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ÉQUATION FONCTIONNE LLE 265

17 X 41 43, au nombre de 1

19X23 •> 29, 31, 67, » 10

19 X 29 31, 37, o3, » 6

19X31 37, 41, 43, 47, » 4

19 X 37 41, » 1

23 X 29 31, 37, 41, 43, » 4

23 X 31 37, 41, » 2

en ton1, 71 produits.
Par suite, ß2385 + 61 + 71 251-7; de 1 à 30 030, il y

a donc <p(N) + « — ß=5760-+- 6 — 2517 3249 nombres

premiers.
Liège, 1920.

SUR L'ÉQUATION FONCTIONNELLE

/!?.«]
PAR

Rolin Wayre (Neuchâtel).

A la quinzième réunion 1 de la Société mathématique
suisse, tenue à Neuchâtel le 31 août 1920, M. le Prof.
Plancherel a posé la question d'analyse suivante :

« Soit y — f[x) une courbe continue et univoque dans l'intervalle

a^x<b, telle que dans cet intervalle f[x) > 0 et que
f[a)=f[b)~= 0. Soient Mi, M2, deux points mobiles sur cette
courbe, assujettis à avoir à chaque instant t\es mêmes ordonnées.
A l'instant t 0, se trouve au point (a, o), M2 au point (ô, o).
Peut-on coordonner les mouvements de ces deux points de
manière à ce qu'ils se rencontrent? »

M. Plancherel ajoute :

« Le problème est équivalent à la détermination de deux fonc-

1 Voir L'Enseignement mathématique, N0S 3-4, t. XXI, p. 226-227 ; 1920.
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tions (fil{t), continues dans l'intervalle 0 < t < 1, telles que
pour 0 < t < 1

a S Ti (*) ^ b
> « S ¥s(*) â

/LM')] /M] (1)
et que, pour £ 0

9i (°) Ä 92(0) Ä

et pour £ 1

?i(!) h
- 9s(1) « •

« Si f[x) n'a qu'un nombre fini d'extréma dans (a, b), la
résolution du problème est immédiate. Il s'agirait de savoir si la seule
hypothèse de la continuité de f[x) est suffisante pour assurer la
possibilité du problème ; si non, quelles conditions supplémentaires

devraient être ajoutées. »

Je montrerai ici que la seule hypothèse de la continuité de
la fonction f(x) est suffisante.

Le principe de ma démonstration est fondé sur le fait que
l on peut former une suite de fonctions fn{po) convergeant
uniformément vers f{x) pour lesquelles la résolution de
l'équation fonctionnelle

/»[^"'(O] /"«[^"'C)] (2)

est possible. De la suite des fonctions

?!"'(<) #'(*) (71 1,2.3...)

attachées à chaque fn(x), on pourra extraire deux fonctions
limites satisfaisant à l'équation (1).

1. —Remarque préliminaire. — Soit y f{x) une fonction

continue et univoque telle que

/•(0) 0 /( 1) 0 f(x) >0 (0 < * < 1

et qui n'ait qu'un nombre fini d'extréma.
La résolution du problème étant possible pour une telle

fonction, on pourra toujours choisir un mouvement des deux
points et M2 tel que ces deux points ne se trouvent jamais
à deux instants différents en deux mêmes points de la courbe.

Il en résulte que le nombre de fois où un des points se
trouve en un point M de la courbe au cours du mouvement,
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est au plus égal au nombre de points de la courbe ayant
même ordonnée que M.

Si I on fait l'hypothèse conforme à la nature de la question,

que la fonction envisagée n'est constante dans aucun
intervalle, ce nombre de points est nécessairement borné,
quel que soit M sur la courbe.

2. — Définition. — Je dis qu'une courbe continue traverse
un intervalle (x xq, x .%+i) ou (;y yq, y yq+a) d'un
point a à un point b de la courbe lorsque tous les points
de la courbe situés entre a et b sont à l'intérieur de

l'intervalle; a et b extrémités de la traversée sur la courbe
étant sur les deux frontières opposées de l'intervalle.

En tenant compte des propriétés d'une fonction continue,
on verra que cette définition a un sens parfaitement bien
défini.

Pour fixer les idées, je donnerai l'exemple de la courbe
donnée par le dessin suivant :

courbe qui traverse l'intervalle (yq^ yq+1), dans les intervalles

sur la courbe

{a, b) (a', I/) (a", b") (amb"f)

3. — Soit une fonction continue y f[x) n'ayant qu'un
nombre fini d'extrêma et satisfaisant aux conditions aux
limites.

Résolvons le problème, puis considérons un intervalle
{pcq, xq+i) quelconque, et l'intervalle (yq, yq+où yq et yq+1
désignent la borne inférieure et la borne supérieure de f{x)

L'Enseignement mathém., 21e année; 1920. 18



268 i?. WAVRE
dans l'intervalle fermé (xq, xq+1). On sait, en vertu d'un théorème

classique, que ces bornes sont effectivement atteintes
dans l'intervalle fermé.

y ' f] A '

f V ~ L
l r \

0 a:9 x9t| i x
Fig. 2.

Lemme. Pour que 1 un des deux points M4, M2 traverse
1 intervalle (xq, xq+1), il faut que l'autre point traverse
l'intervalle (;yq, yq+i) correspondant, au moins une fois.

G est immédiat.
Théorème. — Etant donné une courbe f(x) n'ayant qu'un

nombre fini d'extrêma, le nombre de fois qu'un des mobiles
traverse un intervalle quelconque (xq, xq+1) est au plus égal
au nombre de fois où la courbe traverse l'intervalle
correspondant (yq, yq+1).

En effet : chaque fois que 1 un des mobiles traverse
(xq} xq+1), l'autre traverse (yq, yq+\), mais si le nombre des
traversées de [xq, xq+1) était supérieur à celui des traversées
de {i/qt yq+fji il y aurait au moins une traversée de l'intervalle

(;yq, yq+\) faite dans (xq, xq+1) qui correspondrait à deux
traversées de l'intervalle \yq, yq+1) faites sur le même intervalle

(a, b) de la courbe.
Mais les bornes inférieure et supérieure se correspondant,

les mobiles occuperaient, à deux instants différents, la
même position, ce qui doit être écarté en vertu de la remarque
préliminaire.

4. — Considérons une fonction continue f(x) qui n'est,
constante dans aucun intervalle, telle que :

f(0) — 0 /•(!) — o f(x) 0 ^ X ^ 1

pour laquelle nous chercherons à résoudre le problème.
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Soit d'autre part une suite infinie de polynômes qui converge
uniformément vers f(x) :

pp*) P2(*),.., PfIW

dont l'existence est assurée par un théorème classique de

Weierstrass.
Lemme I. — La fonction f{x) ne traverse qu'un nombre

fini de fois un intervalle quelconque [yq, yq+i)-
En effet, s'il n'en était pas ainsi, il existerait au moins

une abcisse x0 au voisinage de laquelle la courbe traversant
l'intervalle une infinité de fois ne saurait être continue.

Lemme IL — Chaque polynôme d'approximation Pn(x) ne

traverse l'intervalle qu'un nombre de fois inférieur à un

nombre fini.
Ceci se démontrerait aisément en toute rigueur en tenant

compte que f(x) ne traversant qu un nombre fini de fois 1

intervalle, il en est de même pour tout polynôme ?„(#), compris

dans l'aire limitée par

f(x) + s et f{x) — e 0 ^ x ^ 1

pourvu que s soit assez petit, c'est-à-dire à partir d'un n

assez grand.
5. — Construction des fonctions y. — Je considère la

courbe fn{x) formée de la partie .de P„(^) qui est située
entre les droites x 0, y ~ 0, x 1, et des parties de ces
droites qui joignent les points où la courbe les coupe aux
points (0, 0), (1, 0) respectivement de manière que-fn(x) satisfasse

aux conditions aux limites.
Pour une telle fonction ffx) qui n'a évidemment qu'un

nombre fini d'extrêma, la résolution de l'équation fonctionnelle

est possible.
J'adopterai pour la construction des yn\t) le mode de

représentation suivant :

Je porte en abcisse la longueur l du chemin parcouru dans
le mouvement de chaque point (qu'il ne faut pas confondre
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avec la longueur de la trajectoire géométrique) et en ordonnée

les x correspondants.
(Pour une courbe fn{x), la longueur du chemin parcouru

est nécessairement finie, de plus on a toujours

les longueurs totales des mouvements des deux points sont
les mêmes.)

J'obtiens ainsi deux courbes

*<»)(/) *(»>(,,

données par deux (onctions continues et univoques.

Puis j'opère la même construction pour toutes les fonctions

fn(x).Jobtiens ainsi deux suites infinies de fonctions

(» 1,2,3,...)
6. — Il résulte du théorème du § 3 et du lemme II du § 4

le théorème suivant :

Théorème. — Le nombre de fois qu'une fonction $in,(l)
traverse un intervalle quelconque (xq, Xq+i) est inférieur, quel
que soit n, à une borne finie.

Je vais montrer que 1 on peut déduire des deux suites de
fonctions

*ln)(() (« 1,2,3,...)
deux autres suites

?!"'(') ?in,(0 (n 1, 2, 3,
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qui satisfont aux équations fonctionnelles

f„W:](')]/•„ [?!"'(<)]

avec les conditions aux limites, et qui forment deux suites
de fonctions également continues dans l'intervalle 0 ^ ^ 1.

Pour cela je considère une division de l'intervalle (0, 1) de

l'axe des x en p parties égales par les points

0 xx x2 xp—\ »
^ •

Il y correspond pour chaque fn[x) des intervalles

6-;-.(v"•;<")
par la règle exposée au § 3.

On verrait aisément en vertu de la convergence uniforme
des fi{x) vers une fonction continue f(x) qui n'est constante
dans aucun intervalle, qu'il existe un nombre positif \p tel

que
Wf-iï\>xP

quels que soient n et q, [n — 1, 2, 3, (q 1, 2, 3, p).
11 y aurait une exception pour les parties des /«(#) qui

coïncident avec l'axe des x, mais cette restriction étant très
facile à lever, je n'en tiendrai nullement compte ; on lèverait
aussi facilement la restriction qui provient du fait que les
fn{x) peuvent prendre des valeurs négatives dans l'intervalle
0 ^ x ^ 1.

Je marque sur chaque courbe les points l{r]p extrémités

d'intervalle où ces courbes traversent les intervalles

(0*0 (xxx2) {xp_x\)

En vertu du théorème du § 6, ces points sont en nombre
fini sur chaque courbe (r 1, 2, Rn) et ces nombres Rw

sont bornés par un nombre que j'appellerai Np,

R,< < •

Je divise d'autre part l'intervalle (0, 1) de l'axe des l en
parties égales par des points
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Je déforme la courbe <I>!ra,(Z) par glissement de manière que
chaque point reste à la même hauteur, que (0, 0) se corres-
P°(»)de à lui_même' fi"0 (L»< l) vienne en (1, 1), que chaque

ait pour abcisse un tr et que la courbe reste continue
r L

et univoque.
J obtiens ainsi une fonction continue que je désignerai par

T M
q>p (t) o ^ t ^ 1

Puis je divise l'intervalle (0 1) en parties égales. Il y
correspond un nouveau nombre N2^, j'effectue un nouveau

î (")
glissement de la courbe <j>/? (t) qui laisse inaltérés les points

(m) ^2^ e't qui fasse passer tous les nouveaux points ^ extrémités

d intervalle de traversée au-dessus d'abcisses obtenues

en divisant chaque intervalle (tr, *r+1) en parties
égales et cela de manière que la nouvelle courbe ainsi
obtenue

(n)
«I>2p(t)

î

soit univoque et continue.
Je répète cette opération de dichotomie et les glissements

correspondants une infinité de fois, ce qui donne une infinité

de fonctions
T("> a$ 2 p({) 0, l, 2, 3,

On verrait aisément, que ces fonctions convergent
uniformément vers une fonction continue comme cela résulte
de leur construction même.

La même opération effectuée pour tous les n fournit une
suite infinie de fonctions

ç{n)(<) 1, 2, 3, 0 ^ ^ 1-

qui n'ont chacune, comme les fonctions correspondantes
.$!"'(/), qu'un nombre fini d'extrêma.
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Je puis donc en déduire par les équations fonctionnelles

4 [?<"'(d] =/;,[?<>)]
une suite

1,2,.:.).

les et pf)(l) satisfaisant aux conditions aux limites

©;,t)(0! 0, œ<"»(0) l,
(n 1, 2, 3,

?«")(1) 0.
7. — Théorème. —- Les fonctions <p{n)(t), ^n)(t) (n 1, 2,

3, sont également continues.
En effet, pour que

| ^"'(O - I < -J- 1, 2, 3,
21. p

il suffiI, en vertu du mode de construction des que

1
I fl *2 I

N jVT N q
*

Je dis que l'on a aussi

Kn)('i) < q > (» 1, 2, 3,

pour
I tt - t21 < 1

Pour le démontrer, j'utiliserai l'équation fonctionnelle (2)
qui donne

/•n[?i")(M] - (4)

mais en vertu de l'égale continuité des <p|n)(2) et de la convergence

uniforme des fn[x), le premier membre peut être rendu
inférieur à r,si petit que soit r,pourvuqne |ti — L\ < e.

On a donc sous cette même condition

4[?i")fO]-/-,1[?i')('2)]<r

ceci exige, en vertu de la convergence uniforme des fn{x)
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vers une fonction continue qui n'est constante dans aucun
intervalle, que l'on ait aussi

qr tendant vers zéro avec r.
Le théorème est donc démontré. L'égale continuité des

?[n)M apparaîtra peut-être mieux en employant la démonstration
suivante :

Si les n'étaient pas également continues, on pourrait
trouver y, telle que pour une suite

convenablement choisie de fonctions et une suite
d'intervalles 2,^, dont la longueur tende vers zéro lorsque q
augmente indéfiniment, on ait:

> q (q 1, 2, 3,

pour deux valeurs T et T' de t dans 2n
L'égalité (4) donne

max
T et t' dans 2

nq

/»», [?,"*(*)] -/"»,[<» IV')]

max
T et t' dans 2

nq

f«q [<'? W] - f„ [<? ft')]

mais lorsque q augmente indéfiniment, le premier membre
tend vers zéro, tandis que le second reste supérieur à une
borne non nulle.

8. — Ceci étant, en vertu d'un théorème connu, on peut
extraire de la suite des f"(t) une suite 9* /; qui converge
uniformément vers une fonction continue q',(/).

De la suite correspondante yW(/), 0n peut également
déduire une suite qui converge uniformément vers une
fonction continue ^(t),soit?<»)(*) la suite correspondante
des fonctions y<n)(£).

Je dis que les fonctions el ys(2) satisfont à l'équation (1).
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En effet, on peut passer à la limite sur l'équation

275

C[T!",)(')]=CK")(')] • (5)

c'est-à-dire que l'on a

A<Pi (0] Hm fm [?!'"» («)] Hm (0] f[<h {*)] 0 ^ t* 1

m=oo m=oo

et les conditions aux limites énoncées dans la question sont
satisfaites.

Le problème est donc résolu dans toute sa généralité. La
seule hypothèse de la continuité est suffisante. La solution
pourrait d'ailleurs dans certains cas dépendre du choix des
suites f(et n'être pas unique.

9. — La solution du problème précédent permet de
répondre à la question suivante comme me l'a obligeamment
fait remarquer M. Plancherel.

Soit C une courbe fermée sans points multiples, X une
direction. Il existe deux droites X4, X2 de direction X telles
que C soit contenue dans la bande (X4, Xa) et que cette bande
soit de largeur minimum. G et li ont en commun au moins
un point A4, G et X2 au moins un point A2 Soient ai% a2, a3
les intersections d'une droite X quelconque avec C et soit
Utk le milieu du segmenta, ctk.

Appelons médiane relative à la direction X le lieu des am.
Cette médiane peut se composer de plusieurs arcs séparés.
Démontrer qu'il existe un arc de médiane joignant Ai et. A2.

En représentant par x <j>(/), y $(£) la courbe C et
prenant A4 comme origine et X4 comme axe des .r, on aura
^(0) ^(1) 0, et la question est ramenée au
problème primitif.

L'existence d'au moins une médiane joignant A4 et A2 est
donc démontrée.

10. — Je vaudrais, pour terminer, expliciter de la démonstration

précédente quelques propriétés générales du procédé
de «glissement» qui pourraient intervenir dans une
catégorie de problèmes du même genre.

Remarque. — On se convaincra aisément de ce que le
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procédé de «glissement» est applicable à toute fonction
continue, univoque, bornée, définie sur un intervalle
quelconque fini ou infini, et qui ne traverse un intervalle
quelconque qu'un nombre fini de fois.

J'appellerai dans la suite fonction F, une fonction jouissant
de cette propriété.

Théorème. — Soit
y("'(#) 1, 2, 3

une suite infinie de fonctions F bornées dans leur ensemble,
et qui ne traversent un intervalle quelconque qu'un nombre
de fois inférieur à une borne finie indépendante de /a, on
peut par « glissement » en déduire une infinité de fonctions

Y(,,)(<) 1, 2, 3

définies dans l'intervalle fermé 0 ^ 1, qui soient également

continues et bornées.
Remarque. — On peut définir des glissements particuliers

pour lesquels toutes les propriétés établies dans le présent
travail subsistent, auxquels correspondent des changements
de variable; c'est-à-dire que si Y(£), 0 ^ 1 est la
transformée par glissement d'une fonction F, ^ ^on peut trouver une fonction continue et jamais décroissante

dans l'intervalle fermé 0^/^.1, telle que «,
<J/(1) bet que

Y(<) =/[+(<)]•

Lorsque l'intervalle [a,b) est infini, la fonction if>(t) ne
sera définie et continue que sur l'intervalle ouvert 0 < < I.

Théorème. — Etant donné une fonction F, on peut par
« glissement » en déduire une fonction continue dans
l'intervalle (0, 1), constante dans tout l'intervalle sauf sur un
ensemble de mesure nulle.

En effet; les N^,, N2i, Na?f ayant la même signification
qu'au §6, mais pour une seule fonctionne divise en 2«^^
parties égales les intervalles que j'avais divisés en N2?p par-
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ties égales. Je puis alors placer les points 2, de manière

que tout 2r?+'P soit à une distance d'un lfp moindre que

N-/+V 1

_

g 2i+-+(î+i,Np N2?+i^ 2'+-t(î+!)Np N2?p

Un point if pquelconque se trouve donc à une distance

d'un lfp nulle si q'q̂etplus petite que

oc

si i'>q-
m—0

On peut alors enfermer tous les 2 dans des intervalles
dont la somme des longueurs est àu plus égale à

r 2/ N2?Jq q 2 p

et la courbe limité sera constante en dehors de ces
intervalles. Mais ceci est vrai quel que soit q, et puisque yq, on

1
le voit aisément, tend vers 0 avec — la fonction transformée

est constante sauf sur un ensemble de mesure nulle.
L'existence d'une pareille fonction constante dans les

intervalles contigus à un ensemble parfait discontinu est
bien connue. J'ai montré ici comment elle pouvait se déduire
du procédé de glissement.

N'ayant point fait de recherches bibliographiques sur le

sujet de ce travail, je ne puis affirmer que les deux
théorèmes et la remarque de la page 276 soient nouveaux.
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