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6 C. DE LA VALLEE POUSSIN

fonction conlinue; la représentation trigonométrique, auquel
cas la fonction est supposée continue et périodique de pé-
riode 2m, la représentation s’étend alors a toutes les valeurs
réelles de x. - ‘

Cette représentation trigonométrique est donnée par une
expression d'un certain ordre fini n, c’est-a-dire par une
suile limitée de la forme

a, + a, cosx + a, cos 2x + ... + a, cos nx

+ by sinx 4 bysin2x 4 ... 4 b, sin nx ,

ou, ce qui est la méme chose, par un polynéme de degré n
en sinx et cosx. Il y a lieu d’observer que si 'expression
est paire, elle se réduit, les sinus disparaissant, a un poly-
nome de degré n en cos .

Soient f(x) une fonction continue dans un intervalle (a, )
et Po(r) un polynéme de degré n d’ailleurs quelconque. Ce
polynéme doit étre considéré comme une expression appro-
chée de f(x). Le maximum dans (a, b) de la différence ab-

solue
| flx) — P, |

est Lapproximation fournie par P,. Ce polyndome est d’autant
meilleur comme expression approchée qu'il fournit une ap-
proximation plus petite. Si 1'on considérait une fonction
périodique et sa représentation trigonométrique, 'approxi-
mation se définirait de la méme maniére.

Le probléme de Uapproximaiion consiste a former une
expression de l'un ou de l'autre de ces deux types dont
Lapproximation soit aussi petite qu’on le veut. Le probleme
est possible dans les deux cas. Il y a la deux théorémes
d’existence, tous deux dus a Weierstrass (1885), et qui ont
été le point de départ de la théorie qui nous occupe. Il y a
lieu de nous y arréter quelques instants.

2. — Les deux théorémes d’existence de Weierstrass.

Weierstrass a démontré les deux théorémes suivants (1):
L. Toute fonction continue dans un intervalle (a, b) peut
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étre développée en série uniformément convergente. de poly-
némes dans cet intervalle. -

11. Toute fonction continue de période 2m peut étre déve-
loppée en série uniformément convergente d’expressions tri-
gonométriques finies. |

Il est a peine besoin de faire observer que le probleme du
développement en série est le méme que celui de I'approxi-
mation indéfinie. Par exemple, si I'on a un développement
en série uniformément convergente de polynomes

fle) =P, 4+Py+ ... P, + ...,

on en déduit un polyndéme aussi approché qu’on le veut en
sommant un nombre suffisant de termes de la série. Réci-
proquement, si I'on sait former un polynéme P, aussi ap-
proché qu'on le veut, le développement en série s’obtient
par la formule

f(x):P1+(P2—P1)-+ (P's_Pg)"l—

Les théorémes I et Il se raménent réciproquement 'un a
lautre. J’y insisterai dans le paragraphe suivant. Mais, depuis
Weierstrass, on les a prouvés directement ’'un et l'autre de
hien des maniéres. Je vais signaler quelques-unes de ces
démonstrations et faire quelques observations d’un ordre
général.

La plus simple peut-étre des démonstrations du théoréme
Il est celle de M. Volterra (2): On peut approcher autant
qu’on veut d'une courbe continue a I'aide d’une ligne poly-
oonale. Une telle ligne représente une fonction qui, n’ayant
qu’un nombre limité de maxima et de minima, peut, d’aprés
Dirichlet, étre développée en série de Fourier uniformément
convergente. On sommera un nombre suffisant de termes
de cette série et 'on obtiendra 'approximation demandée.

Les autres démonstrations du théoréme II se rattachent,
comme celle-ci, a la série de Fourier. Elles utilisent I'un ou
Pautre des divers procédés de sommation de cette série qui
assurent la convergence, soit le procédé de sommation de
Poisson comme celle que M. Picard a donnée dans son Traité
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d’Analyse, soit le procédé de la moyenne arithmétique, ce
qui est préférable, car ce procédé, quiest celui de M. Féjer,
donne, du premier coup, une somme trigonométrique finie.
Enfin jai indiqué moi-méme (3) en 1908 un troisieme pro-
cédé qui présente le méme avantage que celui-ci.

Passons au théoréme I. Weicerstrass le démontre par la
considération de l'intégrale

Vo

qui, pour n assez grand, s’approche autant qu’on veut de #(x)
dans l'intervalle (@, b). Mais il vaut mieux, comme M. Landau
I’a fait le premier (4), définir dlrectement un polynéme ap-
proché par la formule

‘ 1
P, (x) ff (t — %}2]" dt
0

ou l'on a posé
1
1 n
. o= = (1 — t2)
w=)
0

Nous reviendrons plus loin sur ce polynéme P,. que nous
appellerons polynéme de Landau. |

Ces démonstrations font appel au calcul intégral et ont
une allure synthétique. On doit a M. Lebesgue une démons-
tration, qui ne va pas au dela du théoréme de Weierstrass,
mais qui est trés instructive par son caractére strictement
analytique. Elle réduit le probleme a ses éléments irréduc-
tibles, ce qui permet de le résoudre avec un minimum de
moyens. Elle a été publiée (5) en 1898, dans une courte Note,
la premiére qui ait été écrite par l'illustre mathématicien
francais. Dans cette Note, intéressante a plusieurs titres,
M. Lebesgue ramene la démonstration du théoreme I pour
une fonction continue quelconque, a la démonstration dudit
théoreme pour la seule fonction particuliere |x|.

M. Lebesgue emprunte d’abord a M. Volterra la réduction
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de l'approximation d’une fonction continue quelconque a
celle d’une ligne polygonale. Voici maintenant comment il
raméne 'approximation d'une telle ligne a celle de |x|.

Soient (2,, Y1), (Tay Ya)s -+ (Xu, ¥n) les sommets de la ligne
polygonale dont il faut représenter approximativement l'or-
donnée entre les abscisses x, et &,,. Remarquons que la fonc-
lion

o () = |2 — x| + (x — x)

est nulle pour'x < x,_ et égale a 2(x — x,) pour x > x,.
Posons

r—1

F(x) = a, 4 E a9, () _
=1

ou a,, @,, ... @s— sont n constantes a déterminer. Celte fonc-
tion varie linéairement entre deux abscisses consécutives
%, et . Donc, pour I'identilier & la ligne polygonale, il
suffit d’amener la coincidence des sommets. Faisons & — x,,
nous obtenons ainsi la condition :

i—1
Dy = o + 2 E apla; — xy)
k=1 )
Ceci constitue, pour z =1, 2, ... n, un systeme récurrent,

qui détermine de proche en proche «,, a,, ... @,_:. Ainsi
'approximation de l'ordonnée’ F(x) de la ligne polygonale
est ramenée a celle de ¢, (x) ou de [x — x,| et, en définitive,

a celle de |x|.

3. — Réduction des deux modes d’approximation I'un a I'autre.

Les deux modes d’approximation se raménent l'un & 'autre,
I'approximation par polynomes a une approximation trigono-
métrique et, inversement, l'approximation trigonométrique
a une approximation par polynomes.

Les deux problémes ont été résolus dés le début, mais le
probléme direct, qui a pour objet de déduire 'approximation
par polynémes d'une approximation trigonoméirique, est le
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