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L'APPROXIMATION DES FONCTIONS

D'UNE VARIABLE RÉELLE1

PAR

C. de la Vallée Poussin
Professeur à l'Université de Louvain.

1. — Le problème de l'approximation.

L'approximation des fonctions de variables réelles a fait

l'objet de recherches récentes (1898-1913). J'en ai suivi les

dernières avec d'autant plus d'intérêt que j'avais contribué
dans une certaine mesure à les provoquer. Je me propose
de donner ici une idée sommaire de cette nouvelle théorie.

J'espère qu'elle suffira pour faire saisir les problèmes les

plus caractéristiques qui sép.Q^nt et la nature des procédés
mis en œuvre pour les résôjidrè, Je me guiderai dans mon

exposé sur l'ordre historique-des découvertes ; mais je me

bornerai aux fonctions d'une senlé variable, faute de temps.
On se gardera d'en conclure qtiè l'a théorie des fonctions de

plusieurs variables manque actuellement d'intérêt ou de-

résultats.
Je définis d'abord la question qui va nous occuper.
Il s'agit d'exprimer une fonction sous forme finie avec

plus ou moins d'approximation. Mais les recherches actuelles

ne portent que sur deux modes de représentation approchée

: La représentation par polynômes et alors la représentation

se fait dans un intervalle («, b), où l'on suppose la

1 Conférence faite à la séance de la Société mathématique suisse, tenue à Fribourg le
24 février 1918.

Les numéros dans le texte renvoient à l'index bibliographique à la fin de l'article.



6 C. DE LA VALLÉE POUSSIN
(onction continue; la représentation trigonométrique, auquel
cas la (onction est supposée continue et périodique de
période 271, la représentation s'étend alors à toutes les valeurs
réelles de x. *

Cette représentation trigonométrique est donnée par une
expression d'un certain ordre fini /2, c'est-à-dire par une
suite limitée de la forme

"o H" ai cos x ~f~ a2 cos -|- -j- an cos nx
-f- b1 sin x -j- b2 sin 2x -f- -f- bfl sin nx

ou, ce qui est la même chose, par un polynôme de degré n
en sinx et cos.^. Il y a lieu d'observer que si l'expression
est paire, elle se réduit, les sinus disparaissant, à un
polynôme de degré n en cos.x*.

Soient f(x) une fonction continue dans un intervalle (a, b)
et Pn(x) un polynôme de degré n d'ailleurs quelconque. Ce
polynôme doit être considéré comme une expression approchée

de f{x). Le maximum dans (a, b) de la différence
absolue

I/W-PJ
est Vapproximation fournie par P„. Ce polynôme est d'autant
meilleur comme expression approchée qu'il fournit une
approximation plus petite. Si l'on considérait une fonction
périodique et sa représentation trigonométrique, l'approximation

se définirait de la même manière.
Le problème de Vapproximation consiste à former une

expression de l'un ou de l'autre de ces deux types dont
l approximation soit aussi petite quon le veut. Le problème
est possible dans les deux cas. Il y a là deux théorèmes
d'existence, tous deux dus à Weierstrass (1885), et qui ont
été le point de départ de la théorie qui nous occupe. Il y a
lieu de nous y arrêter quelques instants.

2. — Les deux théorèmes d'existence de Weierstrass.

Weierstrass a démontré les deux théorèmes suivants (1) :

I. Toute fonction continue dans un intervalle (a, b) peut
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être développée en série uniformément convergente, de

polynômes dans cet intervalle.
II. Toute fonction continue de période '2n peut être

développée en série uniformément convergente d'expressions tri-
gonométriques finies.

Il est à peine besoin de faire observer que le problème du

développement en série est le même que celui de l'approximation

indéfinie. Par exemple, si l'on a un développement
en série uniformément convergente de polynômes

f(x) P, + p2 + P„ +

on en déduit un polynôme aussi approché qu'on le veut en

sommant un nombre suffisant de ternies de la série.
Réciproquement, si Ton sait former un polynôme Pn aussi
approché qu'on le veut, le développement en série s'obtient

par la formule

f(*) P1 + (P2-P1) + (P3-P2) +

Les théorèmes I et II se ramènent réciproquement l'un à

l'autre. J'y insisterai dans le paragraphe suivant. Mais, depuis
Weierstrass, on les a prouvés directement l'un et l'autre de

bien des manières. Je vais signaler quelques-unes de ces
démonstrations et faire quelques observations d'un ordre
général.

La plus simple peut-être des démonstrations du théorème
II est celle de M. Volterra (2): On peut approcher autant
(liéon veut d'une courbe continue à l'aide d'une ligne
polygonale. Une telle ligne représente une fonction qui, n'ayant
qu'un nombre limité de maxima et de minima, peut, d'après
Dirichlet, être développée en série de Fourier uniformément
convergente. On sommera un nombre suffisant de termes
de cette série et l'on obtiendra l'approximation demandée.

Les autres démonstrations du théorème II se rattachent,
comme celle-ci, à la série de Fourier. Elles utilisent l'un ou
l'autre des divers procédés de sommation de cette série qui
assurent la convergence, soit le procédé de sommation de
Poisson comme celle que M. Picard a donnée dans son Traité
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d'Analyse, soit le procédé de la moyenne arithmétique, ce
qui est préférable, car ce procédé, qui est celui de M. Fèjer,
donne, du premier coup, une somme trigonométrique finie.
Enfin j'ai indiqué moi-même (3) en 1908 un troisième
procédé qui présente le même avantage que celui-ci.

Passons au théorème I. Weierstrass le démontre par la
considération de l'intégrale

y/fff(t)e~n[t~X) d

a

qui, pour n assez grand, s'approche autant qu'on veut de f(x)
dans l'intervalle (<a, b). Mais il vaut mieux, comme M. Landau
l'a fait le premier (4), définir directement un polynôme
approché par la formule

i

p»(*) ff f(t){\ - [t - xY\" dt
0

où l'on a posé

Tn=f f1

0

Nous reviendrons plus loin sur ce polynôme P7i, que nous
appellerons polynôme de Landau.

Ces démonstrations font appel au calcul intégral et ont
une allure synthétique. On doit à M. Lebesgue une démonstration,

qui ne va pas au delà du théorème de Weierstrass,
mais qui est très instructive par son caractère strictement
analytique. Elle réduit le problème à ses éléments irréductibles,

ce qui permet de le résoudre avec un minimum de

moyens. Elle a été publiée (5) en 1898, dans une courte Note,
la première qui ait été écrite par l'illustre mathématicien
français. Dans cette Note, intéressante à plusieurs titres,
M. Lebesgue ramène la démonstration du théorème I pour
une fonction continue quelconque, à la démonstration dudit
théorème pour la seule fonction particulière \ x\.

M. Lebesgue emprunte d'abord à M. Vol terra la réduction
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de l'approximation d'une fonction continue quelconque à

celle d'une ligne polygonale. Voici maintenant comment il
ramène l'approximation d'une telle ligne à celle de \x\.

Soient (.r4, (x2, ys), {xtl, yn) les sommets de la ligne
polygonale dont il faut représenter approximativement
l'ordonnée entre les abscisses xi et xn. Remarquons que la fonc-
lion

est nulle pour' x < xk et égale à 2(x — xk) pour x > xk.

où ci0, ax, cin_\ sont n constantes à déterminer. Celte fonction

varie linéairement entre deux abscisses consécutives

xk et xk+l. Donc, pour l'identifier à la ligne polygonale, il
suffit d'amener la coïncidence des sommets. Faisons x x.11

nous obtenons ainsi la condition

Ceci constitue, pour i — 1, 2, /?, un système récurrent,
qui détermine de proche en proche aQ, ax, an_x. Ainsi
l'approximation de l'ordonnée F(.r) de la ligne polygonale
est ramenée à celle de <pk(x) ou de \ x — xk\ et, en définitive,
à celle de \x |.

3. — Réduction des deux modes d'approximation l'un à l'autre.

Les deux modes d'approximation se ramènent l'un ä l'autre,
l'approximation par polynômes à une approximation tiigono-
métrique et, inversement, l'approximation trigonométrique
à une approximation par polynômes.

Les deux problèmes ont été résolus dès le début, mais le

problème direct, qui a pour objet de déduire l'approximation
par polynômes d'une approximation trigonométrique, est le

<Dk(x) \x ~ Xk \ +' (X — Xk)

Posons
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plus simple. On en trouve déjà une solution très naturelle
dans le Traité d Analyse de M. E. Picard. Elle consiste à

remplacer, dans le développement trigonbmétrique
suffisamment approché, chacune des lignes trigonométriques
par un polynôme suffisamment approché tiré de la formule
de Taylor. Mais, malgré sa simplicité, ce procédé n'est pas
le meilleur. Il en existe un autre, bien plus parfait, qui fait
rentrer 1 approximation par polynômes comme simple cas
particulier dans l'approximation trigonométrique. Il est
meme étonnant que ce procédé n'ait été utilisé que si
tardivement. G est M. Bernstein qui en a montré les avantages
dans son Mémoire couronné de 1912 (6).

Soit à représenter une fonction continue f[x) par des
polynômes dans l'intervalle (— 1, + 1). Tout autre intervalle
se ramènerait à celui-là par une substitution linéaire. Posons,
avec M. Bernstein,

X r=z COS 9

ce qui transforme/^) en/(cos y), qui est une fonction paire
et périodique de y. Je dis que Vapproximation de f(x)par des
polynômes en x et celle cle f(cos y) par des expressions
trigonométriques en y, sont cleux problèmes complètement
équivalents.

Supposons, en effet, que nous ayons, avec une certaine
approximation, la représentation trigonométrique

/"(cos 9) û0 + a1 cos 9 + -f an cos n 9 ;

et remarquons que cos &y est un polynôme, T*(cosy), de
degré k en cosy. Nous aurons, avec la même approximation,
la représentation par polynômes que nous cherchons

f[x) a0 -f a1rY\ (x) + + an TJx)

Les polynômes Ti (x), T3(.r), sont ce que M. Bernstein
appelle des polynômes trigonométriques. Ils ont été
considérés, bien avant lui, par le grand mathématicien russe
fchebycheff (7) (1859), qui en a signalé des propriétés de la
plus haute importance pour notre objet. M. Bernstein en
a tiré le plus heureux parti. En particulier, il a montré, dans
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son Mémoire cité, les avantages inattendus que présente
le développement de f(x) en série de polynômes trigonome-
triques, et il appelle ainsi la série de polynômes qui se déduit
de la série de Fourier de /(cos 9) par la transformation précédente.

C'est ainsi, entre autres, qu'il a effectué le développement

de \x\ en série de polynômes et il a obtenu, pour
cette fonction, la meilleure représentation connue jusqu'à lui.

La substitution de M. Bernstein possède, au point de vue
de notre étude, un avantage sur l'importance duquel il faut
insister : elle n'altère pas les propriétés différentielles. La
fonction x cos 9 est continue ainsi que toutes ses dérivées,
de sorte que si les dérivées d'un certain ordre de f{x) sont
continues par rapport à x, elles le sont encore par rapport
à 9. Grâce à cette continuité, la substitution de Bernstein ne

jette aucun trouble dans l'étude combinée de l'approximation
et des propriétés différentielles de f(x). Aussi bien, plus
tard, quand nous ferons cette étude, il nous suffira de parler
de l'approximation trigonométrique. Tous les résultats peuvent

se traduire dans l'autre mode par la substitution
précédente.

Le problème inverse ne présente pas les mêmes facilités.
Il a pour objet de ramener l'approximation trigonométrique
à une approximation par polynômes. 11 a d'abord été traité
par M. Lebesgue dans son premier Mémoire de 1898 (5).
Il se résout naturellement par la substitution u cos x,
inverse de celle de Bernstein, et que nous appellerons la
substitution de Lebesgue. Mais celle-ci se heurte immédiatement

à deux objections.
La première, c'est que x et, par suite, f(x) ne sont pas des

fonctions uniformes de cos x u ; la seconde vient de la
discontinuité des dérivées de x — arc cos u par rapport à u

aux deux limites dz 1, ce qui change les propriétés différentielles

de la fonction.
M. Lebesgue a résolu la première difficulté dans son

Mémoire de 1898. La seconde ne se posait pas encore à cette
époque. Elle a été résolue, au moins partiellement, par
M. D. Jackson dans sa dissertation inaugurale de 1911 (8).
M. Jackson précise pour cela la méthode de M. Lebesgue,
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mais il se borne à la considération d'un nombre limité do
dérivées successives.

Je 11 exposerai pas ces démonstrations telles quelles. Je
vais les remplacer par deux autres, qui s'inspirent au fond

es memes idées, mais qui me paraissent plus simples.\oici d abord comment je modifierais la démonstration de
M. Lebesgue, en vue de tourner la première difficulté
seulement.

Soit f{x) une fonction continue de période 2tt; les deux
fonctions

f(*) + f(— *) [f(x) - f(- x)] sin *
sont des fonctions paires de période 2rr, donc des fonctions
nnifoi mes de cos x ~ a, que nous pouvons désigner par®{u) et ip(u) et la multiplicité des valeurs de arc cos x n'intervient

pas. Je dis que [approximation trigonométrique de
f(x) levient à 1 approximation par polynômes de (p(u), de ^(u)et de deux autres fonctions analogues.

Soient, en effet, PM(u) et Q,Ju) des polynômes de degré ntels qu'on ait approximativement

?(") ?» +(") Q„H

on aura, avec la même approximation,

\f(x) + {{— ,r|] sin2x P7i(cos.r) sin2^
[f(x) — f(— or)] s\n2x Qn(ms x) sin .x

d'où la relation approchée

2/Ù,r) sin2 x — P7i(cos x) sïn2 x -f- (cos x) sin x (1)

Remplaçons, clans le calcul précédent, la fonction f(x) par
la fonction ,| viendra approximativement, R„(«) et
Sn(u) étant de nouveaux polynômes,

2/Ù + ^jsin2« RJcos .r) sin2« + S;)(cos«) sin«

et, en changeant x en x — ~

2f(x)cos2 x— R;; (sin x)cos2x— S;( (sin x) cos « (2)
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Il suffit d'ajouter membre à membre les deux relations

approchées (1) et (2) et l'on obtient l'expression trigonomé-
trique approchée de f{x).

Il n'est pas difficile de modifier cette démonstration de

manière à écarter la seconde difficulté, dans la mesure même

où elle a été surmontée par M. D. Jackson. Voici la manière
de procéder :

Supposons que f(x) et ses dérivées soient continues jus-
qu'à l'ordre r. Il s'agit de ramener l'approximation trigono-
métrique de f(x) à l'approximation par polynômes de

certaines fonctions de u ayant des dérivées en u continues

jusqu'à l'ordre /'. Toute la difficulté provient de la présence
de sin.r qui s'annule au dénominateur de la formule de

dérivation:
d d 1 d

da d cos x sin x dx

Il suffit, pour la faire disparaître, d'introduire sinr.:r en
facteur dans la définition des fonctions <p(«) et ty(u) qui
précèdent. Gela permet, en effet, de faire disparaître, comme
facteur commun âux deux termes de la fraction, cette expression

sinqui provoque la difficulté.
Posons donc

<p(w) \f(x) + (— l)rf(— x)] sinr x

+ (") lf(x) — (- 1)rf(— #)] sin'*+1 * •

Soient Pw(m) et Qn(u) des polynômes approchés de <p(u) et
de on aura, comme dans le cas précédent,

2f(x) sin^1# =z Pn(cos#) sin x -j- Qn (cos x) ;

ensuite, toujours comme précédemment,

2f(x) cosr+1 x — Rw (sin x) cos x -j- S (sin x)

Or on peut toujours déterminer deux polynômes A et B
en sin x et cos x vérifiant l'identité

A sin7x -|- B cos'"è1 x ~ 1

On ajoute les deux relations précédentes multipliées res-
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pectivement par A et B, 011 obtient la représentation trigo-
nométrique cherchée.

Ce procédé ne résout pas la difficulté, si Ton considère
des fonctions indéfiniment dérivables. Cela fait, entre les
deux problèmes inverses que nous venons de traiter, une
différence qui reste profonde. La solution du premier est
plus radicale que celle du second.

4. — Dérivabilité de la représentation.
Ordre de l'approximation.

Ces deux questions sont liées par d'étroites relations, qui
n'ont été éclaircies que récemment et que nous approfondirons

dans un autre paragraphe (6). Cependant, sansque leur
dépendance ait été aperçue dès le début, elles ont été traitées
dans les mêmes Mémoires et, plus tard, on en a fait l'étude
combinée. Il est impossible de les séparer.

Nous allons donc les étudier ensemble, mais en nous
bornant pour le moment à la seule approximation par polynômes.

La question de représenter f(pc) par une série dérivable de
polynômes a été posée par M. Painlevé dès 1898. M. Painlevé
a montré que si la fonction f(pc) a des dérivées continues,
elle est exprimable en série uniformément convergente de
polynômes, telle que les séries dérivées convergent aussi
uniformément vers les dérivées de f{pc). M. E. Borel est
revenu sur cette question dans sa Thèse et dans ses Leçons
de 1905 sur les fonctions de variables réelles.

La question de l'ordre de l'approximation est plus récente.
Elle a été posée en 1908 par M. Lebesgue (10), à l'occasion
du polynôme de Landau,

i
p» yf/w-c-*)']"*

o

qui, pour n infini, converge uniformément vers f(x) dans
tout intervalle (a, b) intérieur à (0, 1).

Le maximum de |f—P„|, ou l'approximation p t tend

vers 0 avec — mais quelest l'ordre de grandeur de pi
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Telle est la question de l'ordre de l'approximation que

M. Lebesgue s'est posée, mais n'a traitée que très sommairement

dans ce premier article.
Je m'étais posé la même question, avant la publication de

la Note de M. Lebesgue, et mes résultats ont paru, peu

après, dans un Mémoire étendu (3) de l'Académie royale de

Belgique (1908). Les deux questions, dérivabilité et ordre

de l'approximation, reçoivent ici des solutions plus précises

que dans les travaux précédents. Je prouve, en particulier,

que le problème de la dérivabilité est entièrement résolu

par le polynôme de Landau. En effet, dérivée d'ordre

quelconque de Pn converge vers la, oïd/e de

f(x) au point x, sous la seule condition que cette dei ivee

existe en ce point. C'est là la supériorité du polynôme de

Landau '.La continuité de laderivee n est pas / equise. Lès

autres procédés que nous allons étudier seront, sans doule,

beaucoup plus parfaits au point de vue de l'approximation,
mais ils perdent cet avantage : les conditions de leur
dérivabilité exigent la continuité.

C'est encore dans mon Mémoire cité de 1908 que se trouvent
les premiers résultats définitifs sur l'ordre de l'approximation.

Je prouve que sila fonction f(x) est lipschitzicnne, lap~
proximationobtenue par le. pode Landau est de

l'ordre de —= au plus.
V«

Cette approximation n'est pas la meilleure qu'on puisse
obtenir dans cette hypothèse générale. M. Lebesgue, en 1910

(11), a obtenu l'ordre et enfin, en 1911, M. D. Jackson (8)

« 1
a obtenu l'ordre—, qui ne peut plus être abaissé. Je vais y

revenir. Cependant j'ai donné moi-même le premier exemple
d'une meilleure approximation dans un autre Mémoire (12),

présenté à l'Académie royale de Belgique la même année

1908 et publié le mois suivant. Prenant celte fois mon point
de départ dans l'intégrale

Ifi
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qui jouit de propriétés analogues à celles de Dirichlet, j'ai
montré que toute fonction dont La dérivée est à variation
bornée peut être représentée par un polynôme de degré n avec

1
une approximation de l'ordre de—, C'était, je pense, le

premier exemple d'un ordre qui ne peut plus être abaissé.
Toutefois, comme je viens de le dire, on peut assigner une

approximation du même ordre dans l'hypothèse, bien plus
générale, où la fonction f(x) est lipschitzienne. Mais ceci n'a
été démontré que trois ans plus tard et c'est un cas particulier

d'un théorème plus général que M. D. Jackson (8) a énoncé
dans sa dissertation inaugurale de 1911. M. D. Jackson
consacre un chapitre entier de cette dissertation à l'approximation

simultanée de f(x) et de ses k — 1 premières dérivées
dans l'hypothèse où la dernière est lipschitzienne. Il raisonne
pour cela sur une combinaison ingénieuse d'intégrales
absolument convergentes du type

fnz + u)(^)ki
où 1 et k sont des entiers, ce dernier suffisamment grand.
Il construit un polynôme qui fournit une approximation de

1 _l'ordre de —k et dont la dérivée d'ordre r <^k fournit, pour

f[r)(x), une approximation de l'ordre de En particulier,

on obtient le résultat énoncé plus haut si Ä 1 : l'appro-
ximation de f{x) lipschitzienne est de l'ordre de —

Ces théorèmes de M. D. Jackson sont définitifs, mais pour
les fonctions seulement qui n'admettent qu'un nombre limité
de dérivées successives. Ils n'ont plus rien de commun avec
la meilleure approximation quand toutes les dérivées existent.

Si la fonction f(x) est indéfiniment dérivable, la méthode
du développement en série de polynômes trigonométriques,
que M. Bernstein (6) a utilisée dans son Mémoire couronné
(1912), est plus simple et bien préférable. Ce développement
qui, comme nous l'avons vu, se déduit de celui de /(cos<p)
en série de Fourier, donne la meilleure solution connue de
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la représentation indéfiniment dérivable. Dans cette
hypothèse, l'approximation de chaque dérivée est indéfiniment

1 •

petite d'ordre supérieur à toute puissance de—.

Réciproquement, l'existence d'un tel degré d'approximation assure
celle de toutes les dérivées. Nous en reparlerons plus loin.

5. — Approximation minimum.

Soit f{x) une fonction continue dans un intervalle {a, b).

Parmi les polynômes de degré donné n, il en existe un, P„,
qui donne la meilleure approximation, tel donc que
l'approximation soit minimum. Nous appellerons cette meilleure
approximation approximation minimum, et le polynôme qui
la donne est le polynôme d'approximation (ou d'approximation

minimum).
La considération de ce polynôme remonte à une époque

déjà ancienne, elle est due à Tchebycheff (7) (1859). Le grand
géomètre russe a consacré une partie importante de son
oeuvre à l'étude de l'approximation par des fonctions rationnelles

(entières ou fractionnaires). Mais l'importance des
découvertes de Tchebycheff pour notre objet actuel n'est
apparue qu'après le Mémoire de M. S. Bernstein (1912). Tant
pour la valeur des matériaux réunis que par le mérite de
l'invention, la place qui revient à Tchebycheff dans la théorie
qui nous occupe est encore la première.

Tchebycheff, comme cela était naturel de son temps,
admettait sans démonstration l'existence du polynôme
d'approximation minimum. Cette démonstration a été donnée par
M. Borel dans ses Leçons sur les fonctiorrs de variables
réelles et les séries de polynômes (1905) (13). M. Borel a
montré que le polynôme d'approximation minimum dans un
intervalle (a, b) est unique et qu'il est caractérisé par la
propriété suivante : la différence f{x) — P„ acquiert sa valeur
absolue minimum avec des signes alternés en n + 2 points
consécutifs de* l'intervalle (aH b). Ce maximum absolu est
1 approximation minimum pn. Il suit de cette propriété que
le polynôme d'approximation est un polynôme de Lagrange

L'Enseignement mathém., 20e année, 1918. 2
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qui coïncide avec f(x) en n + 1 points (au moins) de l'intervalle

(a, b). J'ai donné en 1910(14) à ces points de coïncidence

le nom de noeuds et le polynôme de Lagrange est
défini par ses nœuds.

Le calcul exact du polynôme d'approximation minimum
n'est possible que dans des cas très exceptionnels. Mais il
existe divers procédés de calcul qui permettent d'en approcher

autant qu'on veut. Ces procédés sont dus à M. Borel (13),
à moi-même (14) et à M. Bernstein (6). Ces procédés reviennent
tous à former successivement des polynômes de Lagrange
de plus en plus avantageux en améliorant progressivement
le choix des nœuds.

Dans 1 état actuel de la théorie, c'est l'approximation mini-
mun qu il importe surtout de connaître plutôt que le polynôme
d approximation lui-même. Faute d'un calcul exact, il convient
donc d'avoir des règles précises pour enfermer l'approximation

minimum entre des limites suffisamment resserrées. Ce
sont ces règles qui méritent de fixer maintenant notre
attention.

La détermination d'une borne supérieure est chose immédiate.

Tout polynôme donné Qn de degré n en fournit une, à

savoir le maximum de | f— Q„ |.
La détermination d'une borne inférieure demande un peu

plus de réflexion. Mais j ai donné dans mon Mémoire
de 1910(14) une règle, qui m'a paru intéressante, en vertu
de laquelle un polynôme de Lagrange de degré n fournit
généralement une telle borne.

Voici d'abord cette règle :o
Soit Qn un polynôme de degré n ; si la différence f (x) — Qn

prend, en n -f- 2 points consécutifs et avec des signes alternés,
des valeurs absolues < p, alors p est une borne inférieure cle
Vapproximation minimum.

En particulier, si est un polynôme de Lagrange à n -f 1

nœuds, ces n + i nœuds partagent {a, b) en n + 2 intervalles,
°ù f— Qn est (sauf exception) de signe alterné. Dans chaque
intervalle, f— Q/t passe par un maximum absolu et le plus
petit p de ces maxima absolus est une borne inférieure de
l'approximation minimum.
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La démonstration de notre règle est presque immédiate.

Soit Vn le polynôme d'approximation et pn l'approximation
minimum ; si l'on avait pa < p. le polynôme de degré n,

Pn-Qn=lf-Qn\-(f-*n) '

changerait de signe n -1- 3 fois au moins dans linteivallc
(a, b) et aurait, par conséquent, n + 1 racines au moins, ce

qui est impossible.
M. Bernsteina généralisé notre théorème dans son Mémoire

couronné de 1912 (6). Il l'a étendu au cas où les polynômes

sont formés avec des puissances de x dont les exposants

font partie d'une suite de nombres positifs (entiers ou non)

qui sont assignés d'avance. Il s est servi de ce théoième

généralisé pour trouver une borne intérieure de la meilleuie

approximation de \x\.
La règle précédente présente le grand avantage d avoir

une efficacité illimitée. En effet, en essayant de nouveaux

polynômes Qrt, on peut, théoriquement du moins, approcher
autant qu'on veut de la valeur exacte de l'approximation.
Il existe d'autres règles qui ont un caractère plus particulier
et qui épuisent leur efficacité dès la première application,
mais qui n'en sont pas moins très Utiles, parce qu elles sont

dans bien des cas d'une application plus facile que la précédente.

Je vais en signaler deux, qui s'appliquent directement
à l'approximation trigonométrique et indirectement aux

polynômes, grâce à la substitution de Bernstein. Il est à

peine besoin de dire que les considérations précédentes sur
la meilleure approximation par polynômes s'étendent mutatis
mutandis à la meilleure approximation trigonométrique.

Considérons, avec M. Bernstein (1912), le développement
de f(x) en série de polynômes trigonométriques ou, ce qui
est exactement la même chose, le développement de f(cos 9)

en série de Fourier

/'(cos 9) — Oq-}-cos 9 -(7 ^2 cos d~ • •

Soit S„ la somme des n + 1 premiers termes, on sait que
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les valeurs aQ, al, an des constantes de Fourier sont celles
qui miniment l'intégrale

2rr

| / [/'(coso) - SJV?
(I

Soit donc Tw la suite trigonométrique d'ordre n qui donne
l'approximation minimum, on aura

-TT

~ f[/'(oos<p) - S„]2rf? ^ I(/'- ïk)V? ^ 2p2

U U

en vertu du théorème de la moyenne (pn étant la valeur maximum

absolue de f—Tn). Mais la première intégrale a pour
valeur

2 7r"

g
I [«„_!_! COS (// + 1)© + an+2 cos (« 4- 2)cp 4- .]Vcp

^ + «w+.2 + • • • •

De là, la règle de M. Bernstein:
Si l'on désigne par a0, a4, a2, Zcs constantes de Fourier

de f(cos vp) la meilleure approximation pn de f(x) dans l'intervalle

(— 1, +1) satisfait à la condition1

p»5 \/+ + " '1

Il est clair d'ailleurs que l'on a, d'autre part,

pn 5 l "„+,1 + l«/l+äl +

puisque cette approximation est donnée par la série de
polynômes trigonométriques.

La seconde règle, qui est plus importante et qui est
antérieure (1910), a été donnée par M. Lebesgue dans son
Mémoire Sur le§ intégrales singulières (15). Voici la règle de
M. Lebesgue:

1 Nous avons ajoute sous le radical le facteur ^ qui manque dans le texte de M. Bernstein.
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Si la somme d'ordre n de la série de Fourier de la fonction
périodique f(x) donne une approximation <p(n), l'approximation

trigonométrique minimum pn satisfait à la condition

où k est ime constante numérique assignable a priori.
La démonstration repose sur les propriétés de l'intégrale

de Dirichlet, mais, si simple qu'elle soit, elle ne peut trouver
place ici.

Si l'on applique, par exemple, les deux règles précédentes
à la fonction |x|, la règle de M. Bernstein prouve que pn

n'est pas d'ordre supérieur à ^et celle de M. Lebesgue

que jo« n'est pas d'ordre supérieur a - 1q^ n. Dans ce cas.

c'est la règle de Lebesgue qui l'emporte, mais il n'en est pas

toujours ainsi.

6. — Relations entre l'ordre de grandeur de la meilleure
approximation et les propriétés différentielles.

La meilleure approximation pn d'une fonction continue

f{x) par un polynôme de degré n tend vers zéro quand n tend

vers l'infini. C'est le théorème même de Weierstrass. J'ai

posé en 1908 (12) la question de déterminer l'ordre de grandeur

de p pour n infini et M. Bernstein a posé en 1912 (6)

celle d'en déterminer la valeur asymptotique quand elle
existe.

Aujourd'hui des résultats définitifs sont acquis et répondent

à ces deux questions. Ils sont dus à M. Dunham
Jackson (1911) et surtout à M. Bernstein (1912).

Un premier résultat essentiel est qu'il existe une dépendance

étroite entre l'ordre de la meilleure approximation et
l'existence des dérivées jusqu'à un ordre plus ou moins élevé.

L'existence d'une dérivée bornéqd'un certain ordre assure
une approximation d'un ordre correspondant et c'est M. Dunham

Jackson (8) qui a trouvé les théorèmes les plus précis
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sous ce rapport. Nous les avons exposés dans un article
antérieur. Mais M. Jackson n'énonce aucun théorème
réciproque et 1 on ne sait pas si ces énoncés s'appliquent à

l'approximation minimum. Seul M. Bernstein (6) est arrivé à
des résultats positifs en ce sens et a su remonter de Tordre
de l'approximation obtenue aux propriétés différentielles de
la fonction.

M. Bernstein n'y a d'ailleurs réussi qu'en s'inspirant des
travaux de Tchebycheff et nous allons exposer de quelle
manière. Nous donnerons d'ailleurs une idée suffisante de
la question en nous bornant à l'approximation trigonomé-
trique et en simplifiant un peu les données du problème.

Faire 1 approximation trigonométrique de f{x) revient à

effectuer un développement en série

fr) P1 + P„-F

dont les termes sont des expressions trigonométriques
d ordres croissants et nous supposons, pour simplifier, P„
d ordre n. Admettons que les termes de cette série soient,
en valeur absolue, inférieurs à ceux de la série positive
convergente

£1 £2 ~f" • • • + + • • •

La rapidité de l'approximation correspond à la convergence

plus ou moins rapide de la série. D'autre part, l'existence

des dérivées de f(x) découle de la possibilité de dériver
la série. Or cette dérivation est lég'itime tant cjue les séries
dérivées sont absolument et uniformément convergentes.
Tout revient donc à avoir une règle pour conclure de l'ordre
de grandeur de P„ à l'ordre de grandeur de ses dérivées.
C est cette règle (]ue M. Bernstein a trouvée, en complétant
certaines recherches de Tchebycheff, et cette règle est d'une
simplicité et d'une précision inattendues. La voici :

Si uneexpression trigonométrique d'ordre n est de module
< L et que l'expression soit formée de sinus seuls ou de
cosinus seuls, ses dérivées successives d'ordres 1, 2, 3, sont
respectivement de modules < nL, < n2L, < n3L, Il suffi
de doubler, ces bornes 'si l'expression trigonométrique est de
la forme générale.
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Oïi voit d'après cela que, si la décroissance des-quantités

sn est suffisamment rapide pour assurer la convergence de

la série

1% + +

elle assure aussi l'existence de la dérivée d'ordre p de f(x).
Tel est réduit à ce qu'il a de plus essentielle raisonnement
de M. Bernstein.

Pour mettre en lumière la netteté des conclusions
auxquelles conduisent les méthodes de M. Bernstein, donnons

d'abord, avec cet habile géomètre, la définition suivante :

Nous dirons qu'une fonction continue <p(x) vérifie une
condition de Lipschitz d'ordre «(0 < a < 1), s'il existe une constante

M telle qu'on ait, quel que soit $ positif,

| ® (x -f- B) — cp (x) | <C M8a

Considérons maintenant une fonction f(x) de période 2tt et

son approximation trigonométrique d'ordre n. Nous avons
le théorème suivant :

Si f(x) admet une dérivée continue d'ordre p, laquelle satisfait

à une condition de Lipschitz d'ordre «(0 < a < 1), alors
on peut assigner uiie constante M4 telle que Vapproximation
trigonométrique minimum, pn, satisfasse, quel que soit n, à

la condition

Pn
„P

Réciproquement, si pn satisfait à une condition de cette

forme où 0 a <1 (limites exclues), la fonction f(x) admet
une dérivée d'ordre p qui satisfait à une condition de Lipschitz
d'ordre oc.

A vrai dire, ce théorème est énoncé ici pour la première
fois sous cette forme stricte, et nous en publierons ailleurs
la démonstration, mais il est dû, dans sa grande partie, à

M. Bernstein. Ainsi que M. Bernstein l'a déjà remarqué,
l'exclusion du cas limite oc 1 est essentielle et ne tient pas
à une imperfection de l'énoncé.

Si toutes les dérivées existent, le théorème perd de la pré-
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cision qui en fait le principal intérêt. Il prouve que l'approximation

décroît plus vite que toute puissance négative de /?,
mais il n'en fixe plus l'ordre. Il y a donc lieu de faire alors
de nouvelles hypothèses sur la nature de la fonction. La
première qui se présente à l'esprit est celle à"analycité.

7. — Relations entre l'ordre de grandeur de la meilleure
approximation et les propriétés analytiques.

Lorsque la fonction f\x) est analytique et holomorphe sur
l axe réel et qu'il s'agit de sa représentation approchée sur
cet axe seulement, l'ordre de la meilleure approximation est
liée aux propriétés analytiques de la fonction et dépend
avant tout de la situation de ses points critiques s'il en existe.
C'est encore M. Bernstein qui a étudié le premier cette
dépendance dans son Mémoire couronné par l'Académie de
Belgique (1912). Mais il est revenu sur la question et il a

publié des résultats isolés, mais d'une singulière précision
et du plus grand intérêt, dans un second Mémoire présenté,
peu après, à la même Académie (1913) (16).

M. Bernstein s'est occupé de l'approximation par polynômes.
Mais ses résultats prennent une forme plus simple si on les
traduit dans le mode de représentation trigonométrique, par
la substitution habituelle x cos u. Les parallèles à l'axe
réel du plan u jouent un rôle prépondérant dans l'approxi-
tion trigonométrique; il y a lieu d'observer que la substitution

x cos u leur fait correspondre des ellipses homofo-
cales, de foyers ±1, dans le plan x. Ce sont ces ellipses
qui jouent le rôle prépondérant dans l'approximation par
polynômes et, par suite, dans les énoncés de M. Bernstein.
Mais nous n'en parlerons pas; il nous suffira d'énoncer les
résultats essentiels de la théorie dans la seule hypothèse de
la représentation trigonométrique.

Soit donc à étudier la meilleure approximation trigonométrique

de la fonction y(u) de période 2 n sur l'axe réel. Cette
fonction est analytique et holomorphe sur cet axe. Supposons

d'abord qu'elle admette un ou plusieurs points critiques



FONCTIONS D'UNE VARIABLE RÉELLE 25

imaginaires. Alors, en première analyse, la meilleure appi oxi-

mation dépend de la distance de l'axe réel au point critique
le plus rapproché.

On peut, en effet, formuler le théorème suivant, dont la

première partie est due à M. Bernstein, mais que je complète

par l'énoncé d'une seconde partie dont la démonstration n a

pas encore été publiée.
Si une fonction <p(u) de période 2tt est holomorphe sur l axe

réel et possède son point critique le plus rapproché de cet axe

sur l'une des deux droites y ± b (b > 0), on suppose

u x yi, alors, quelque petit que soit s positif la meilleure

approximation trigonométrique, pn, de 9(11) sur laxe
réel vérifiera constamment l'inégalité

—n[b—z\
Pn<e

à partir d'une valeur suffisamment grande de n, tandis quelle
ne vérifiera jamais définitivement l'inégalité

—n(b+î)
Pn < e

quelque grand que soit ni.
La connaissance de l'ordre de la meilleure approximation

se précise davantage si l'on suppose que (p(u) n'ait d'autres

points critiques que des pôles sur les deux droites y ± b

du théorème précédent. Je suis, en effet, en mesure de

démontrer le théorème suivant, mais qui, je le pense, pourrait

être beaucoup précisé :

Si la fonction 9(11) de u x + yi a ses points critiques les

plus rapprochés de l'axe réel sur les droites y — ± b (b > 0)

et que le point critique de l'ordre le plus élevé parmi ceux-ci
soit un pôle d'ordre k, alors on aura constamment, à partir
d'une valeur suffisamment grande de n

tandis que l'on n'a jamais définitivement

Pn < nk-x~ze-ub
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Mais en particularisant beaucoup plus la nature du point

critique, on peut aller beaucoup plus loin et déterminer la
valeur asymptotique même de pn. C'est ce qui a été fait par
M. Bernstein dans son dernier Mémoire de 1913 et le point
de départ de cet habile mathématicien se trouve encore une
fois dans les travaux de Tchebycheff.

En effet, en utilisant une formule de l'illustre mathématicien

russe, M. Bernstein a réussi à former le polynôme
d'approximation d'ordre a de

1

x — a

dans l'intervalle (— 1, + 1), a étant réel et > 1.

Par conséquent, il a obtenu en .même temps la valeur
exacte de l'approximation minimum. C'est là un résultat
extrêmement important malgré son caractère particulier.
Mais nous allons traduire ce résultat dans le mode de
représentation trigonométrique, pour le rapprocher des précédents.

On va voir qu'il prend alors une forme singulièrement
instructive, bien plus simple et plus élégante que sous la
forme considérée par M. Bernstein.

Par la transformation de Bernstein et en posant a Ch b

ou b est réel et positif, la fraction 1 : (x — a) se transforme,
à un facteur constant près, dans l'expression trigonométrique

Sh h

cos u — Gh b

qui, aux multiples près de la période, n'a qu'un seul p^ôle

a bi sur chacune des droites y — ± b, pôle dont le résidu
a pour module l'unité. La meilleure approximation
trigonométrique de cette fonction sur l'axe réel se réduit alors à la

valeur, exacte et toute simple,

Plus généralement, soit <f(u) une fonction paire et de

période 2v:. Supposons que ses points critiques les plus
voisins de l'axe réel soient sur les droites y ± b. Admettons
encore qu'aux multiples près de la période, ces points cri-
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tiques se réduisent sur chacune de ces droites, au seul pôle

simple u ± bi, avec un résidu dé modulé a. Alors, par
comparaison avec le résultat précédent, on obtient immédiatement

la valeur asymptotique de la meilleure approximation
trigonométrique de <p(u). Ce sera nécessairement

p/t no a e
^'l

Si au lieu de cela, le pôle était d'ordre &, les autres conditions

restant les mêmes, on aurait la formule asymptotique

où pi est une constante qui ne dépend que de la fonction.
Voilà assurément des indications bien précieuses sur la

manière dont il faut essayer de préciser les résultats plus
vagues obtenus tout à l'heure dans des hypothèses plus
générales.

Pour terminer, je dirai encore un mot du cas où la fonction

à représenter est holomorphe dans tout le plan. Ce cas

ne paraît pas avoir été étudié jusqu'ici. Mais, dans cette
nouvelle hypothèse, la question de la meilleure approximation

présente une analogie plus étroite avec celle de la

convergence de la formule de Taylor. C'est le mode de croissance

de la fonction qui devient le facteur principal dont
dépend la meilleure approximation. Je vais me borner encore
à la représentation trigonométrique. Les conclusions
principales auxquelles je suis parvenu peuvent alors se formuler
dans le théorème suivant :

Soit f(z) une fonction holomorphe de z x -f- yi et de
période 2tt. Soit ensuite y (y) la plus petite fonction non décroissante

de y positif qui satisfait, quel que soit y, à la condition

i x, _j_ y?\y)
I f(x ± yi) | < e ;

soit <J/(n) la fonction inverse de <p, cest-à-dire la plus petite
solution de ç(y) n. Alors, quelque petit que soit e positif\
la meilleure approximation trigonométrique de f(x) sur l'axe
réel satisfait à la condition
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à partir d'une valeur suffisamment grande de n, tandis
yu elle ne satisfait jamais définitivement à la condition

?n < e-(1+£)/^(,î)

Dans cette trop longue analyse, je n'ai fait qu'effleurer les
sujets que j ai traités, j'en ai passé beaucoup d'autres sous
silence. Je n ai rien voulu de plus que ramener l'attention
sur une question que les événements actuels ont fait oublier,
mais qui paraissait pleine de promesses. Elle ouvre encore
de nombreuses voies qui ne paraissent pas trop difficiles à

explorer. Je souhaite que de jeunes mathématiciens s'y
engagent et y fassent une ample moisson de découvertes.
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