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De méme les droites p;, p;, p, rencontrent les codtés du
premier triangle en neuf points
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Il 'y a pour tout couple de triangles sphériques ou plans
en général trois points P tels que sont collinéaires les points
de chacun des six systemes : |
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Nous revenons sur la démonstration de ces deux théo-
remes dans un article ultérieur.

PENSEE AXIOMATIQUE!

PAR

David HiLerT (Géttingue). .

Dans la vie des sociétés la prospérité des peuples dépend de
celle de tous ses voisins ; les Etats, de méme, ont un intérét
vital a ce que l'ordre non seulement régne a lintérieur de

chacun d’eux, mais existe aussidans leurs relations mutuelles.

Il n’en va pas autrement dans la vie des sciences. Preuve en
soit le vif intérét que les représentants les plus remarquables
de la pensée mathématique ont toujours témoigné 4 la struc-
ture et aux lois des autres sciences que laleur; ils n’ont cessé
avant tout d’étudier les mathématiques (et pour le plus grand
bien de ces derniéres) dans leurs rapports avec les vastes

! Axiomatisches Denken, conférence faite a la reunion annuelle de la Société mathéma-
tique suisse, tenue a Zurich, le 11 septembre 1917. — Traduction de M. Arnold Reymoxb,
professeur a I’'Université de Neuchatel. :
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domaines de la physique et de la théorie de la connaissance
qui les cotoient de plus pres. ‘La nature de ces relations et
leur fonciére fécondité seront, je crois, nettement indiquées
si- je désigne sous le nom de méthode axiomatique la mé-
thode oenerale d’investigation qui les caractérise et qui dans
les mfllhemathues modernes prend une unportan(,e de plus
en plus grande.

- Si nous groupons les faits d'un domaine scientifique dé-
terminé, plus ou moins étendu, nous remarquons bientot
qu’ils sont susceptibles d’étre ordonnés. Cet ordre s’effectue
constamment par le moyen d'un certain édifice de concepls tel
qu’un concept et un seul corresponde a tout objet du do-
maine scientifique et-qu’a 'intérieur de ce dernier un état de
faits ait pour équivalent une relation logique entre concepts.
1’édifice des concepts n'est pas autre chose que la t/zeoz le
du domaine scientifique envisagé.

C’est ainsi que les faits géométriques s’ordonnent en une
géométrie, les faits arithmétiques en une théorie des nom-
bres, les faits staliques, mécaniques, électrodynamiques en
théories de la statique, de la mécanique, de I’électrodyna-
mique, ou c'est encore ainsi que les faits de la physique
des gaz se 01'oupent en une théorie des gaz. Il en ‘est de
méme en ce qui concerne les domaines scientifiques de la
thermodynamique, de l'optique géométrique, de la théorie
du rayonnement, de la conduction de la chaleur ou encore
du calcul des probabilités et de la théorie des ensembles.
- La méme remarque s’impose enfin, qu’il s’agisse de mathé-
matiques pures (théorie des surfaces, théorie de Galois
concernant les équations, théorie ‘des nombres premiers) ou
~de sciences sans rapportdirect avec les mathématiques pures
telles que la théorie de la monnaie ou certains chapitres de
la psychophysique. | I

Si maintenant nous considérons de plus prés une théorie
déterminée, nous constatons invariablement que l'édifice
des concepts doit avoir pour base dans le domaine scientifi-
que un nombre restreint de propositions exceptionnelles qui
suflisent a elles seules a construire tout I’ edlﬁce d'aprés des
principes logiques.
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En géométrie, par exemple, il suffit d’en appeler unique-
ment a la proposition qui concérne la linéarité de I'équation
du plan et la transformation orthogonale des coordonnées
ponctuelles pour construire ensuite, et par le seul moyen de
I'analyse, la science cependant si vaste de la géométrie eu-
clidienne dans 'espace. De méme la théorie des nombres
s’édifie entierement d'aprés les régles et les lois de calcul
qui sont valables pour les nombres entiers. C’est encore un
role analogue que jouent en statique, le principe du parallé-
logramme des forces, en mécanique les équations différen-
tielles de Lagrange sur le mouvement et en électrodynami-
queles équations de Maxwell, a condition toutefois d’adjoindre
a ces derniéres un poslulat relatil a la rigidité et a la charge
de I'électron. Semblablement la thermodynamique se laisse
en entier construire sur le concept de la fonction énergé-
tique et sur les définitions de température et de pression
quien sont lirées au moyen des variables (entropie et volume).
Nous trouvons de méme au centre de la théorie du rayon-
nement la loi de Kirchhoff quirégle les rapports entre I'émis-
sion et 'absorption, dans le calcul des probabilités la loi des
erreurs de Gauss, dans la théorie des gaz le principe de
Pentropie concu comme le logarithme négatif de la probabi-
lité d'un état donné, dans la théorie des surfaces la repré-
sentation d'un élément curviligne par une forme quadratique
différentielle, dans la théorie des équations le théoréme con-
cernant I’existence des racines, dans la théorie des nombres
premiers le principe relatif a la réalité et a la fréquence des
zéros dans la fonction riemanienne ¢).

Tous ces principes fondamentaux peuvent, 4 un premier
point de vue, étre envisagés comme les axiomes de domaines
scientifiques spéciaux dont 'extension progressive s’achéve
ensuite d’'une fagon purement logique a 'intérieur de I’édi-
fice conceptuel déja exécuté. Cest surtout dans les mathé-
matiques pures. que ce point de vue s’affirme avec netteté, et
c’est aux travaux qui s’en sont inspirés que nous devons le
développement prodigieux de la géométrie, de arithméti-
que, de la théorie des fonctions et de toute I'analyse.

Cela étant, et pour les cas dont nous avons parlé, le pro-
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bhléeme relatif aux fondements d’'un domaine scientifique spé-
cial semblait avoir trouvé une solution; mais celle-ci ne
pouvait étre que provisoire. En fait et dans chaque domaine le
besoin se faisait sentir de fonder jusqu'aux propositions spé-
cifiées plus haut, bien qu’elles fussent considérées comme
des axiomes fondamentaux. C’est ainsi que l'on s’efforca
“de prouver soit lalinéarité de I'’équation du plan et I'orthogo-
nalité de la transformation qui exprime un mouvement, soit
les lois du calcul arithmétique, soit le parallélogramme des
forces ou encore les équations du mouvement de Lagrange
et la loi de Kirchhoff sur I'émission et I’absorption, soitenfin
le principe de I'entropie- et la proposition relative a l'exis-
tence des racines d’une équation.

Mais I'examen critique de ces « preuves » fit reconnaitre
qu’en soi elles n'en sont pas; en réalité elles ne font que
rendre possible le retour a certaines propositions plus fonda-
mentales encore qui elles-mémes apparaissent comme de
nouveaux axiomes en lieu et place des lois a4 démontrer.
C'est de cette facon qu'ont pris naissance les a.xiomes ainsi
dénommés a juste titre aujourd’hui, de la géométrie, de
I'arithmétique, de la statistique, de la mécanique, de la théo-
rie du rayonnement ou de la thermodynamique. Ces axiomes
forment une couche sous-jacente plus profonde en opposi-
tion a la couche axiomatique superficielle, caractérisée par
les principes fondamentaux posés en premier lieu et que
nous avons énoncés pour chaque domaine scientifique spé-
cial. Le procédé de la méthode axiomatique, tel que nous
venons de le décrire, revient donc a poser plus profondément
les fondations qui soutiennent chacun des domaines scienti-
fiques spécianx, travail analogue a celui qui est nécessaire
pour rehausser un batiment sans en compromelttre la sécu-
rité.

Pour qu’une théorie scientifique représentée par un édi-
fice de. concepts remplisse son but, deux exigences sont
avant tout requises; la premiére concerne la dépendance et
respectivement lindépendance des propositions de cette
théorie, la deuxieme l'absence de contradiction dont ces
propositions prises dans leur ensemble doivent témoigner.
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Occupons-nous tout d’abord de la dépendance et de I'in-
dépendance. des axiomes. ‘ T ‘

L’exemple classique dont. on se sert pour prouver l'indé-
pendance d’un axiome est fourni en géomeétrie par le postulat
des paralléles qu’Euclide, remarquons-le, rangeait déja
parmi les axiomes. Par 1, il écartait la question de savoir si
cette proposition. n'était pas elle-méme conditionnée par les
aulres axiomes. Aussi, la méthode de recherche préconisée
par Euclide est-elle restée typique de toute recherche axio-
matique, et depuis ce grand savant la géométrie est-elle
devenue 'exemple modele de la science axiomatique.

‘La mécanique classique nous offre un autre exemple d’in-
vestigation concernant indépendance des axiomes. Comme
nous l'avons fait remarquer, les équations de Lagrange sur
le mouvement pouvaient étre envisagées provisoirement
comme les axiomes de la mécanique, car elles suffisent com-
pletement & fonder les formules générales relatives a des
forces quelconques et aux conditions quelconques qui les
accompagnent. Mais une recherche plus approfondie montre
qu’il est inutile pour I’édification de la mécanique, de postu-
ler a la fois des forces et des conditions queléonques, et que
par la le systéme des postulats peut étre diminué. Cette
constatation conduit d’un c6té au systéme d’axiomes posés
par Boltzmann, qui ne suppose que des forces, spécialement
centrales il est vrai, mais qui n’exige ducune condition addi-
tionnelle, de I’autre au systeme d’axiomes défini par Hertz,
lequel rejette les forces pour faire appel a des conditions,
plus spécialement a des liaisons rigides. Ces deux systémes
.d’axiomes constituent ainsi une couche plus profonde dans
Paxiomatisation progressive de la mécanique. e w

Si nous considérons maintenant dans la théorie de Galois
relative aux équations 'existence des racines d’une équation
comme un axiome fondamental, celui-ci n’en reste pas moins
.un axiome dépendant; car. il peut; en tant. que proposilion
existenlielle, étre. dérivé des axiomes de larithmétique,
comme Gauss I’a montré le premier. . T

Il en va.de méme si dans la théorie des nombres premiers
nous-considérons comme axiomatique la proposition concer-
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nant laréalité des zéros de la fonctlon riemanienne (f) : pour

creuser plus & fond la couche des axiomes purement arith-
methues la pregee: de cette affirmation de réalité serait né-
cessaire, car ¢'est cette preuve qui seule garantirait la certi-
tude des importantes conséquences que nous-avons pu, en la
postulant, établir.pour la théorie des nombres premiers.

Il faut signaler comme étant d’un intérét tout particulier
pour un processus axiomatique la question relative & l'indé-
pendance des principes d’'un domaine smentlﬁque par rap-
port a 'axiome de continuité. |

Dans la théorie des nombres réels, on montre par exemple

que l'axiome dit d’ Archiméde sur la'mesure estindépendant

de tous les autres.axiomes arithmétiques. Cette constatation
est, comme on le sait, d'une importance capitale pour la géo-

‘métrie ; mais elle me parait avoir aussi pour la physique un

intérét majeur, car elle-nous conduit: au résultat suivant :
d'une part nous pouvons, en juxtaposant des longueurs-ter-
restres, calculer les dimensions et les distances des corps
dans l'espace, ¢’est-a-dire mesurer les grandeurs célestes par
ane mesure terrestre; d'autre part les mesures métriques
permettent d’exprimer les distances jusque dans l'intérieur
des atomes. Ces faits toutefois ne sont en aucune facon une
conséquence logique des principes concernantla congruence
des triangles et la configuration géométrique, mais unique-

ment le résultat d’'une recherche empirique. -Dans le monde
physique, la validité de l'axiome archimédien a done be-

soin selon le sens indiqué d’une confirmation expéri‘mentale
directe 4 peu pres comme la proposition relatlve a'la somme
des angles d’un trlanOIe au sens connu. ’

D’une facon generafe je pourrais formuler comme suit
Paxiome de continuité en physique : « Lorsqu’un degré quel-
conque de précision est assigné d’'avance a la validité d’une:
formule physique, il existe de petits domaines a Pintérieur
-desquels les hypothéses faites pour la formule ‘peuvent va-

rier librement sans que 1'écart d’avec cette derniére dépasse

le degré de précision prescrit. » -Cet axiome ne fait au fond

qu’exprimer ce qu’il y a d'immédiat dans la nature de 'expé-

5

rience ; il est toujours implicitement supposé par les physi-
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ciens, sans avoir été jusqu’a maintenant formulé d’une facon
particuliére,

Si, par exemple, de l'axiome concernant llmpoqs1b1llte
d’un « perpetuum mobile » de deuxiéme espéce on fait avec
Planck dériver le second principe de la Thermodynamique
on utilise nécessairement cet axiome de continuité.

Ce dernier est également indispensable pour fonder la sta-
tique en utilisant I'axiome du parallélogramme des forces,
ou du motns en choisissant certains autres axiomes qui s’en
rapprochent beaucoup. C’est ce que Hamel a montré d’une
manieére trés intéressante par I'’emploi du principe relatif a la
possibilité pour le continuum d’¢tre bien ordonuné,

On peut de méme déplacer en profondeur les axiomes de
la mécanique classique, si en vertu de I'axiome de continuité,
on se représente le mouvement continu comme décomposé
par le moyen d’impulsions en des mouvements rectilignes et
uniformes qui se suivent un a un avec rapidité ; il faut alors
utiliser comme un axiome mécanique essentiel le principe
du travail maximum de Bertrand conformément auquel
aprés chaque choc le mouvement qui en réalité se produit
est toujours celui pour lequel I'énergie cinétique du systéeme
est un maximum en face de tous les mouvements compatibles
avec le principe de la conservation de I'énergie.

Quant aux plus récentes tentatives de fonder la physique
et spécialement I'électrodynamique, elles reposent comple-
tement sur des théories du continuum et par suite elles impli-
quent dans la plus large mesure l'idée de continuité; je ne
les examinerai cependant pas ici, parce que ces recherches
n'ont pas atteint un degré de perfecllon suffisant.

Passons maintenant a 4'examen du- deuxiéme. probleme
dont nous avons parlé plus haut, & savoir la question concer-
nant absence de contradiction des axiomes. Cette question
est de la plus haute importance, car la présence d’'une con-
tradiction dans une théorie en compromettrait toute la stabi-
lité.

Or il peut arriver que la notion de non-contradiction
interne ne se concilie que difficilement avec desthéories de-
‘puis longtemps acceptées et qui ont fait leurs preuves. Je
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rappelle, par exemple, dans la théorie cinétique des gaz-les
difficultés relatives a la réversibilité périodique.

Souvent aussi il arrive que la non-contradiction mterne
d une théorie est considérée comme-allant de soi, alors qu’en
réalité- de profonds développements mathématiques seraient

nécessaires pour la prouver. Pour illustrer ce fait, considé-

rons le probléme suivant tiré de la théorie de la conduction
de la chaleur : distribution de la température a l'intérieur
d’'un corps homogeéne dont la surface est maintenue & une
température déterminée qui varie suivant les régions. Cela
étant, le postulat relatif au maintien de ’équilibre de tempé-
rature ne renferme en fait aucune contradiction inlerne. Mais
en théorie il est nécessaire de pronver que le probléeme bien
connu concernant les valeurs-limites de la fonction. poten-
tielle est toujours résoluble, car seule la solution de ce pro-
bleme montre qu’une distribution de'la température satisfai-
sant 4 I'équation de la conduction calorifique est en: prmclpe
possible. =

Mais en physique surtout il ne suﬁit pas de prouver que
les principes d’'une théorie s’accordent entre eux;il faut en-
core montrer que -ceux-ci ne contredisent pas les principes
d’un domaine SCIentlﬁque voisin.
- Par exemple et comme je I'ai récemment fait voir, I'axiome
de la théorie du rayonnement comporte, oulre la loi fonda-
mentale de Kirchhoff sur I'émission et ’absorption, une pro-
position spéciale sur la réflexion et la réfraction de rayons
lumineux isolés que I'on peut énoncer en ces termes : soit
deux rayons de lumiére naturelle et de méme énergie; ils
tombent chacun d’un cété sur une surface qui sépare deux mi-
lieux et cela suivant des directions-telles que, le premier
aprés son passage, le second aprés sa réflexion suivent la
méme direction. Dans ces circonstances, le rayon qui nait
de leur union est de nouveau un rayon de lumiére natu-
relle et de méme énergie. Cetle proposition, comme on le
conslate en fait, n’est en aucune maniére en contradiction
avec l'optique ; mais en sus elle peut étre dérivée comme

une conséquence de la théorie ele(,tromaO‘nethue de la lu-
miere. '

L’Enscignement mathém., 20: année, 1918.

——

N
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Comme on le sait les résultats de la théorie cmeuque des
gaz sont en accord parfalt avec la ther nzodJ/zazlzzque ‘

De la méme facon U'inertie électr omagnetl,que et la gravita-
tion d’Linslein sont compalibles avec les eoncepts corres-
pondants de la théorie classique en tant que ceux-ci sont
'enwsages comme les cas-limites des concepts plus généranx
qui sont a la base des nouvelles théories. N |

- Au contraire la théorie moderne des quaniaet la (,onnals-“
sance progressive de la structure interne des atomes ont
conduit a des lois qui contredisent directement 1'é électrody-
namique édifiée “jusquw’a présent sur les équations de Max-
well. C’est pourquoi a I'heure actuelle I'électrodynamique,
ainsi que chacun le reconnait,.a impérieusement besoin d’ une
nouvelle base et d’une radicale transformation. o

-Comme on le voit par tout ce qui précede; la réfutation des
contradictions qui surgissent doit toujours s’effectuer par un
changement dans le (,hOl\ des axiomes; la’ difficulté consjste
alons a découvrir un choix tel que loutes les lois phys,lques
constatées découlent logiquement-des axiomes choisis.

Al en’va autrement lorsque les contradictions se dressent
dans les sciences théoriques pures. Comme exemple classi-
que d’un pareil événement on peut citer la théorie des en-
sembles et le paradoxe de l’ensemble de tous les ensembles
dont I'origine remonte déja a Cantor. Ce paladoxe est si pe-
sant que des mathématiciens hors ligne comme Kl‘onecker
et Poincaré ont, a cause de tui, re[use le droit d’existence
a toute la lheorle des ensembles, qui est cependant I'un des
rameaux les plus rlches et les plus vigoureux des malhéma-
thues . )

La méthode "nXlomathue vint heureusemcnt 1emed1er a
cet élat de choses précaire. Par la mise au jour d’axiomes
appropriés Zermelo, d'un coté, restreignit 'arbitraire des
définitions concernant les ensembles, et de 'autre, limita
avec précision les énoncés qdmlssd)les én les reportant sur
les éléments des ensembles. De cette maniére il réussit i
développer la théorie des ensembles de facon a en faire
tomber les contradictions verbales tout en lui laissant, mal-
gré les resirictions: imposées, la méme étendue et la méme

capacité d’ application.




T ———

PENSEE AXIOMATIQUE 131

Dans: tous les cas‘envisagés jusqu'ici, il s’est agi de con-
tradictions quiavaient surgi au cours du développement d'une
théorié et dont la disparition nécessitait la refonte d’un sys-
teme d’axiomes. Mais il ne suffit pas d’éviter les contradlc-
tions qui peuvent se présenter, si 'on veut rendre aux ma-
thématiques par elles compromlses leur réputation d’étre le
modele de la science la plus rigoureuse. Par son essernice
méme la méthode. axiomatique a des exigences beaucoup
plus étendues; -elle doit. en particulier prouver que, dans
chaque cas et sur la base du systéme d’axiomes posés, les
contradictions sont absolument zmposszbles al 1nler1eur d’un
domaine. scientifique. .

' Conformément a cette exigence, j'ai démontré dans les
Fondements de la géométrie la non-contradiction deé'a‘xiome’s
posés en faisant voir que toute contradiction qui découlait
logiquement d’axiomes géométriques devait nécessairement

se manifester aussi dans I’ arlthmethue du systeme des nom-

bres réels. - » : :
“Pourles théories phy81ques elles- -mémes, il suffit non moins
évidemment de ramener le probléme de la non-contradiction
tnterne.a la non- contmdlctlon des axiomes amthmethues
C’est ainsi que j'ai, montré ‘la non- -contradiction des axiomes
indispensables a la théori Le du rayonnement en construisant
pour elle un systéme d’axiomes composés d’éléments analy-
tiques mdependants ce qui suppose: la non- contradlctlon de
l’L\nalyse , \ : ' :
L’on peut et 'on d01t cas echeant pl'oceder d’une lacon
semblable dans I edlﬁcatlon d’une théorie mathem'lthue
Considérons par exemmple comme des axiomes la proposition
qui dans le développement de la théorie des groupes de Ga-
lois est relative & 'existence des racines et le prmmpe qui
dans la théorie des nombres premiers définit la réalité des
zéros de la fonction riemanienne ¢ (2); il faut alors dans cha-
cun de ces cas prouver la non-contradiction du systéme
d axiomes envisagé, et pour cela démontrer par le moyen de
PAnalyse la proposmon concernant 'existence des racines,
comme aussi le prineipe riemannien relatif & la fonction g(¢),

car c’est seulement de cette maniére que T achevement de la
théorie est assuré ~
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De méme le probléeme de la non-contradiction d'un sys-
teme d’axiomes pour les nombres réels se laisse ramener a
un probleme qui regarde les nombres entiers. C'est le mé-
rite. de Weierstrass et de Dédekind de Pavoir montré par
leur théorie des nombres irrationnels. | o

L’axiome des nombres entiers et les bases de la théorie des
ensembles constituent toulefois des cas uniques d’exception.
Le chemin qui conduirait 2 un domaine scientifique plus spé-
cial encore que le leur parait inaccessible, car en dehors de
la logique il n’existe plus aucune discipline a laquelle un
dernier recours serait encore possible.

Cependant comme le devoir d’établir la non-contradiction
est inéluctable il est nécessaire, semble-t-il, d’axiomatiser la
logique elle-méme et de prouver que la théorie des nombres
comme celle des ensembles ne sont que des parties de la
logique.

Cette voie a été depuis longtemps préparée, surtout par
les profondes recherches de Frege; mais elle a été finale-
ment ouverte avec succés par Russell, aussi profond logi-
cien que mathématicien pénétrant. Dans I'achévement de la
tache grandiose que ce dernier a entreprise pour axiomati-
ser la logtque on pourrait a bon droit voir le couronnement
de 'ceuvre méme d’axiomatisalion. ‘ '

Cet achévement toutefois nécessite encore un travail nou-
veau et multiple. Une réflexion plus approfondie montre en
effet bien vite que le probleme de la non-contradiction dans
les ensembles et les nombres entiers ne se suffit pas a lui-
méme, mais qu’il se rattache & un vaste domaine de questions
tres difficiles qui relévent de la théorie de la connaissance
tout en ayant une couleur nettement mathématique\. Pour
caraclériser brievement cet ensemble de questions, je me
bornerai & une simple énumération. Un probléme mathé-
maltique comporie-i-il- toujours une solution ? Question capi-
tale a laquelle se rattache subsidiairement la suivante : le
résultat d’une recherche mathématique est-il toujours con-
trélable ? Dans le méme ordre d'idées, (u'entendre par le
critérium de simplicité relalif aux preuves mathématiques ?
Comment définir dans les mathématiques et la logique le
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rapport entre le contenu et la forme . ? En quoi Consiste enfin
la détermination d’'un probléme mfnlhem'mque par un nom-
bre fini d’opérations ? .

L’axiomatisation de la logique ne pom‘m nous sausfalre
entierement que le jour ou toutes les questlons de celte na-
ture seront résolues et éclairées dans leur rapport. |

La derniére surtout concernant la détermination par un
nombre fini d’opérations est la plus connue et la plus iré-
quemment discutée, parce qu ‘elle regarde au plus haut point
I'essence de la pensée mathem'\thue.

Je voudrais augmenter l'intérét qu ‘on lui porte en m "atta-
chant 3 quelques probléemes mathématiques spéciaux ‘dans
lesquels elle joue certainement un role.

Comme on le sait, la théorie des invariants algébri iques
renferme un théoréme fondamental d’aprés lequel il existe
toujours -un nombre fini d’invariants tout & fait rationnels,
grace auxquels tous les autres invariants semblables peuvent
étre représentés d'une facon complétement rationnelle. La
premiére preuve générale de ce fait a été donnée par moi;
elle satisfait pleinement, je crois, notre besoin de simplicité
et de clarté; il est impossible toutefois de la transformer de
fagonﬁ pouvoir, par son moyen, assigner des limites au nom-
bre cependont fini des invariants qui composent tout le sys-
téeme ou d'établir réellement ces derniers. Des réflexions
tout autrement conduites et des principes nouveaux ont été
nécessaires pour constater que la détermination du systeme
total des invariants exige uniquement des opérations dont le
nombre est fini et se trouve renfermé dans des limites qui
peuvent étre assignées a 'avance.

La théorie des surfaces nous offre un autre exemple de ce
fait. En effet la géométrie des surfaces du quatrieme ordre
souléve une question fondamentale, a savoir : de combien de
nappes, séparées les unes des autres, une Surhce de cette
espece peut-elle tout au plus se Lomposer?’

Pour répondre a cette question la premiére tache qui s'im-
pose est de prouver que le nombre de ces nappes doit étre
fini. Il semble facile d’en donner la preuve en s’engageant

comme suit dans la théorie des fonctions. On suppose 'exis- -
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tence de nappes infiniment nombreuses et-I'on’ choisit..un
point et un seul a I'intérieur de chaqueé . portion d’espace
limitée par une nappe. Mais le lieu ou. se condensent ces
points qui par leur choix sont infiniment nombreux serait
un point d’une singularité telle qu’il faut 'exclure pour une
surface algébrique. TR PR :
~La voie indiquée par la théorie des fonctions ne nous per-
met cloh'np en aucune facon d’assigner au nombre des. nappes
de la surface une limite supérieure. Clest pourquoi il vaut
mieux avoir recours a des considérations basées sur le nom-
bre des points d’intersection; ces derniers nous enseignent
finalement que le nombre des régions recherchées ne peut
étre supérieur a 12. | " L
Bien que cette deuxiéme méthode soit si différente de la

premiére, nous ne pouvons cependant ni la réduire ni la
transformer au point de décider il existe réellement une
surface du4™® ordre a 12 nappes. S
Mais. puisqu’une forme quaternaire du 4™ ordre-posséde
35 ceeflicients homogénes, nous pouvons nous représenter
intuilivement une surface déterminée du 4™¢ ordre par un
point situé dans un espace a 34 dimensions. Le discrimi-
nant de la forme quaternaire du 4™ ordre est, dans les ceefli-
clents qu’elle posséde, du degré 108; égalé a zéro il repré-
sente dans l'espace a 34 dimensions une surface.du 108me
ordre. Comme d’autre part les ceefficients du discriminant
lui-méme sont des nombres entiers déterminés, le caractére
topologique de la surface. discriminantielle se laisse fixer
avec précision d’apres les lois qui nous sont familiéres dans
I'espace a deux ou trois dimensions. De cette facon nous
pouvons étre renseignés exactement sur la nature et lasigni-
fication des territoires particuliers que la surface discrimi-
nantielle découpe dans I'espace 4 34 dimensions. Représen-
tées alors par les points de chaque territoire ainsi défini, les
surfaces du 4™ ordre possédent toutes stirement le méme
nombre de nappes. Cela étant, il est possible par un dénom-
brement fini, bien.que trées fatigant et de longue haleine,
de confirmer si une surface du 4™ ordre existe ou non avec
des nappes en nombre n < 12, R |
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Les _considérations, ermetmques que nous venons de dé-
Velopper constituent la troisiéme voie a suivre pour repon—
dre a la question posée. Elles permettent de le faire par un
nombre fini d’ operatlons. En principe donc, notre problemc
est largement épuisé : il se trouve ramené a un probleme
d’un ordne a peu pres analogue a. la tache de découvrir le

<chiffre de rang 10" que 1'on obtient en developpant T sous
forme:de fraction décimale. Ce probléeme peut étre mamtes-
tement résolu bien que- la solution en reste inconnue.

En fin de compte il vaut.mieux utiliser les recherches pro-
fondes et difficiles‘que Rohn a faites au moyen de P'algébre

et dela oeomeme Ces recherches en effet! nous font voir

qu'une surfflce du 4™ ordre ne peut pas comporter 11 nappes:
en réalité il n’en peut ex1ster que 10. Cette quatrieme mé-
thode est donc la seule qui apporte la solution compléte du
probleme posé.

Ces développements spéciaux indiquent comment diverses
méthodes de démonstration sont applicables au méme pro-
bléme; ils permettent d’étudier de plus prés, comme il le faut,
la nature en soi de la preuve mathématique, si 'on veut
éclaircir avec succeés des questions analogues a celle de la
détermination d’un probléme par un noml)re tres orand mais
fini, d’opérations. | .

" Tous les problémes essentiels que je viens de caractériser,
et pa‘rmi*lesqu'eﬁl's celui relatifau nombre des opérations n’est
que le dernier traité et mentionné, me paraissent un champ
‘important dont la découverte est toule récente. Pour con-
quérir ce champ nous devons, c'est la ma conviclion, consi-
dérer comme P'objet d’une recherche a part le concept ‘de la
démonstration spécifiquement mathématique, exactement
comme l'astronome doit prendre en considération le mou-
vement de la station ol il se trouve et le ph)suﬂen la théo-
rie de ses appareils, ou encore exactement comme le philo-
sophe est tenu de critiquer la raison elle-méme.

La réalisation de ce programme constitue une tiche qui
pour le moment est certes loin d etre achevée.

1Un exposé sommaire en-a 6té fait par F. Klein dans ses « Conférences sur les mathematl-
ques » Paris, Hermann. p. 29. (Note du traducteur.)
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Pour conclure je voudrais en quelques mots résumer ma
conception généralesurla nature de Ia méthode axiomatique.

Selon moi tout ce qui peut étre objet de pensée scientifi-
que est acquis, sitot que la forme en est mtre pour une théo-
rie, a la méthode axiomatique et par la indirectement aux
mathématiques. Plus nous pénétrons dans' les couches tou-
jours plus profondes des axiomes aun sens indiqué précé-
demment, plus nous acquérons sur la nature de la pensée
scientifique des vues toujours plus profondes; plus aussi
nous devenons conscients de I'unité de notre savoir. Dans
I'édifice des sciences enfin, dessiné par la méthode axioma-
tique, les mathématiques paraissent appeler a jouer un role
directeur. s

CHRONIQUE

Albert Gauthier-Villars.

C’est avec un profond regret que nous avons appris la mort de
M. Albert Gauthier-Villars, 'un des éditeurs de L’ Enseignement
mathématique. Ancien éleve de I’Ecole polytechnique (promotion
1881),. Albert Gauthier-Villars avait renoncé a la carriere militaire
pour continuer, suivant les traditions familiales, la direction de
la célebre maison d’éditions scientifiques. Engagé volontaire
depuis le début de la guerre, il a succombé ‘a son poste, en qua-
lité de capitaine d’artillerie lourde, le 14 juillet, 4 'Age de 57 ans.

En annoncant 4 ’Académie des sciences la mort du savant. et
sympathique éditeur des Comptes rendus, M. Emile Picard, Secré-
taire perpétuel, a rappelé la haute compétence et la grande amé-
uité de ce savant qui ne comptait que des amis dans le monde
scientifique frangais et qui emporte les regrets ‘de tous ceux qui
I'ont connu. SRR | I R

La mort prématurée d’Albert Gauthier-Villars laissera un grand
vide dans la maison d’éditions qu’il dirigeait avec tant de distinc-
tion. Que tous ses collaborateurs recoivent I'assurance de notre
vive sympathie.
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