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I APPROXIMATION DES FONCTIONS
D'UNE VARIABLE REELLE!

PAR

C. de la VALLEE PoussIN

Professeur a 1'Université de Louvain.

1. — Le probléme de I'approximation.

L’approximation des fonctions de variables réelles a fait
'objet de recherches récentes (1898-1913). J'en ai suivi les.
dernieres avec d’autant plus d’intérét que j'avais contribué
dans une certaine mesure a les provoquer. Je me propose
de donner ici une idée sommaire de cette nouvelle théorie.
Jespere qu’elle suffira pour faire saisir les problemes les.
plus caractéristiques qui sep@,s»@ntet la nature des procédés
mis en ceuvre pour les l'jgé‘s;qgl’i{i‘é(_';;l.\e,',fme guiderai dans mon
exposé sur l'ordre histoﬁiq@e;ﬁd@fs; ‘découvertes; mais je me

bornerai aux fonctions d’une sétile variable, faute de temps..

“On se gardera d’en conclure que la théorie des fonctions de-

plusieurs variables manque actuellement d’intérét ou de-
résultats. ]

Je définis d’abord la question qui va nous occuper.

Il s’'agit d’exprimer une fonction sous forme finie avec
plus ou moins d’approximation. Mais les recherches actuelles
ne portent qué sur deux modes de représentation appro-
chée : La représentation par polynomes et alors la représen-
tation se fait dans un intervalle (@, 0), ou I'on suppose la

1 Conférence faite 2 la séance de la Société mathématique suisse, tenue a Fribourg le
24 février 1918. . ’
Les numéros dans le texte renvoient a index bibliographique a la fin de Darticle.
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6 C. DE LA VALLEE POUSSIN

fonction conlinue; la représentation trigonométrique, auquel
cas la fonction est supposée continue et périodique de pé-
riode 2m, la représentation s’étend alors a toutes les valeurs
réelles de x. - ‘

Cette représentation trigonométrique est donnée par une
expression d'un certain ordre fini n, c’est-a-dire par une
suile limitée de la forme

a, + a, cosx + a, cos 2x + ... + a, cos nx

+ by sinx 4 bysin2x 4 ... 4 b, sin nx ,

ou, ce qui est la méme chose, par un polynéme de degré n
en sinx et cosx. Il y a lieu d’observer que si 'expression
est paire, elle se réduit, les sinus disparaissant, a un poly-
nome de degré n en cos .

Soient f(x) une fonction continue dans un intervalle (a, )
et Po(r) un polynéme de degré n d’ailleurs quelconque. Ce
polynéme doit étre considéré comme une expression appro-
chée de f(x). Le maximum dans (a, b) de la différence ab-

solue
| flx) — P, |

est Lapproximation fournie par P,. Ce polyndome est d’autant
meilleur comme expression approchée qu'il fournit une ap-
proximation plus petite. Si 1'on considérait une fonction
périodique et sa représentation trigonométrique, 'approxi-
mation se définirait de la méme maniére.

Le probléme de Uapproximaiion consiste a former une
expression de l'un ou de l'autre de ces deux types dont
Lapproximation soit aussi petite qu’on le veut. Le probleme
est possible dans les deux cas. Il y a la deux théorémes
d’existence, tous deux dus a Weierstrass (1885), et qui ont
été le point de départ de la théorie qui nous occupe. Il y a
lieu de nous y arréter quelques instants.

2. — Les deux théorémes d’existence de Weierstrass.

Weierstrass a démontré les deux théorémes suivants (1):
L. Toute fonction continue dans un intervalle (a, b) peut
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étre développée en série uniformément convergente. de poly-
némes dans cet intervalle. -

11. Toute fonction continue de période 2m peut étre déve-
loppée en série uniformément convergente d’expressions tri-
gonométriques finies. |

Il est a peine besoin de faire observer que le probleme du
développement en série est le méme que celui de I'approxi-
mation indéfinie. Par exemple, si I'on a un développement
en série uniformément convergente de polynomes

fle) =P, 4+Py+ ... P, + ...,

on en déduit un polyndéme aussi approché qu’on le veut en
sommant un nombre suffisant de termes de la série. Réci-
proquement, si I'on sait former un polynéme P, aussi ap-
proché qu'on le veut, le développement en série s’obtient
par la formule

f(x):P1+(P2—P1)-+ (P's_Pg)"l—

Les théorémes I et Il se raménent réciproquement 'un a
lautre. J’y insisterai dans le paragraphe suivant. Mais, depuis
Weierstrass, on les a prouvés directement ’'un et l'autre de
hien des maniéres. Je vais signaler quelques-unes de ces
démonstrations et faire quelques observations d’un ordre
général.

La plus simple peut-étre des démonstrations du théoréme
Il est celle de M. Volterra (2): On peut approcher autant
qu’on veut d'une courbe continue a I'aide d’une ligne poly-
oonale. Une telle ligne représente une fonction qui, n’ayant
qu’un nombre limité de maxima et de minima, peut, d’aprés
Dirichlet, étre développée en série de Fourier uniformément
convergente. On sommera un nombre suffisant de termes
de cette série et 'on obtiendra 'approximation demandée.

Les autres démonstrations du théoréme II se rattachent,
comme celle-ci, a la série de Fourier. Elles utilisent I'un ou
Pautre des divers procédés de sommation de cette série qui
assurent la convergence, soit le procédé de sommation de
Poisson comme celle que M. Picard a donnée dans son Traité
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d’Analyse, soit le procédé de la moyenne arithmétique, ce
qui est préférable, car ce procédé, quiest celui de M. Féjer,
donne, du premier coup, une somme trigonométrique finie.
Enfin jai indiqué moi-méme (3) en 1908 un troisieme pro-
cédé qui présente le méme avantage que celui-ci.

Passons au théoréme I. Weicerstrass le démontre par la
considération de l'intégrale

Vo

qui, pour n assez grand, s’approche autant qu’on veut de #(x)
dans l'intervalle (@, b). Mais il vaut mieux, comme M. Landau
I’a fait le premier (4), définir dlrectement un polynéme ap-
proché par la formule

‘ 1
P, (x) ff (t — %}2]" dt
0

ou l'on a posé
1
1 n
. o= = (1 — t2)
w=)
0

Nous reviendrons plus loin sur ce polynéme P,. que nous
appellerons polynéme de Landau. |

Ces démonstrations font appel au calcul intégral et ont
une allure synthétique. On doit a M. Lebesgue une démons-
tration, qui ne va pas au dela du théoréme de Weierstrass,
mais qui est trés instructive par son caractére strictement
analytique. Elle réduit le probleme a ses éléments irréduc-
tibles, ce qui permet de le résoudre avec un minimum de
moyens. Elle a été publiée (5) en 1898, dans une courte Note,
la premiére qui ait été écrite par l'illustre mathématicien
francais. Dans cette Note, intéressante a plusieurs titres,
M. Lebesgue ramene la démonstration du théoreme I pour
une fonction continue quelconque, a la démonstration dudit
théoreme pour la seule fonction particuliere |x|.

M. Lebesgue emprunte d’abord a M. Volterra la réduction
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de l'approximation d’une fonction continue quelconque a
celle d’une ligne polygonale. Voici maintenant comment il
raméne 'approximation d'une telle ligne a celle de |x|.

Soient (2,, Y1), (Tay Ya)s -+ (Xu, ¥n) les sommets de la ligne
polygonale dont il faut représenter approximativement l'or-
donnée entre les abscisses x, et &,,. Remarquons que la fonc-
lion

o () = |2 — x| + (x — x)

est nulle pour'x < x,_ et égale a 2(x — x,) pour x > x,.
Posons

r—1

F(x) = a, 4 E a9, () _
=1

ou a,, @,, ... @s— sont n constantes a déterminer. Celte fonc-
tion varie linéairement entre deux abscisses consécutives
%, et . Donc, pour I'identilier & la ligne polygonale, il
suffit d’amener la coincidence des sommets. Faisons & — x,,
nous obtenons ainsi la condition :

i—1
Dy = o + 2 E apla; — xy)
k=1 )
Ceci constitue, pour z =1, 2, ... n, un systeme récurrent,

qui détermine de proche en proche «,, a,, ... @,_:. Ainsi
'approximation de l'ordonnée’ F(x) de la ligne polygonale
est ramenée a celle de ¢, (x) ou de [x — x,| et, en définitive,

a celle de |x|.

3. — Réduction des deux modes d’approximation I'un a I'autre.

Les deux modes d’approximation se raménent l'un & 'autre,
I'approximation par polynomes a une approximation trigono-
métrique et, inversement, l'approximation trigonométrique
a une approximation par polynomes.

Les deux problémes ont été résolus dés le début, mais le
probléme direct, qui a pour objet de déduire 'approximation
par polynémes d'une approximation trigonoméirique, est le

T BT

AT e
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plus simple. On en trouve déja une solution trés naturelle
dans le Traité d’Analyse de M. E. Picard. Elle consiste 2
remplacer, dans le développement trigonométrique suffi-
samment approché, chacune des lignes trigonométriques
par un polynéme suffisamment approché tiré de la formule
de Taylor. Mais, malgré sa simplicité, ce procédé n’est pas
le meilleur. Il en existe un autre, bien plus parfait, qui fait
rentrer I'approximation par polynomes comme simple cas
particulier dans l'approximation trigonométrique. Il est
méme étonnant que ce procédé n’ait 6té utilisé que si tardi-
vement. C'est M. Bernstein qui en a montré les avantages
dans son Mémoire couronné de 1912 (6).

Soit a représenter une fonction continue /(x) par des
polynémes dans l'intervalle (— 1, 4 1). Tout autre intervalle
se ramenerait a celui-la par une substitution linéaire. Posons,
avec M. Bernstein,

X — cos o ,

ce qui transforme /(%) en f(cos g), qui est une fonction paire
et périodique de ¢. Je dis que lapproximation def(x) par des
polyndémes en x el celle de f(cos o) par des expressions trigo-
nométriques en ¢, sont deux problémes complétement équi-
valents.

Supposons, en effet, que nous ayons, avec une certaine
approximation, la représentation trigonométrique

flecos9) = a, + a;cosp + . . + a,cosng ;

et remarquons que cos kg est un polynéme, Ti(cosg), de
degré & en cos¢. Nous aurons, avec la méme approximation,
la représentation par polynémes que nous cherchons

fle) =ay 4+ a,T, () + ... + a,T, (x) .

Les polynémes T,(x), T,(x), ... sont ce que M. Bernslein
appelle des polyndmes trigonométriques. 1Ils ont été consi-
dérés, bien avant lui, par le grand mathématicien russe
Tchebycheff (7) (1859), qui en a signalé des propriétés de la
plus haule importance pour nolre objet. M. Bernstein en
a tiré le plus heureux parti. En particulier, il a moniré, dans
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son Mémoire cité, les avantages inattendus que présente
le développement de f(x) en série de polyndmes trigonomé-
iriques, et il appelle ainsi la série de polynomes qui se déduit
de la série de Fourier de f(cos ¢) par la transformation précé-
dente. C'est ainsi, entre autres, qu'il a effectué le dévelop-

pement de |x| en série de polynomes et il a obtenu, pour

cetle fonction, la meilleure représentation connue jusqu’a lui.

La substitution de M. Bernstein posséde, au point de vue.

de notre étude, un avantage sur l'importance duquel il faut
insister : elle n’altére pas les propriétés différentielles. La
fonction x = cos ¢ est continue ainsi que toutes ses dérivées,
de sorte que si les dérivées d'un certain ordre de f(x) sont
continues par rapport a x, elles le sont encore par rapport
a ¢. Grace a celte continuité, la substitution de Bernstein ne
jette aucun trouble dans I’étude combinée de 'approximation
et des propriétés différentielles de f{x). Aussi bien, plus
tard, quand nous ferons cette étude, il nous suffira de parler
de l'approximation trigonométrique. Tous les résultats peu-
vent se traduire dans l'autre mode par la substitution pré-
cédente.

Le probléme inverse ne présente pas les mémes facilités.

Il a pour objet de ramener Papproximation trigonométrique
a une approximation par polynomes. Il a d’abord été traité
par M. Lebesgue dans son premier Mémoire de 1898 (5).
Il se résout naturellement par la substitution u = cosx,
inverse de celle de Bernstein, et que nous appellerons la
substitution de Lebesgue. Mais celle-ci se heurle immédiate-
ment a deux objections.

La premiére, c'est que x et, par suite, f(x) ne sont pas des
fonctions uniformes de cosx = u; la seconde vient de la
discontinuité des dérivées de x — arc cos u par rapport a u
aux deux limites =+ 1, ce qui change les propriétés différen-
tielles de la fonction. ;

M. Lebesgue a résolu la premiére difficulté dans son
Mémoire de 1898. La seconde ne se posait pas encore a cette
époque. Elle a été résolue, au moins partiellement, par
M. D. Jackson dans sa dissertation inaugurale de 1911 (8).
M. Jackson précise pour cela la méthode de M. Lebesgue,
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mais il se borne a la considération d'un nombre limité de
dérivées successives. |

Je n’exposerai pas ces démonsiralions telles quelles. Je
vais les remplacer par deux autres, qui s'inspirent au fond
des mémes idées, mais qui me paraissent plus simples.

Voici d’abord comment je modifierais la démonstration de
M. Lebesgue, en vue de tourner la premiere difficulté seu-
lement. :

Soit f{x) une fonction continue de période 27; les deux

fonctions
flx) + fl— ), [f(x) — f(— x)]sinx |

sont des fonctions paires de période 277, donc des fonctions
uniformes de cos.x = y. que nous pouvons désigner par
o{u) et ¢(u) et la multiplicité des valeurs de arc cos z n'inter-
vieat pas. Je dis que 'approximation lrigonométrique de
/(%) revient & 'approximation par polynémes de ¢(u), de /(u)
el de deux aunires fonctions analogues.

Soient, en effel, P, («) et Q. (u) des polyndmes de degré n
tels qu’on ail approximativement |

olu) = Pll(ll) , $(u) = Q'n(u) B
on aura, avec la méme approximalion,

[/(x) + f(— x)] sin?x = P (cosx)sin?x ,

[f(x) — f(— x)] sin?x = Q, (cos x) sin x ,
d’ou la relation approchée
2f (x) sin? x — P (cos x)sin?x + Q,, (cos x) sin x . (1)

Remplacons, dans le calcul précédent, la fonclion f(x) par
la fonction f(r, 4+ g-), 1l viendra approximativement, R, (u) ct

S.(u) étant de nouveaux pol nomes,
! p

2/(x + %) sin®x = R (cos x) sin?x + S, (cos x) sin x

i

et, en changeantl x en x — 5 s

2f (x) cos?x = R (sin x) cos? x — S, (sin ) cos x . (2)
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11 suffit d’ajouter membre a4 membre les deux relations
approchées (1) et (2) et 'on oblient 'expression trigohomeé-
trique approchée de f(x).

Il nest pas difficile de modifier cette démonstration de
maniére a écarter la seconde difficulté, dans la mesure meéme
ot elle a été surmontée par M. D. Jackson. Voici la maniére
de procéder:

Supposons que f( ) et ses dérivées soient continues jus-
qu'a Pordre r. Il s’agit de ramener I'approximation trigono-
métrique de f(x) a l'approximation par polyndémes de cer-
taines fonctions de « ayant des dérivées en u continues
jusqu’a l'ordre r. Toute la difficulté provient de la présence
de sin.x qui s’annule au dénominateur de la formule de déri-

vation:
d d 1 d .

du~ dcosx sinx dx

Il suffit, pour la faire disparaitre, d’introduire sin”z en
facteur dans la définition des fonctions ¢(u) et ¢(«) qui pré-
cédent. Cela permet, en effet, de faire disparaitre, comme
facteur commun aux deux termes de la fraction, cette expres-
sion sinx qui provoque la difficulté.

Posons donc

o(u) = [flx) + (— 1) f(— x)]sin" 2,
b(w) = [fla) — (= 1) fl— x)] sin™ T &

Soient P,(u) et Q,(u) des polyndomes approchés de o(u) et
de ¢(u); on aura, comme dans le cas précédent,

2f () sin” T! 2 = P (cos x)sinx + Q, (cos x) ;
ensuite, toujours comme précédemment,
1 ; .
2f () cos” T = R, (sinx) cos x 4 S, (sinx) .

Or on peut toujours déterminer deux polynomes AetB
en sinx et cos x vérifiant I'identité

Asin 'z 4+ Beos™lx =1

On ajoute les deux relations précédenles multipliées res-
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pectivement par A et B, on obtient la représentation trigo- -
nométrique cherchée.

Ce procédé ne résout pas la difficulté, si 'on considére
des fonctions indéfiniment dérivables. Cela fait, entre les
deux problemes inverses que nous venons de traiter, une
différence qui reste profonde. La solution du premier est
plus radicale que celle du second.

4. — Dérivabilité de la représentation.
Ordre de 1'approximation.

Ces deux questions sont liées par d’étroites relations, qui
n'ont été éclaircies que récemment et que nous approfondi-
rons dans un autre paragraphe (6). Cependant, sans’ que leur
dépendance ait été apercue dés le début, elles ont été traitées
daus les mémes Mémoires et, plus tard, on en a fait ’étude
combinée. Il est impossible de les séparer.

Nous allons donc les étudier ensemble, mais en nous bor-
nant pour le moment 4 la seule approximation par polynémes.

La question de représenter f(x) par une série dérivable de
polyndomes a été posée par M. Painlevé dés 1898. M. Painlevé
a montré que si la fonction f(x) a des dérivées continues,
elle est exprimable en série uniformément convergente de’
polyndmes, telle que les séries dérivées convergent aussi
uniformément vers les dérivées de f(r). M. E. Borel est
revenu sur cette question dans sa These et dans ses Lecons
de 1905 sur les fonctions de variables réelles.

La question de ordre de 'approximation est plus récente.
LElle a été posée en 1908 par M. Lebesgue (10), 2 'occasion
du polynoéme de Landau,

1
A.
=3 [ = — e
0

qui, pour n infini, converge uniformément vers f(x) dans
tout intervalle (@, b) intérieur a (0, 1).
: X : o
Le maximum de |[f— P,|, ou. 'approximation p,, tend

1 : ,
vers 0 avec —, mais quel est Uordre de grandeur de e,
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Telle est la question de l'ordre de 'approximation que
M. Lebesgue s’est posée, mais n'a traitée que trés sommai-
rement dans ce premier arlicle.

Je m’étais posé la méme question, avant la publication de
la Note de M. Lebesgue, et mes résultats ont paru, peu
aprés, dans un Mémoire étendu (3) de ’Académie royale de
Belgique (1908). Les deux questions, dérivabilité et ordre
de approximation, recoivent ici des solutions plus précises
que dans les travaux précédents. Je prouve, en particulier,
que le probleme de la dérivabilité est entiérement résolu
par le polynome de Landau. En effet, une dérivée d’ordre
guelconque de Py converge vers la dérivée du méme ordre de
f(x) au point x, sous la seule condition que cetle dérivée
existe en ce point. Cest la la supériorité du polynome de
Landau : La continuité de la dérivée n’est pas requise. Les
autres procédés que nous allons étudier seront, sans doule,
heaucoup plus parfaits au point de vue de I'approximation,
mais ils perdent cet avantage: les conditions de leur déri-
vabilité exigent la continuité.

(’est encore dans mon Mémoire cité de 1908 que se trouvent
les premiers résultats définitifs sur I'ordre de l'approxima-
tion. Je prouve que si la fonction f(x) est lipschitzienne, Uap-
proximation obtenue par le. polyndéme de Landau est de
[ordre de K/lt au plus.

n .

Cette approximation n'est pas la meilleure qu'on puisse

obtenir dans cette hypothése générale. M. Lebesgue, en 1910

(11), a obtenu l'ordre 198 " ot enfin, en 1911, M. D.Jackson (8)

n

a obtenu l'ordre —, qui ne peut plus étre abaissé. Je vaisy

revenir. Cependant j'ai donné moi-méme le premier exemple
d’une meilleure approximation dans un autre Mémoire (123,
présenté a ’Académie royale de Belgique la méme année
1908 et publié le mois suivant. Prenant celte fois mon point

de départ dans l'intégrale
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qui jouit de propriélés analogues a celles de Dirichlet, jai
montré que toute fonction dont la dérivée est a variation
bornée peul étre représentée par un polynéme de degré n avec

. . ) 1 S ay. 2y
une approximation de Uordre de—. C'était, je pense, le pre-

mier exemple d'un ordre qui ne peut plus étre abaissé.

Toutefois, comine je viens de le dire, on peut assigner une
approximation du méme ordre dans I'’hypothése, bien plus
générale, ou la fonction f(r) est lipschitzienne. Mais ceci n’a
été démontré que trois ans plus tard et c’est un cas particu-
lier d’'un théoréme plus général que M. D. Jackson (8)a énoncé
dans sa dissertation inaugurale de 1911. M. D. Jackson con-
sacre un chapitre entier de celte dissertation a 'approxima-
tion simultanée de f(x) et de ses & — 1 premiéres dérivées
dans I'hypothése ou la derniére est lipschitzienne. Il raisonne
pour cela sur une combinaison ingénieuse d’intégrales abso-
lument convergentes du type

ou A et £ sont des entiers, ce dernier suffisamment grand.
Il construit un polynéme qui fournit une approximation de

1 - ) — ;. ¢ ,
Pordre de — et dont la dérivée d'ordre r Z k& fournit, pour
n

-f("’(x), une approximation de l'ordre de En particulier,

h—r*
n
on obtient le résultat énoncé plus haut si 4= 1: l'appro-
L : . , 1
ximation de f(x) lipschilzienne est de P'ordre de —.

Ces théoremes de M. D. Jackson sont définitifs, mais pour
les fonctions seulement qui n’admettent qu'un nombre limité
de dérivées successives. Ils n'ont plus rien de commun avec
la meilleure approximation quand toutes les dérivées existent.

Si la fonction f(x) est indéfiniment dérivable, la méthode
du développement en série de polynémes trigonométriques,
que M. Bernstein (6) a utilisée dans son Mémoire couronné
(1912), est plus simple et bien préférable. Ce développement
qui, comme nous 'avons vu, se déduit de celui de f(cos¢)
en série de Fourier, donne la meilleure solution connue de
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la représentation indéfiniment dérivable. Dans cette hypo-
thése, l'approximation de chaque dérivée est indéfiniment

) . . 5 1 -
petite d’ordre supérieur & toute puissance de —. Récipro-

quement, I'existence d’un tel degré d’approximation assure
celle de toutes les dérivées. Nous en reparlerons plus loin.

5. — Approximation minimum.

Soit f(x) une fonction continue dans un intervalle (a, 0).
Parmi les polynomes de degré donné n, il en existe un, P,,
qui donne la meilleure approximation, tel donc que I'appro-
Ximation soit minimum. Nous appellerons cette meilleure
approximation approximation minimum, et le polynéme qui
la donne est le polyndme d’approximation (ou d’approxima-
tion minimum).

La considération de ce polynome remonte a une époque
déja ancienne, elle est due a Tchebycheff (7) (1859). Le grand
géomelre russe a consacré une partie importante de son
ceuvre a I’étude de I'approximation par des fonctions ration-
nelles (entieres ou fractionnaires). Mais 'importance des
découvertes de Tchebycheff pour notre objet actuel n’est
apparue qu’aprés le Mémoire de M. S. Bernstein (1912). Tant
pour la valeur des matériaux réunis que par le mérite de
'invention, la place qui revient a Tchebycheff dans la théorie
(ui nous occupe est encore la premiére.

Tchebycheff, comme cela était naturel de son temps, ad-
meltait sans démonstration l'existence du polynéme d’appro-
ximation minimum. Cette démonstration a été donnée par
M. Borel dans ses Lecons sur les fonctions de variables
réelles el les séries de polyndmes (1905) (13). M. Borel a
montré que le polynome d’approximation minimum dans un
intervalle (a, ) est unique et qu’il est cavactérisé par la pro-
priété suivante: la différence f(x) — P, acquiert sa valeur
absolue minimum avec des signes alternés en n + 2 points
consécutifs de l'intervalle (@, 4). Ce maximum absolu est
Papproximation minimum p . 1l suit de cette propriété que
le polynéme d’approximation est un polyndme de Lagrange

[’Enseignement mathém., 20¢ année, 1918. 2
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qui coincide avec f(z) en n 4 1 points (au moins) de l'inter-
valle (a, b). J’ai donné en 1910 (14) a ces points de coinci-
dence le nom de neeuds et le polynéme de Lagrange est
défini par ses neeuds.

Le calcul exact du polynéme d’approximation minimum
n’est possible que dans des cas trés exceptionnels. Mais il
existe divers procédés de calcul qui permettent d'en appro-
cher autant qu'on veut. Ces procédés sont dus a M. Borel (13),
a moi-méme (14) et a M. Bernstein (6). Ces procédés reviennent
tous a former successivement des polynomes de Lagrange
de plus en plus avantageux en améliorant progressivement
le choix des neeuds.

Dans I'état actuel de la théorie, c’est I'approximation mini-
mun qu’il importe surtout de connaitre plutét que le polynome
d’approximation lui-méme. Faute d’un calcul exact, il convient
donc d’avoir des régles précises pour enfermer I'approxima-
tion minimum entre des limites suffisamment resserrées. Ce
sont ces regles qui méritent de fixer maintenant notre
altention.

La détermination d'une borne supérieure est chose immé-
diate. Tout polynome donné Q, de degré n en fournit une, a
savoir le maximum de |/ — Q,].

La détermination d’une borne inférieure demande un peu
plus de réflexion. Mais jai donné dans mon Mémoire
de 1910 (14) une regle, qul m’'a paru intéressante, en vertu
de laquelle un polynéme de Lagrange de degré n fournit
généralement une telle borne.

Voici d’abord cette regle :

Soit Qu un polynéme de degré n; si la différence f(x) — OQn
prend, en n + 2 points consécutifs et avec des signes alternés,
des valeurs absolues Z p, alors o est une borne inférieure de
LCapproximation minimum.

En particulier, si Q, est un polynéme de Lagrange & n + 1
neeuds, ces n 4 1 neeuds partagent («, b) en n + 2 intervalles,
ou f'— Q, est (sauf exception) de signe alterné. Dans chaque
intervalle, /— Q, passe par un maximum absolu et le plus
petit p de ces maxima absolus est une borne inférieure de
Papproximation minimum.
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La démonstration de notre regle est presque immédiate.
Soit P, le polynéme d’approximation et p, 'approximation
minimum ; si Uon avait g, < o. le polyndme de degré 1,

Pn. - Qn = (f—— Qn\ - (/_ PIL) J

(e, D) et aurait, par conséquent, n 4 1 racines au moins, ce
qui est impossible. :
M. Bernsteina généralisé notre théoréme dansson Mémoire
couronné de 1912 (6). Il I'a étendu au cas ou les polynomes
sont formés avec des puissances de x dont les exposants
font partie d’une suite de nombres positifs (entiers ou non)
qui sont assignés d’avance. Il s’est servi de ce théoréme
généralisé pour trouver une borne inférieure de la meilleure
approximation de |x/|.
La régle précédente présente le grand avantage d’avoir
une efficacité illimitée. En effet, en essayant de nouveaux
polynémes Q,, on peut, théoriquement du moins, approcher
autant qu’on .veut de la _valeur exacte de I’approximation.
Il existe d’autres régles qui ont un caractére plus particulier
et qui épuisent leur efficacité dés la premiére application,
mais qui n’en sont pas moins trés utiles, parce qu'elles sont
dans bien des cas d’une application plus facile que la précé-
dente. Je vais en signaler deux, qui s’appliquent directement
a l'approximation trigonométrique et indirectement aux
polyndmes, grice a la substitution de Bernstein. Il est a
peine besoin de dire que les considérations précédentes sur
la meilleure approximation par polynomes s’étendent mutatis
mutandis 4 la meilleure approximation trigonométrique.
Considérons, avec M. Bernstein (1912), le développement
de f(x) en série de polyndomes trigonométriques ou, ce qui
est exactement la méme chose, le développement de f(cos ¢)
en série de Fourier ‘

ficos 9) = a, + a, cos o -+ a,cos 29 4 ...

Soit S, la somme des n 4+ 1 premiers termes, on sait que

changerait de signe n 4 2 fois au moins dans l'intervalle
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les valeurs «,, @,, ... @, des conslantes de Fourier sont celles
qui miniment 'intégrale

— [ [fleoso) — S 2ds .

e
0

Soit done T, la suite trigonométrique d’ordre n qui donne
I'approximation minimum, on aura

2%
v =2 <
/ [fleos o) — S, Pds = —if(/'— T,)*de Z 2,

en vertu du théoréme de la moyenne (, étant la valeur maxi-

mum absolue de f'—T,). Mais la premiére intégrale a pour
valeur

S
1 &
— | lapgycosin 4+ 1o + a,,,cos(n 4 2)o + ... J2ds

/

L8
4]

2 2
— an—{r—l' -+ an—f—'l R

De la, la régle de M. Bernstein :
St l'on désigne par a,, a,, a,, ... les constantes de Fourier
de f(cos g) la meilleure approximation o_de {(x) dans Uinter-

valle (— 1, + 1) salisfait a la condition*
P > \/—;(“w T gy )

Il est clair d’ailleurs que I'on a, d’autre part,
Pn 2 l(’n—}—k‘ = la”.{_z, == v ue

puisque celle approximation est donnée par la série de poly-
nomes trigonométriques.

La seconde régle, qui est plus importante et qui est anté-
rieure (1910), a été donnée par M. Lebesgue dans son Mé-
moire Sur les intégrales singuliéres (15). Voici la regle de
M. Lebesgue:

! Nous avons ajouté sous le radieal le facteur ,~ qui manque dans le texte de M. Bernstein.
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Si la somme d’ordre n de la série de Fourier de la fonction
périodique f(x) donne une approximation g(n), Uapproxima-
tion trigonométrique minimum p, satisfait a la condilion

o(n)

oy >k logn '’

ot k est une constante numérique assignable a priort.

La démonstration repose sur les propriétés de l'intégrale
de Dirichlet, mais, si simple qu’elle soit, elle ne peut trouver
place ici.

Si on applique, par exemple, les deux regles précédentes
a la fonction |x|, la régle de M Bernstein prouve que p,

n’est pas d'ordre supérieur a et celle de M. Lebesgue

n V/L

que p, n'est pas d'ordre supérieur a Dans ce cas,

nlogn’
¢’est la régle de Lebesgue qui I'emporte. mais il n'en est pas
loujours ainsi.

~

6. — Relations entre l'ordre de grandeur de la meilleure
- approximation et les propriétés différentielles.

La meilleure approximation p d'une fonction continue
/{x) par un polynome de degré n tend vers zéro quand »n tend
vers linfini. C'est le théoréeme méme de Weierstrass. J'ai
posé en 1908 (12) la question de déterminer 'ordre de gran-
deur de p, pour n infini et M. Bernstein .a posé en 1912 (6)
“celle d’en déterminer la valeur asymptotique quand elle
existe. . ,

Aujourd’hui des résultats définilifs sont acquis et répon-
dent a ces deux questions. lls sont dus a M. Dunham
Jackson (1911) et surtout a M. Bernstein (1912). ‘

Un premier résultat essentiel est qu'il existe une dépen-
dance étroite entre 'ordre de la meilleure approximation et
I'existence des dérivées jusqu’a un ordre plus ou moins élevé.

L’existence d'une dérivée bornée d’un certain ordre assure
une apprommatlon d’un ordre Porrespondant et c’est M. Dun-
ham Jackson (8) qui a trouvé les théorémes les plus précis
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sous ce rapport. Nous les avons exposés dans un article
antérieur. Mais M. Jackson n’énonce aucun théoréme réci-
proque et l'on ne sait pas si ces énoncés s’appliquent a
Papproximation minimum. Seul M. Bernstein (6) est arrivé a
des résultats positifs en ce sens et a su remonter de I'ordre
de I'approximation obtenue aux propriétés différentielles de
la fonction. |

M. Bernstein n'y a d’ailleurs réussi qu’en s’'inspirant des
travaux de Tchebycheff et nous allons exposer de quelle
maniére. Nous donnerons d’ailleurs une idée suffisante de
la question en nous bornant & I'approximation trigonomé-
trique et en simplifiant un peu les données du probléme.

Faire 'approximation trigonométrique de f(x) revient a
effectuer un développement en série

fla) =P, + P, 4 .. P 4+ ...

dont les termes sont des expressions trigonométriques
d’ordres croissants et nous supposons, pour simplifier, P,
d’ordre n. Admettons que les termes de cette série soient,
en valeur absolue, inférieurs 4 ceux de la série positive con-

Vergente
&+ & 4 ... +e, 4 ...

La rapidité de l'approximation correspond a la conver-
gence plus ou moins rapide de la série. D’autre part, ’exis-
tence des dérivées de f(x) découle de la possibilité de dériver
la série. Or cette dérivation est légitime tant que les séries
dérivées sont absolument et uniformément convergentes.
Toul revient donc a avoir une régle pour conclure de 'ordre
de grandeur de P, a l'ordre de grandeur de ses dérivées.
C’est cette régle que M. Bernstein a trouvée, en complétant
certaines recherches de Tchebycheff, et cette régle est d’une
simplicité et d'une précision inattendues. La voici :

St une expression trigonométrique d’ordre n est de module
< L et que Uexpression soit formée de sinus seuls ou de
cosinus seuls, ses dérivées successives d’ordres 1,2, 3, ... sont
respectivement de modules < nL, < n?L, < n®L, ... Il suffit
de doubler.ces bornes si Uexpression trigonométrique est de
la forme générale.
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On voit d’aprés cela que, si la décroissance des- quantités
¢, est suffisamment rapide pour assurer la convergence de
la série

p P p

e, +2 ¢4 ..., + ...,

elle assure aussi I'existence de la dérivée d’ordre p de f(x).
Tel est réduit a ce qu'il a de plus essentiel.le raisonnement
de M. Bernstein.

Pour mettre en lumiére la netteté des conclusions aux-
quelles conduisent les méthodes de M. Bernstein, donnons
d’abord, avec cet habile géométre, la définition suivante :

Nous dirons qu'une fonction continue ¢(x) vérifie une con-
dition de Lipschiiz d’ordre (0 < « < 1), s'il existe une cons-
tante M telle qu'on ait, quel que soit ¢ positif, |

A L TR AT N T TR
PR AT Tl S e :

7 ﬁ;f‘; a ‘!‘i" E" ,"if

T AT
AR e B A

lo(x +8) — plx)] < M3™ .

Considérons maintenant une fonction f(x) de période 2x et
son approximation trigonométrique d’ordre n. Nous avons
le théoréme suivant:

St f(x) admet une dérivée continue d’ordre p, laquelle satis-
fait a une condition de Lipschitz d’ordre a(0.< o < 1), alors
on peut assigner une constante M, telle que Uapproximation
trigonométrique minimum, p_, salisfasse, quel que soit n, a

la condition
Ml

Pt

en <

Réciproquement, si p_ satisfait & une condilion de cette
forme ot 0 < o < 1 {limites exclues), la fonction f(x) admet
une derivée d’ordre p qui satisfait a une condition de Lipschitz
d’ordre . ,

A vral dire, ce théoréme est énoncé ici pour la premiére
fois sous cette forme stricte, et nous en publierons ailleurs
la démonstration, mais il est di, dans sa grande partie, a
M. Bernstein. Ainsi que M. Bernstein 'a déja remarqué,
I'exclusion du cas limite « = 1 est essentielle et ne tient pas
a une imperfection de I'énoncé.

Si toutes les dérivées existent, le théoréme perd de la pré-
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cision qui en fait le principal intérét. Il prouve que I'approxi-
mation décroit plus vite que toute puissance négative de n,
mais il n’en fixe plus I'ordre. Il y a donc lieu de faire alors
de nouvelles hypothéses sur la nature de la fonction. La
premiere qui se présente a l'esprit est celle d’analycité.

7. — Relations entre I'ordre de grandeur de la meilleure
approximation et les propriétés analytiques.

Lorsque la fonction f{x) est analytique et holomorphe sur
I'axe réel et qu’il s’agit de sa représentation approchée sur
cet axe seulement, I'ordre de la meilleure approximation est
liée aux propriétés analytiques de la fonction et dépend
avant tout de la situation de ses points critiques s'il en existe.
C’est encore M. Bernstein qui a étudié le premier cette
dépendance dans son Mémoire couronné par I’Académie de
Belgique (1912). Mais il est revenu sur la question et il a
publié¢ des résultats isolés, mais d’une singuliére précision
el du plus grand intérét, dans un second Mémoire présenté,
peu apres, a la méme Académie (1913) (16).

M. Bernsteins’estoccupéde 'approximation par polynomes.
Mais ses résultats prennent une forme plus simple si on les
traduit dans le mode de représentation trigonométrique, par
la substitution habituelle & — cosu. Les paralléles a I'axe
réel du plan « jouent un roéle prépondérant dans lapproxi-
tion trigonométrique; il y a lieu d'observer que la substitu-
tion .x = cos u leur fait correspondre des ellipses homofo-
cales, de foyers ='1, dans le plan x. Ce sont ces ellipses
qui jouent le role prépondérant dans l'approximalion par
polynémes et, par suite, dans les énoncés de M. Bernstein.
Mais nous n’en parlerons pas; il nous suffira d’énoncer les
résultats essentiels de la théorie dans la seule hypothése de
la représentation trigonométrique.

Soit donc a étudier la meilleure approximation trigonomé-
trique de la fonction g(«) de période 2 n sur I'axe réel. Cette
fonction est analytique et holomorphe sur cet axe. Suppo-
sons d’abord qu’elle admette un ou plusieurs points criliques
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imaginaires. Alors, en premiére analyse, la meilleure approxi-
mation dépend de la distance de I'axe réel au point critique’
le plus rapproché.

On peut, en effet, formuler le théoréme suivant, dont la
premiére partie est due a M. Bernstein, mais que je compléte
par 'énoncé d’une seconde partie dont la démonstration n’a
pas encore été publiée.

Si une fonction ¢ (u) de période 2 est holomorphe sur laxe
réel et posséde son point critique le plus rapproché de cel axe
sur lFune des deux droitesy = == b (b > 0), on suppose
u=x + yi, alors, quelque petit que soil e positif; la metl-
leure approximation trigonoméirique, p, , de ¢(u) sur laxe
réel vérifiera constamment l'inégalité

—n(b—¢)

\on<e ?

a partir ' une valeur suffisamment grande de n, tandis qu’elle
ne vérifiera jamais définitivement l'inégalité
—n(b+e)

o < €

quelque grand que sott.m. |

La connaissance de 'ordre de la meilleure approximation
se précise davantage si I'on suppose que g¢(u) n’ait d’autres
points critiques que des poles sur les deux droites y = = 0
du théoréme précédent. Je suis, en effet, en mesure de
démontrer le théoréme suivant, mais qui, je le pense, pour-
rait étre beaucoup précisé:

Si la fonction ¢(u) de u =X + yi « ses points critiques les
plus rapprochés de Uaxe réel sur les droites y === b (b > 0]
et que le point critique de Uordre le plus élevé parmi ceux-ci
soit un péle d’ordre k, alors on aura constamment, a partur
d’une valeur suffisamment grande de n

1
k+:+€ —nb
o, n 2 e

tandis que Uon n’a jamais définitivement

k—1—e¢ ,—nb
o, < n e .
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Mais en particularisant beaucoup plus la nature du point
critique, on peut aller beaucoup plus loin et déterminer la
valeur asymptotique méme de p . C'est ce qui a été fait par
M. Bernstein dans son dernier Mémoire de 1913 et le point
de départ de cet habile mathématicien se trouve encore une
fois dans les travaux de Tchebycheff.

En effet, en utilisant une formule de l'illustre. mathémati-
cien russe, M. Bernstein a réussi a former le polynome d’ap-

proximation d’ordre n de
1
xr —

dans lintervalle (— 1, 4 1), @ étant réel et > 1.

Par conséquent, il a obtenu en méme temps la valeur
exacte de l'approximation minimum. C’est 14 un résultat
extrémement important malgré son caractére particulier.
Mais nous allons traduire ce résultat dans le mode de repré-
sentation trigonométrique, pour le rapprocher des précé-
dents. On va voir qu’il prend alors une forme singuliérement
instructive, bien plus simple et plus élégante que sous la
forme considérée par M. Bernstein.

Par la transformation de Bernstein et en posant @ = Ch b
ou b est réel et positif, la fraction 1:(x — @) se transforme,
a un facteur constant prés, dans I'expression trigonométrique

Sh b ‘
cosu — Cho

qui, aux multiples prés de la période, n’a qu'un seul pole
u = bz sur chacune des droites y =— = 0, pole dont le résidu
a pour module 'unité. La meilleure approximation trigono-
métrique de cette fonction sur I'axe réel se réduit alors a la
valeur, exacte et toute simple,

e, = P

Plus généralement, soit ¢(«) une fonction paire et de
période 2. Supposons que ses points critiques les plus voi-
sins de l'axe réel soient sur les droites y =— == 0. Admettons
encore qu’aux multiples prés de la période, ces points cri-
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tiques se réduisent sur chacune de ces droites, au seul pdle
simple « = == bi, avec un résidu de module o. Alors, par
comparaison avec le résultat précédent, on obtient immédia-
tement la valeur asymptotique de la meilleure approximation

- trigonométrique de o (u). Ce sera nécessairement

—bn
Pn o0 ae .

'Si au lieu de cela, le pole était d'ordre %, les autres condi-
tions restant les mémes, on aurait la formule asymptotique

k—1 e " b

Pp O 1 ,

oll u est une constante qui ne dépend que de la fonction.

Voila assurément des indications bien précieuses sur la
maniere dont il faut essayer de préciser les résultats plus
vagues obtenus tout 4 l’heure dans des hypothéses plus
générales. |

Pour terminer, je dirai encore un mot du cas ou la fonc-
tion a représenter est holomorphe dans tout le plan. Ce cas
ne parait pas avoir été étudié jusqu'ici. Mais, dans cette
nouvelle hypothese, la question de la meilleure approxima-
tion présente une analogie plus étroite avec celle de la con-

. vergence de la formule de Taylor. C’est le mode de crois-

sance de la fonction qui devient le facteur principal dont
dépend la meilleure approximation. Je vais me borner encore
a la représentation trigonométrique. Les conclusions prin-
cipales auxquelles je suis parvenu peuvent alors se formuler
dans le théoréme suivant:

Soit f(z) une fonction holomorphe de 7 =x + yi et de pé-
riode 2. Soit ensuite ¢(y) la plus petite fonction non décrois-
sante de y positif qui satisfait, quel que soit 'y, a la condition

HEEFUIET A

soit §(n) la fonction inverse de ¢, C’est-a-dire la plus petite
solution de ¢(y)==mn. Alors, quelque petit que soit ¢ positif,
la meilleure approximation trigonométrique de f(x) sur Uaxe
réel satisfait a la condition

0 < e—(i—smdg(n“%
n
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a partir d’une valeur suffisamment grande de n, tandis
qu'elle ne salisfait jamais définitivement i la condition

(142
o, < iendln)

Dans cette trop longue analyse, je n’ai fait qu’effleurer les
sujets que j'ai traités, j’en ai passé beaucoup d’autres sous
silence. Je n’ai rien voulu de plus que ramener l'attention
sur une question que les événements actuels ont fait oublier.
mais qui paraissait pleine de promesses. Elle ouvre encore
de nombreuses voies qui ne paraissent pas trop difficiles a
explorer. Je souhaite que de jeunes mathématiciens s'y en-
gagent et y fassent une ample moisson de découvertes.
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