Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 20 (1918)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LA « VARIÉTÉ MOYENNE » DE DEUX VARIÉTÉS CONVEXES

Autor: Tiercy, Georges

Kapitel: § 3.

DOI: https://doi.org/10.5169/seals-18029

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

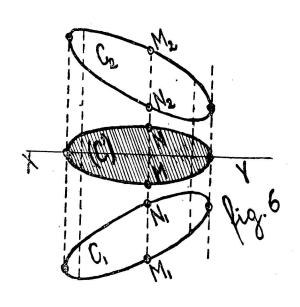
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

§ 3.

Considérations relatives au cas de (n=2) et au cas de (n=3). Considérons deux courbes convexes, planes, orthogonalement symétriques l'une de l'autre par rapport à un axe (XY); traçons toutes les cordes $(M_4N_4N_2M_2)$ perpendiculaires à l'axe (XY); et marquons (fig. 6) les points mi-



lieux M et N des segments $(M_1 N_2)$ et $(N_1 M_2)$. On construit ainsi une courbe (C') convexe, qu'on peut appeler : courbe moyenne de C_1 et C_2 relative à la direction (XY).

Cette courbe (C') n'est pas identique à la courbe moyenne générale (C), définie précédemment; son pourtour est plus petit que celui de (C), et elle est entièrement située à l'inté rieur de (C);

nous démontrerons ce détail dans la remarque I.

D'autre part, d'après ce que nous avons établi, la courbe (C) a le même pourtour que chacune des courbes symétriques C_1 et C_2 ; en effet, le pourtour de (C) est égal à la moyenne arithmétique des pourtours de C_1 et C_2 , et ces deux derniers ont la même longueur.

Si donc on appelle p la valeur du pourtour de chacune des courbes données, $\mathcal L$ le pourtour de la courbe moyenne (C') relative à la direction (XY), et P le pourtour de la courbe moyenne générale (C), on a les relations :

$$\mathfrak{T} \leq P$$
; $P = p$; $\mathfrak{T} \leq p$.

On a donc établi que le périmètre de la courbe (C') est plus petit que celui des courbes proposées, ou lui est au plus égal.

Or, remarquons que la courbe (C') n'est pas autre chose

que la « transformée de Steiner de la courbe C_4 relativement à une direction perpendiculaire sur $(XY)^4$ »; on l'obtient en portant sur toutes les cordes (M_4N_4) prolongées, de part et d'autre de l'axe (XY), la moitié de la longueur (M_4N_4) . On démontre ainsi que la « transformée de Steiner relative à la direction (M_4N_4) » a en général un pourtour plus petit que celui de la courbe primitive C_4 .

Pour que le pourtour de (C') soit égal à celui de C₁, on voit immédiatement la condition : il faudrait que la courbe

C, ait un axe de symétrie parallèle à (XY).

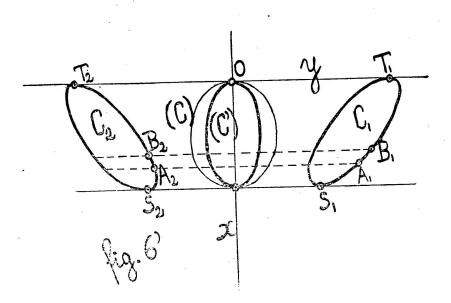
Remarquons d'ailleurs que l'aire de la courbe est conser-

vée, quelle que soit la courbe convexe C1.

Remarque I. Nous avons dit que le pourtour de la courbe (C') est plus petit que celui de la courbe (C), et par conséquent plus petit que celui de chacune des courbes symétriques données. Etablissons ce théorème, géométriquement et par le calcul.

Prenons la droite (XY) comme axe des x, et une des tan-

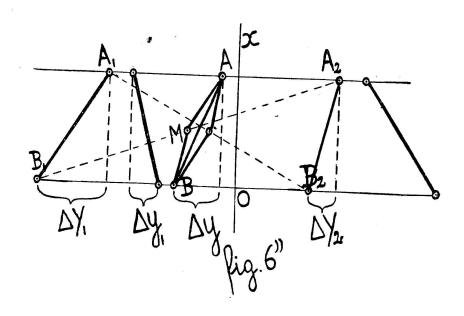
gentes communes comme axe des y (fig. 6').



Géométriquement: Cela résulte de la construction même des courbes (C) et (C'). Prenons en effet deux petits arcs cor-

¹ STEINER. Œuvres, II, p. 264-267.

respondants $\widehat{A_1}$ et $\widehat{A_2}$ $\widehat{B_2}$ (fig. 6'). Si on les assimile à des segments de droites (fig. 6"), et qu'on cherche les variétés



(C) et (C') déduites de ces segments, on a :

$$\overline{AB} < \overline{AM} + \overline{MB}$$
 .

On étend immédiatement à la courbe entière. Par le calcul: Soient

$$y = y_1(x)$$
 et $y = Y_1(x)$

les équations des deux branches $\widehat{S_1T_1}$ de la courbe C_1 , la fonction $Y_1(x)$ se rapportant à l'arc extérieur. Les équations de la courbe C_2 seront :

$$\left\{ \begin{array}{l} y = Y_2(x) = -y_1(x) , \\ y = y_2(x) = -Y_1(x) , \end{array} \right.$$

 $Y_2(x)$ se rapportant à l'arc intérieur $\widehat{S_2T_2}$.

On a alors, en désignant toujours par p le pourtour de C, et de C_2 , et par P celui de la courbe moyenne générale (C):

$$\begin{cases}
P = p = \int \sqrt{1 + Y_1'^2} dx + \int \sqrt{1 + Y_1'^2} dx \\
= \int \sqrt{1 + Y_1'^2} dx + \int \sqrt{1 + Y_1'^2} dx
\end{cases}$$

Quant à la courbe moyenne (C') relative à la direction (Ox), courbe dont le pourtour est désigné par \mathcal{Z} , il vient :

$$\Delta y = \frac{\Delta Y_1 + \Delta Y_2}{2}; \qquad (fig. 6'')$$

$$y' = \frac{Y_1' + Y_2'}{2};$$

$$\mathcal{L} = 2 \int \sqrt{1 + \left(\frac{Y_1' + Y_2'}{2}\right)^2} dx.$$

On vérifie immédiatement qu'on a :

$$\mathfrak{T} \leq P$$
.

Pour qu'il y ait égalité (2 = P), on voit qu'il faudrait :

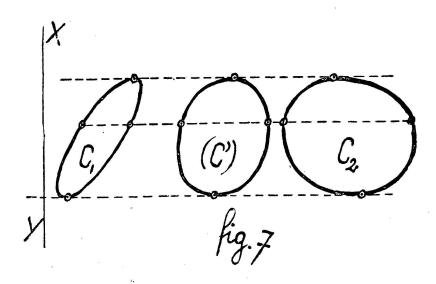
$$Y_{\mathbf{1}}'(x) = Y_{\mathbf{2}}'(x) ,$$

c'est-à-dire:

$$Y_1(x) = Y_2(x) + K ,$$

K étant une constante. Autrement dit : les courbes C_1 et C_2 devraient présenter un axe de symétrie parallèle à (Ox). C'est également ce qu'indique le raisonnement géométrique basé sur les fig. 6' et 6".

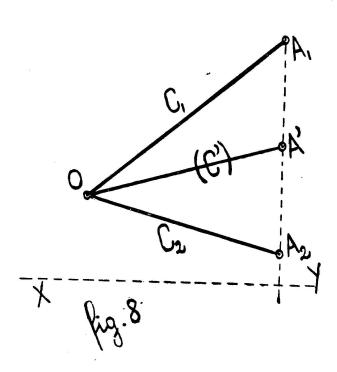
Remarque II. Plus généralement, toutes les fois que deux courbes convexes C₁ et C₂ sont comprises entre deux tangentes parallèles (fig. 7), on peut considérer la courbe



moyenne (C') relative à la direction (XY) perpendiculaire à celle des tangentes.

Dans ce cas, la courbe (C') n'a pas d'axe de symétrie orthogonale.

Application de cette remarque: Considérons le cas où les courbes C_1 et C_2 se réduisent à deux segments de droites concourants (fig. 8). Joignons les extrémités A_1 et A_2 , et cherchons la variété moyenne (C') de C_1 et C_2 relative à la



direction (XY) perpendiculaire à la droite (A₁ A₂). Les variétés proposées ne sont symétriques l'une de l'autre par rapport à aucun axe (symétrie orthogonale). La variété moyenne (C') obtenue n'est alors autre chose que la médiane (OA') du triangle (OA₁ A₂).

Considérons maintenant, dans l'espace E₃, deux corps convexes quelconques C₁ et C₂, symétriques

l'un de l'autre par rapport au plan π (la fig. 6 peut encore servir; il suffit de poser que le plan π est représenté par sa trace XY sur le plan du dessin). En opérant comme dans le cas de (n=2), on construit un volume convexe (C'), qu'on peut appeler : « Corps moyen de C_1 et C_2 relativement au plan π ».

Ce corps (C') est tout entier contenu dans le corps moyen général (C) précédemment défini; cela résulte des définitions mêmes de (C) et (C'). D'ailleurs, on vérifie aisément que la surface de (C') est plus petite que celle de C_1 ; soient en effet (fig. 6'):

$$z = Z_1(x, y)$$
, $z = z_1(x, y)$,

les équations des deux portions $\widehat{S_1T_1}$ de la surface de C_1 , la fonction $Z_1(x, y)$ donnant la portion extérieure. Soient encore :

$$\left\{ \begin{array}{l} z = Z_{2}(x\,,\,y) = -z_{1}(x\,,\,y) \;, \\ z = z_{2}(x\,,\,y) = -Z_{1}(x\,,\,y) \;, \end{array} \right.$$

les équations des deux portions $\widehat{S_2T_2}$ de la surface de C_2 , la fonction $Z_2(x,\,y)$ se rapportant à la portion intérieure.

Désignons par s la surface de C₁ ou de C₂; et S celle de la

variété (C'). Posons ensuite :

$$\left(\begin{array}{ccc}
\frac{\partial Z_1}{\partial x} = P_1, & \left(\frac{\partial Z_1}{\partial x} = P, & \left(\frac{\partial Z_2}{\partial x} = P_2, \\
\frac{\partial Z_1}{\partial y} = Q_1; & \left(\frac{\partial Z_1}{\partial y} = q; & \left(\frac{\partial Z_2}{\partial y} = Q_2; \right)\right)
\right)$$

il vient:

$$\begin{cases} s = \int \int \left[\sqrt{1 + P_1^2 + Q_1^2} + \sqrt{1 + p^2 + q^2} \right] dx dy \\ = \int \int \left[\sqrt{1 + P_1^2 + Q_1^2} + \sqrt{1 + P_2^2 + Q_2^2} \right] dx dy \end{cases}$$

Puis, pour la variété (C'):

$$\begin{split} z_{x}^{'} &= \frac{\mathrm{P_{1}} + \mathrm{P_{2}}}{2} \; ; \qquad z_{y}^{'} &= \frac{\mathrm{Q_{1}} + \mathrm{Q_{2}}}{2} \; ; \\ \mathcal{S} &= 2 \int \int \sqrt{1 + \left(\frac{\mathrm{P_{1}} + \mathrm{P_{2}}}{2}\right)^{2} + \left(\frac{\mathrm{Q_{1}} + \mathrm{Q_{2}}}{2}\right)^{2}} \, dx \, dy \; . \end{split}$$

Or, ce corps (C') n'est pas autre chose que le « transformé de Steiner de la variété C_4 relativement à une direction perpendiculaire au plan π » (voir Œuvres de Steiner, II, p. 302); on l'obtient en portant sur toutes les cordes $(M_4 N_4)$ prolongées, et de part et d'autre du plan π , la moitié de la longueur du segment $(M_4 N_4)$. Il en résulte que le « transformé de Steiner de la variété C_4 relativement à une direction $(M_4 N_4)$ d'ailleurs quelconque » a en général une surface plus petite que celle des variétés symétriques proposées.

Pour que la surface soit la même, il faudrait :

$$P_1 = P_2$$
 et $Q_1 = Q_2$;

c'est-à-dire:

$$Z_1(x, y) = Z_2(x, y) + K,$$

avec K = constante; il faudrait donc que le corps C_1 présente un plan de symétrie parallèle au plan π ; l'opération de Steiner reviendrait alors à déplacer le corps C_1 en translation, perpendiculairement à son plan de symétrie.

Remarque 1. On verrait facilement que la variété (C') a le même volume que C_1 ou C_2 .

Remarque II. Pour pouvoir appliquer l'opération (C'), il n'est point nécessaire que les corps C_1 et C_2 soient symétriques l'un de l'autre par rapport à un certain plan π ; il suffit qu'ils soient convexes et inscrits dans un même cylindre. Mais alors, le corps moyen (C'), relatif au plan π normal aux génératrices du cylindre, ne présente plus de plan de symétrie orthogonale.

Remarque III. On pourra de même, dans l'espace E_n à n dimensions, construire une variété (C') correspondant aux deux variétés C_1 et C_2 , lorsque ces dernières seront orthogonalement symétriques l'une de l'autre par rapport à un certain (n-plan) π .

§ 4.

Combinaison sommatoire géométrique de deux variétés C_1 et C_2 dans l'espace E_n .

Considérons la variété moyenne (C) générale de C_1 et C_2 . Et construisons une variété semblable (V) avec un rapport de proportionnalité égal à 2. Cette variété (V) présente toutes les arêtes de C_1 et toutes celles de C_2 , en grandeur et orientation; de même, on y trouve toutes les faces de C_1 et celles de C_2 en vraie grandeur (il y a, en plus, d'autres faces « de liaison »).

On obtiendrait le même résultat si l'on cherchait à construire directement la plus petite variété convexe possible présentant toutes les arêtes de C₁ et toutes celles de C₂ en grandeur et en orientation, et seulement ces arêtes (elles peuvent d'ailleurs figurer plusieurs fois).

Nous pouvons appeler cette variété (V) la « somme géométrique de C_1 et C_2 ; ou plutôt, afin d'éviter toute confusion avec la terminologie employée dans la théorie des vecteurs, nous dirons : « Combinaison sommatoire géométrique » des variétés C_1 et C_2 .

Exemple: Si on a deux sphères de rayons R_1 et R_2 , la variété (V), qui leur correspond, est une sphère de rayon $(R_1 + R_2)$.