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QUELQUES REMARQUES SUR UN THEOREME
RELATIF A LA SERIE HYPERGEOMETRIQUE
ET SUR LA SERIE DE KUMMER

) PAR

C. CamLer (Geneve).

I. — A la suite des recherches de M. J. Hadamard, je suis
' parvenu, il y a quelques années, a la relation suivante.

Soit

§ d(x, y, z7) = F(a, B, v, 2z)F(«, B Y y(1 —z)) ;

. ona

1
sz—'i(i — )V (2, ¥, 2)dz
o .
=Dy =1)!
o+ y =

ﬂ—ﬂwgﬂm@m+wﬁx+y—wﬁ-(ﬂ

Le fait que le second nombre est hypergéométrique rela-
tivement a la combinaisonx +y —ay =1 — (1 —x)(1 — y)
est fort remarquable. Malheureusement le résultat ci-dessus
n’est pas général. Outre les conditions de convergence de
'intégrale, lesquelles sont naturellement supposées, il faut
pour la validité de (1) que les parametres obéissent aux con-
ditions ,

o« +o =3+ =vy+7Y . (2)

Mon attention ayant été récemment appelée de nouveau
sur le théoréme (1), j’ai essayé de le généraliser en suppri-
mant les restrictions (2). Pour qu’une semblable généralisa-
tion offre quelque intérét, il faut évidemment que le second
membre reste une fonction simple de la quantité x + y — xy.
Or j’ai eu beau modifier la forme de la fonction @, et changer
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les limites de I'intégration, toutes mes lentalives ont invaria-
blement échoué; il semble que les condilions (2) soient
nécessaires et jusqu'ici 'équation (1) reste seule de son
espece. |

Enrevanche, j'ai trouvé que Pintégrale du premier membre
de (1) peut revétir une autre forme, valable pour tous les a.
B. y. &', B, 9 qui assurent la convergence; cetle nouvelle
forme est encore une intégrale définie. la suivante

' ror 1
C(1— ‘)'}Y+Y * fz"'—l (1 — zja+bf1 Hx.y. z)dz . (3)
0

La signification des lellres esl consignée dans le tableau
H(x Y. z)
=Fla+a—B,b,a+b,1—2Fla4a, b+8, y4+v, (1 —¥)z4y)
¢=y+yv—ae—a, b=y4+y—§—§,

C__(y——i)!(y"—-l).' (@ 4o — 1)1 b4+ —1)!
Y= =N = Ola+b—1)

Il est clair qu’on peut obtenir plusieurs égalités analogues,
en alternant entre elles les letires « et f3, ou & et B, ou
encore en permutant les deux séries «. 8. y. x et o, 8, y. Y.
En outre, les propriétés connues de la fonction F permellent
d’écrire (3) sous plusieurs formes équivalentes; en faisant,
par exemple

Lz, y, 2
=Vla+a—f, b,adtb, 1—F i gyt as(l — )+,

on a, au lieu de (3), 'expression
1

Gl — 9 T — e Y Ly gae . )
0 |

Le procédé, tout élémentaire, par lequel j’ai établi autre-
fois la relation (1) s’applique avec le méme succes i la
démonstration de ['égalité nouvelle

1 ' 1
—1 I_,l ¢ I_a/_fil ,
sz (1 — z)Y bdz = C(1 - 3')Y+Y ‘ fz“_l(i — z)a+b_lHdz .

0 : 0
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Faisons d’abord £ = 0, le premier membre se réduit a

1
/1 —1
sz 1 — z)Y F(a’, B/, ¥, yz)‘dz
v .

ce qui vaut, comme on voil aisément,

{Y'—l)‘(Y—i)XF ’ ’ V ’
7 ’ ’ + ’ .
v+ —1)" @ By 1)

Mais c'est aussi la valeur du second membre; car, dans
la méme hypothése x+ =0, la forme (4) nous le montre iden-
tique a I'expression '

1 .
CF(a’, B, v+ ¥, y)/}“+$‘”(1__ 2% 1F(a+a—B, b, a+b,z)dz

0
(6)

Mais ici 'intégrale définie vaut

(@+b—1!{a —1!

(‘ I l 1
ta + b 4 a— 1! Fla+a—B, b, at+b4a, 1),

ou .
(a—}—l)—1)!‘.a——1)l(u—{—l)+a-—‘I)T(B——Il!
4+ b+a—1F (at+a—ntib+—"101"

On n’a qu’a transporler ce résultat dans (6) et & substituer
la valeur de C pour faire apparaitre l'identité.

La formule (5) a démontrer est donc exacte, si x est nulle,
cela quelles que soient les valeurs a. 8. y; . 8, y" el ¥.

Pour aller plus loin, désignons par Df{a. 8. y a' . .y y)
la différence existant entre les deux membres de (5). On
reconnait a I'instant I'exaclitude e la relation

dD Ot@ ’ ’ ’, .
%—TD(O‘_*_CL’B+1s7+1’a’@?Y’xv3)'

Par suite, si £ = 0, non seulement la différence D s'an-
’ d"D

nule mais aussi toutes les dérivées —t Et puisque D est
X

analytique en x, on en conclut que D est identiquement
nulle. |
La relation (5) est donc exacte sous la réserve, qui va de
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sol, que les intégrales des deux membres soient conver-
gentes 'une et 'autre. Le théoréme peut d’ailleurs étre aisé-
ment modifié de maniére 4 embrasser le cas de divergence;
il suffit de remplacer le contour rectiligne d’intégration par
un lacet double entourant les points critiques zéro et 'unité.

La proposition (1) apparait alors comme un simple cas par-
ticulier de (5), celui ou les deux paramétres a et b sont
nuls : c’est d’ailleurs le lait que la formule (1) se généralise

~dans ’équation (5) qui préte un certain intérét a cette der-

niere malgré sa complexité. |
II. — Pour donner un exemple concret d'application de
la formule (5), prenons le cas b =0, ou

T+Y=84+8;

une seule des conditions (2) est ici supposée. ‘
Faisons en outre y — 1; le premier 'membre de 1'équa-
tion (5) est
1 ’
f 7=l Y1 ropr oo
z (1 — z) Fla, 8, y, xz)F(a/, B, v, 1 — z)dz .
: -

Pour qu'il soit convergent, il faut et il suffit que
>0 Y>>0 y4+y—o —p'>0.

Afin d’en obtenir la valeur, 4 la place du second membre
de (5) qui se présente sous une forme illusoire, nous choi-
sissons '’expression (4). Elle donne

1
CR(&, B, y+ o 1) [ (1 — 9" — g T YT gy,
0 »

et enfin, aprés quelques réductions faciles,

1 1 e N 4
fz (1 — z) Fla, 8, vy, 2z)F{a/, §', v/, 1 — z)dz
0
. (Y—-i)!(y’——l)!(y—{-y’—a’——{'z'——‘l).’F
Y= =)y = =1

(Y+yY—a'—f e, y+yY—a' x) .

Cette équation suppose, répétons-le, y + y'= 8 + £
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 III. — La formule (1) présente de nombreux cas de dégé-
nérescence dignes de remarque. Qu’il me soit permis de
citer ici, en maniére de conclusion, ceux qui concernent la
série de Kummer

2
F(ocv, i &) = 1 +g—x +a(a +1)f——+

Y Ty + 1) 2!
Cette série entiére posséde la propriété
€Fla,y; —x) = F(y—a, y; )

facile a démontrer; elle se relie d’autre part aux fonctions
de Bessel par I’équation |

J 1 (xt)

*3
() 2

ou A désigne une conslante convenablement choisie.
Ceci posé, nous avons le résullat suivant. |
Soient
Fla, vi x) et F(a/, v x)

deux fonctions de Kummer telles que
a4+ o =y4+v;

1

sz—l(l e z)Y’,_lF(a, Y; xz)F(a/, ¥ y(1 — z))dz
0

— Ny =1 a ,
:WW+VLMQGFW,P+Wy*@,

c’est 'analogue de la formule (1).
A cette équation je joins encore la suivante, qui ne sup-
pose plus réalisée la condition o +a'=y + 3': c’est
1

11 Tt ,
fz (1 — z) F(a, v; xz)F(a’, ¥'; 2(1 — z))dz
- .

(f — 1) (y'— 1) , ,
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