Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 20 (1918)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LA « VARIÉTÉ MOYENNE » DE DEUX VARIÉTÉS CONVEXES

Autor: Tiercy, Georges

Kapitel: § 2.

DOI: https://doi.org/10.5169/seals-18029

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SUR LA «VARIÉTÉ MOYENNE» DE DEUX VARIÉTÉS CONVEXES

PAR

Georges Tiercy (Genève).

§ 1.

On connaît la définition de « corps moyen » de deux corps convexes donnés : soient C_1 et C_2 ces corps donnés ; on joint un point A_1 de C_1 à un point A_2 de C_2 ; on prend le point milieu M du segment $(A_1 A_2)$; le lieu des points M est le corps moyen de C_1 et C_2 .

Les propriétés de ces « corps moyens » peuvent être établies analytiquement; il suffirait pour cela d'utiliser la

« théorie des corps convexes » de Minkowski 1.

Les démonstrations deviennent extrêmement simples, si l'on procède par voie géométrique. Je me suis d'ailleurs placé d'emblée dans l'espace à n dimensions; en cours de route, nous examinerons des cas de l'espace ordinaire. Comme cas particulier, nous envisagerons celui où toutes les droites servant à la construction de la variété moyenne ont une direction constante.

§ 2.

Soient donc deux variétés convexes, C_1 et C_2 ; la variété moyenne, que nous désignerons par (C), est aussi une variété convexe. Soit n le nombre des dimensions de ces variétés.

¹ Minkowski. Gesammelte Abhandlungen, II, p. 131-260.

Pour construire la variété moyenne, procédons de la manière suivante :

Situons l'espace à n dimensions dans l'espace immédiatement supérieur à (n+1) dimensions; concevons que la variété C_4 soit située dans le (n-plan) défini par l'équation :

$$x_{n+1} = 0 ,$$

tandis que la variété C_2 serait située dans le (n-plan) défini par l'équation :

$$x_{n+1}=2\alpha.$$

Considérons alors la plus petite variété convexe contenant les deux variétés proposées; et coupons cette variété à (n+1) dimensions par le (n-plan) défini par l'expression :

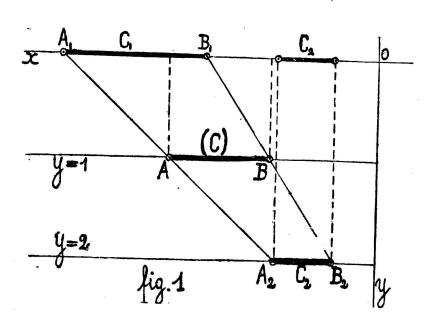
$$x_{n+1} = \alpha$$
.

L'intersection donne une variété à n dimensions; c'est la « variété moyenne » de C_1 et C_2 .

Prenons d'abord quelques exemples.

a) Premier exemple. Soit le cas de (n=1); les deux variétés données sont donc deux segments de droite, portés sur une droite indéfinie représentant l'espace à une dimension. Situons cette droite dans un plan, l'axe auxiliaire étant perpendiculaire à la droite; la variété C_4 sera portée par l'axe des x lui-même, tandis que la variété C_2 sera située sur la droite définie par :

$$y=2$$
. (avec $\alpha=1$)

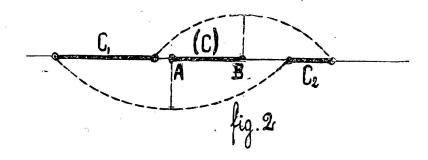


La plus petite variété convexe à (n+1) dimensions contenant les segments C_1 et C_2 est le trapèze $(A_1B_1B_2A_2)$. Coupons ce trapèze par la droite :

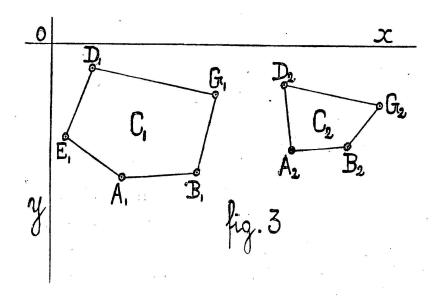
$$y = 1$$
;

on obtient le segment (AB); c'est la variété moyenne des deux segments proposés. Il n'y a plus qu'à revenir à l'espace à une dimension, par une simple translation du segment (AB) parallèlement à l'axe des y.

On aurait obtenu le même résultat en suivant la définition initiale: prendre le milieu de toute droite unissant un point d'une des variétés proposées à un point de l'autre variété. On constatera (fig. 2) pour ce premier exemple



que les points extrêmes A et B sont les milieux des droites joignant, dans l'espace donné, les points extrêmes des variétés C₁ et C₂; et cela d'une seule manière.



En outre, remarquons que la valeur du segment (C) est égale à la moyenne arithmétique des valeurs des segments C_4 et C_2 .

b) Autre exemple. Prenons le cas de (n=2); et consi-

dérons deux polygones plans, chacun ayant une orientation bien déterminée par rapport aux axes de référence.

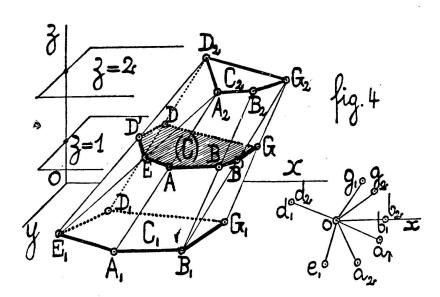
Plaçons cet espace à deux dimensions dans l'espace à trois dimensions; l'axe auxiliaire étant perpendiculaire au plan des polygones donnés; la variété C₁ restera dans le plan:

z=0;

la variété C2 sera située dans le plan :

z=2;

mais elle gardera son orientation par rapport aux axes des x et des y.



Le plus petit volume convexe limité par les bases C_1 et C_2 est un prismatoïde; ses faces latérales sont des trapèzes ou des triangles; on aura un trapèze lorsque les polygones C_1 et C_2 présenteront deux côtés parallèles; par exemple, les côtés (A_1B_1) et (A_2B_2) fournissent un trapèze, de même que les côtés (D_1G_1) et (D_2G_2) ; quant aux triangles, on les obtiendra en étudiant l'orientation des différents côtés des variétés proposées par rapport à l'un des axes de référence; on prendra successivement comme bases des triangles latéraux, les côtés indiqués par la « rose d'orientation » (fig. 4); on comprend ici l'importance de la conservation de l'orientation, respective des variétés C_1 et C_2 .

Coupons ce prismatoïde par le plan:

z=1;

on obtient un polygone (ABB'GDD'E); c'est la variété moyenne des deux variétés proposées.

On revient alors à l'espace à deux dimensions par une translation du polygone obtenu parallèlement à l'axe des z. La construction est facile; il suffit de la faire en perspective cavalière exacte.

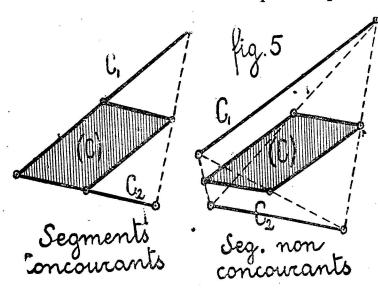
En opérant directement sur la figure (3) à deux dimensions, d'après la définition initiale (qui consiste à prendre le milieu de toute droite unissant un point de C_1 à un point de C_2 , dans l'espace où ces figures sont placées), le lecteur obtiendra le même résultat; c'est évident, car cela revient à ne considérer que la projection orthogonale de la figure (4) sur le plan xy.

On voit immédiatement que : 1° les points extrêmes de la variété solution, ou sommets, sont les milieux de droites joignant des points extrêmes des figures données; il ne saurait en être autrement;

 2° la longueur du pourtour du polygone (C) est la moyenne arithmétique des longueurs des pourtours de C_1 et C_2 .

c) Remarque I. Comme cas particulier de ce deuxième exemple, considérons celui où les polygones C_1 et C_2 se réduisent à deux segments rectilignes, concourants ou non. La variété moyenne est alors un parallélogramme, dont l'un des angles est égal à l'angle formé par les directions de C_1 et C_2 .

On a les dessins suivants dans l'espace E2:



Si l'on utilise l'espace à trois dimensions, la variété moyenne cherchée sera l'intersection, par le plan (z=1), d'un tétraèdre, dont l'arête C_1 sera dans le plan primitif (z=0) et dont l'arête C_2 sera dans le plan (z=2); on sait que cette section est un parallélogramme, dont les côtés ont pour valeurs respectives $\left(\frac{C_1}{2}\right)$ et $\left(\frac{C_2}{2}\right)$.

Remarque II. Ce qui précède s'étend immédiatement au cas où les variétés C_1 et C_2 sont des surfaces planes convexes quelconques. La variété moyenne sera une surface plane convexe; et le pourtour de cette variété aura pour valeur la moyenne arithmétique des longueurs des pourtours de C_1 et C_2 .

Revenons au cas général de deux variétés convexes C_1 et C_2 à n dimensions. La représentation graphique n'est plus possible; peu importe; le processus géométrique indiqué permet d'établir les propriétés fondamentales de la variété moyenne.

On a donc situé les variétés C_1 et C_2 dans l'espace immédiatement supérieur, à (n+1) dimensions : la variété C_4 dans le (n-plan) défini par :

$$x_{n+1} = 0 ,$$

et la variété C₂ dans le (n — plan)

$$x_{n+1}=2\alpha ,$$

en conservant leur orientation respective. On a alors considéré la plus petite variété convexe à (n+1) dimensions contenant C_1 et C_2 ; et l'on a coupé cette variété par le (n-plan)

$$x_{n+1} = \alpha$$
.

L'intersection donne la variété moyenne cherchée, variété convexe à n dimensions.

On établit alors aisément les remarques suivantes :

a) A tout couple de points, A_1 de C_1 et A_2 de C_2 , correspond un point de la variété moyenne (C). Si les deux points A_1 et A_2 sont des points intérieurs de C_1 et C_2 , le point milieu A de (A_1A_2) est un point intérieur de la variété (C).

Inversement, à chaque point intérieur A de (C) correspond au moins un couple de points, A₄ de C₄ et A₂ de C₂.

b) Supposons que A_1 soit un point intérieur de C_1 , et que A_2 soit un point frontière de C_2 ; le point A ne saurait alors être qu'un point intérieur de (C). En effet, imaginons, tracée autour du point A_1 , une petite (n-variété) convexe V entièrement comprise dans l'intérieur de C_1 ; et considérons, dans l'espace à (n+1) dimensions, un cône de sommet A_2 et dont la base serait cette variété V. L'intersection de ce [(n+1)-cône] par le (n-plan)

 $z = \alpha$

appartient tout entière à la variété (C), et contient le point A dans son intérieur.

c) Chaque point F de la frontière de la variété (C) correspond au moins à un couple de points F_1 et F_2 des variétés C_1 et C_2 , F_1 étant sur la frontière de C_1 et F_2 sur la frontière de C_2 . En effet, d'après la remarque b, aucun des points F_1 et F_2 ne saurait être un point intérieur.

d) Si un point E de (C) est un point extrême de la variété moyenne, les points E_1 et E_2 , qui lui correspondent, sont, non seulement des points « frontière », mais encore des points extrêmes de C_1 et C_2 ; en outre, au point E ne correspond qu'un seul couple de points E_1 et E_2 . Cette remarque résulte immédiatement de la définition des « points extrêmes ».

COROLLAIRE. Si l'on relie un point frontière F_1 quelconque de C_1 à un point frontière F_2 quelconque de C_2 , le point milieu de la droite (F_1F_2) n'est pas forcément sur la frontière de (C). Par exemple, dans le cas de (n=2), si l'on prend un point de C_1 situé sur (E_1A_1) et un point de C_2 situé sur (B_2G_2) , le milieu de la droite qui joint ces deux points est à l'intérieur du polygone (C). (Voir fig. 3 et 4.)