais montrer que l'on peut déduire des deux suites de
fonctions

2

o) et | (n=1,28,..)
deux autres suites
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qui satisfont aux équations fonctionnelles -

0] = 1[4 (0]

avec les conditions aux limites, et qui forment deux suites
de fonctions également continues dans I'intervalle 0 = / < 1.
Pour cela je considére une division de l'intervalle (0, 1) de
I'axe des x en p parties égales par les points

0, «x

L0 g s oeees X 1.

p—1"

Il y correspond pour chaque f;(x) des intervalles

"n In n n n
(71 ’31>’ (-‘2 ’32>"' ’ OP")P

par la regle exposée au § 3.

On verrait aisément en vertu de la convergence uniforme
des f,(x) vers une fonction continue f{x) qui n’est constante
dans aucun intervalle, qu’il existe un nombre positif 2, tel
que ’

Iln

yq —

quels que soient n el g, (n=1,2,3,...) (¢g=1,2,3, ... p).

Il y aurait une exception pour les parties des f.(x) qui -

coincident avec ’axe des x, mais cette restriction étant trés
facile a lever, je n’en tiendrai nullement compte ; on léverait
aussi facilement la restriction qui provient du fait que les
/»(x) peuvent prendre des valeurs négatives dans l'intervalle
0 =x < 1.

Je marque sur chaque courbe ®{"(l) les points 3\"'p extré-
mités d’intervalle ou ces courbes traversent les intervalles

(O] o f{orpa) 4 eor s (xp_ll} .

En vertu du théoréme du § 6, ces points sont en nombre

fini sur chaque courbe (r=1, 2, ... R,) et ces nombres Rn
sont bornés par un nombre que jappellerai N,,

RII<N

" Je divise d’autre part l'intervalle (0, 1) de I'axe des / en N,
parties égales par des points

0 ¢ ty..¢ t. -

r " th-—l
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Je déforme la courbe @/ () par glissement de maniére que
chaque point reste 4 la méme hauteur, que (0, 0) se corres-

ponde & lui-méme, que (L,, 1) vienne en (1, 1), que chaque
(n) : | | :

D p ait pour abcisse un ¢, et que la courbe reste continue
r

et univoque.
J'obtiens ainsi une fonction continue que je désignerai par

(ﬁgl)(t) 0=¢t=1.
4 .

Puis je divise l'intervalle (0 1) en 2p parties égales. Il y
correspond un nouveau nombre N,,, jeffectue un nouveau
_— (n) cx oy :
glissement de la courbe p (1) qui laisse inaltérés les points

’ 1

() : : ) ,
D p et qui fasse passer tous les nouveaux points N 2p extré-
r r

mités d'intervalle de traversée au-dessus d’abcisses obte-
nues en divisant chaque intervalle (¢,, #,41) en N, parties

‘égales et cela de maniére que la nouvelle courbe ainsi

obtenue

(n)
P2 (1)
T

soit univoque et continue.

Je répete cette opération de dichotomie et les glissements
correspondants une infinité de fois, ce qui donne une infi-
nité de fonctions |

(n) ¢
‘1)1 2°p(t) . (g=10,1,2.3, ..)
On verrait aisément, que ces fonctions convergent unifor-
mément vers une fonction continue ") (£), comme cela résulte
de leur construction méme. |
La méme opération effectuée pour tous les n fournit une
suite infinie de fonctions

o™ (2) (n=1,2,3.) 0=<£¢t=1.

qui n'ont chacune, comme les fonctions correspondantes

@,"(l), qu’un nombre fini d’extréma.
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Je puis donc en déduire par les équations fonctionnelles

£l (0] = £, [¢ (1]
une suite
o™ (1) n=1,2, ...).

les o{"(2) et ¢{*)(t) satisfaisant aux conditions aux limites

o™ (0) =0, c‘pini(o) —1 :
n=1,2 3, ..)
oM =1, oM1)=0, ;
1. — TukorEME. — Les fonctions o (t), o™ (t) (n =1, 2,

3, ...) sont également continues.
En effet, pour que
| 3

n) — (7 — 1 )
}?1 (tl) ?1 (t2) ’ < QQ.P ' (n ‘1) 2’ 37 )

il suffit, en vertu du mode de construction des o"(7), que

A 1
I, — 4| < — '
! 2 N, Ny, .« Ny, |
Je dis que ’on a aussi
@ = | <q, (=123 .
pour '
I8, — ] <.

Pour le démontrer, jutiliserai I'équation fonctionnelle (2)
qui donne ’

fule W] — o] = o] — Ll W] . @)

mais en vertu de I’égale continuité des ¢!")(f) et de la conver-

gence uniforme des f,(x), le premier membre peut étre rendu

inférieur a r, si petit que soit r, pourvu qne [¢, - t,| <e.
On a donc sous cette méme condition

ful )] = £l )] < v\

ceci exige, en vertu de la convergence uniforme des [n()
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vers une fonction continue qui n’est constante dans aucun
intervalle, que I'on ait aussi

o) — elP(ty) | < g, .

¢r tendant vers zéro avec r.

Le théoréme est donc démontré. L’égale continuité des
9. (¢) apparaitra peut-étre mieux en employant la démonstra-
tion suivante : :

Si les ¢{"(¢) n’étaient pas également continues, on pourrait
trouver ¢, telle que pour une suite

9,4 (1)

convenablement choisie de fonctions ¢! (f) et une suite d’in-
tervalles 2,,, dont la longueur tende vers zéro lorsque ¢
augmenteé indéfiniment, on ait :

71 () — gl (v

>q (g=1,23,..)

pour deux valeurs ¢ el ¢’ de ¢ dans an.
L’égalité (4) donne

max

T et T/ dans ¥
"q

fog (519 1] = fog[o721571]|

T et?;;]:sx z, \fnq [@;'Q(r)] o f;lq [?:q (T/)]
q
mais lorsque ¢ augmente indéfiniment, le premier membre
tend vers zéro, tandis que le second reste supérieur 4 une
borne non nulle. |

8. — Ceci étant, en vertu d'un théoreme connu, on peut
extraire de la suite des ¢*(f) une suite 9;(¢) qui converge uni-
formément vers une fonction continue 1 (0)-

De la suite correspondante 9¥)(2), on peut également dé-
duire une suite o™ (), qui converge uniformément vers une
fonction continue g,(f), soil 9" (¢) la suite correspondante
des fonctions o\ (2). _ ‘

Je dis que les fonctions g, (2) el g,(¢) satisfont a I'équation (1).
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‘En effet, on peut passer a la limite sur I'équation

" £l (0] = £, [o101] . 5)

c’est-a-dire que l'on a

flo. (2] ~MMJW”]—hmM“] flot] o0=t=1,

Ill_‘OO

et les conditions aux limiles énoncées dans la question sont
satisfaites.

- Le probléme est donc résolu dans toute sa généralité. La
seule hypothése de la conlinuité est suffisante. La solution
pourrait d'ailleurs dans certains cas dépendre du choix des
suites ¢/ et n’étre pas unique.

9. — La solution du probléme précédent permet de ré-
pondre a la question suivante comme me [’a obligeamment
fait remarquer M. Plancherel.

Soit C une courbe fermée sans points mulhples, A une
direction. Il existe deux droites 1,, A, de direction 1 telles
que C soit contenue dans la bande (},, 1,) et que cette bande
soit de largeur minimum. C et }, ont en commun au moins
un point A,, G el A, au moins un point A,. Soient «a, ., a,, a, ...,
les intersections d'une droite 2 quelconque avec C et soit
a;; le milieu du segment a;, a;.

Appelons médiane relative a la direction 1 le lieu des ay.
Cette médiane peut se composer de plusieurs arcs séparés.
Démontrer qu'il existe un arc de médiane joignant A, et A,.

En représentant par x = o(f), y = ¢(¢) la courbe (J et pre-
nant A, comme origine et ), comme axe des .x, on aura
$(0) =¢(1) =0, $(t) 2,0, et la question est ramenée au pro-
bleme prlmitif

L’existence d’au moins une médiane joignant A, et A, est
donc démontrée. |

10. — Je voudrais, pour terminer, expliciter de la démons-

tration précédente quelques propriétés générales du procédé
de «glissement» qui pourraient intervenir dans une caté-
gorie de problémes du méme genre.

Remarque. — On se convaincra aisément de ce que le
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procédé de «glissement» est applicable a toute fonction
continue, univoque, bornée, définie sur un intervalle quel-
conque fini ou infini, et qui ne traverse un intervalle quel-
conque qu'un nombre fini de fois.

J'appellerai dans la suite fonction F, une fonction jouis~-
sant de cette propriété.

THEOREME. — Soit

Y™ (), n=1,23..,

une suite infinie de fonctions F bornées dans leur ensemble,
et qui ne traversent un intervalle quelconque qu’un nombre
de fois inférieur a une borne finie indépendante de n, on
peut par « glissement » en déduire une infinité de fonctions

Y(")(t) n=1,23...,

définies dans I'intervalle fermé 0 = ¢ —< 1, qui soient égale-
ment continues et bornées.

Remarque. — On peut définir des glissements particuliers
pour lesquels toutes les propriétés établies dans le présent
travail subsistent, auxquels correspondent des changements
de variable; c’est-a-dire que si Y(f), 0 << ¢ <1 est la trans-
formée par glissement d’une fonction F, y(lx), a<x < b,
on peut trouver une fonction ¢(¢) continue et jamais décrois-
sante dans l'intervalle fermé 0 < / < 1, telle que ¢(0) = a,
¢(1) = b et que

Y() =y[¥()] .

Lorsque l'intervalle (@, ) est infini, la fonction ¢(f) ne
sera définie et continue que sur l'intervalle ouvert 0 < ¢ < 1.

TutoriME. — Etant donné une fonction F, on peut par
« glissement » en déduire une fonction continue dans l'in-
tervalle (0, 1), constante dans tout lintervalle sauf sur un
ensemble de mesure nulle.

En effet; les Np, Ny, ... N7, ... ayant la méme signification
qu’au § 6, mais pour une seule fonction, je divise en 27Ny,
parties égales les intervalles que j’'avais divisés en Ny?, par-
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ties égales. Je puis alors placer les points 2, de maniere

9q+1 e v o9 .
que tout 3, 7 soit & une distance d’un 3, ¥ moindre que

Nygri, 1
g7 gt Hgt+1 Np N2q+1p T gl (q+:)Np N N2qp .

. 24 ' _ . s
Un point 3. 7 quelconque se trouve donc & une distance

g : :
d’un 3.7 nulle si ¢’ = ¢ et plus petite que

L= D qgm si g >q .

m=0

On peut alors enfermer tous les 3 dans des intervalles
dont la somme des longueurs est au plus égale a

Yq = 2lq N29P

et la courbe limite sera’ constante en dehors de ces inter-
valles. Mais ceci est vrai quel que soit ¢, et puisque y,, on

e -, 1 . .
le voit aisément, tend vers 0 avec 7 la fonction transformée

est constante sauf sur un ensemble de mesure nulle. ‘

L'existence d’une pareille fonction constante dans les
intervalles contigus & un ensemble parfait discontinu est
bien connue. J'ai montré ici comment elle pouvait se déduire
du procédé de glissement.

N'ayant point fait de recherches bibliographiques sur le
sujet de ce travail, je ne puis affirmer que les deux théo-
réemes et la remarque de la page 276 soient nouveaux.
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