
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 20 (1918)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: PENSÉE AXIOMATIQUE

Autor: Hilbert, David

DOI: https://doi.org/10.5169/seals-18027

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-18027
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


111 D. HILBERT s

De même les droites p[,/;(,p'% rencontrent les côtés du
premier triangle en neuf points

p» • p>2 • p2.. P22. pi, ; p;,, p'S2, p;3.

Il y a pour tout couple de triangles sphériques ou plans
en général trois points P tels que sont collinéaires les points
de chacun des six systèmes :

P11 ' P22 ' P33 '• P12 • P23 • P31 P13 - P21 P32

P" ' P23 ' P3S '• P12 • P23 • P31 : Pis • P21 P32

Nous revenons sur la démonstration de ces deux
théorèmes dans un article ultérieur.

PENSÉE AXIOMATIQUE1
PAR

David Hilbert (Göttingue).

Dans la vie des sociétés la prospérité des peuples dépend de
celle de tous ses voisins ; les Etats, de même, ont un intérêt
vital à ce que l'ordre non seulement règne à l'intérieur de
chacun d'eux, mais existe aussi dans leurs relations mutuelles.
Il n'en va pas autrement dans la vie des sciences. Preuve en
soit le vif intérêt que les représentants les plus remarquables
de la pensée mathématique ont toujours témoigné à la structure

et aux lois des autres sciences que la leur; ils n'ont cessé
avant tout d'étudier les mathématiques (et pour le plus grand
bien de ces dernières) dans leurs rapports avec les vastes

1 Axiomatisches Denken, conférence faite à la reunion annuelle de la Société mathématique
suisse, tenue h Zurich, le 11 septembre 1917. — Traduction de M. Arnold Reymond.

professeur à l'Université de Neuchâtel.
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domaines de la physique et de la théorie de la connaissance

qui les côtoient de plus près. La nature de ces relations et

leur foncière fécondité seront, je crois, nettement indiquées
si je désigne sous le nom de méthode axiomatique la

méthode générale d'investigation qui les caractérise et qui dans

les mathématiques modernes prend une importance de plus
en plus grande.

Si nous groupons les faits d'un domaine scientifique
déterminé, plus ou moins étendu, nous remarquons bientôt
qu'ils sont susceptibles d'être ordonnés. Cet ordre s'effectue
constamment parle moyen d'un certain édifice de concepts tel

qu'un concept et un seul corresponde à tout objet du
domaine scientifique et qu'à l'intérieur de ce dernier un état de

faits ait pour équivalent une relation logique entre concepts.
L'édifice des concepts n'est pas autre chose que la théorie
du domaine scientifique envisagé.

C'est ainsi que les faits géométriques s'ordonnent en une

géométrie, les faits arithmétiques en une théorie des nombres,

les faits statiques, mécaniques, électrodynamiques en
théories de la statique, de la mécanique, de l'électrodyna-
mique, ou c'est encore ainsi que les faits de la physique
des gaz se groupent en une théorie des gaz. Il en est de

même en ce qui concerne les domaines scientifiques de la

thermodynamique, de l'optique géométrique, de la théorie
du rayonnement, de la conduction de la chaleur ou encore
du calculées probabilités et de la théorie des ensembles.
La même remarque s'impose enfin, qu'il s'agisse de
mathématiques pures (théorie des surfaces, théorie de Galois
concernant les équations, théorie des nombres premiers) ou
de sciences sans rapport direct avec les mathématiques pures
telles que la théorie de la monnaie ou certains chapitres de
la psychophysique.

Si maintenant nous considérons de plus près une théorie
déterminée, nous constatons invariablement que l'édifice
des concepts doit avoir pour base dans le domaine scientifique

un nombre restreint de propositions exceptionnelles qui
suffisent à elles seules à construire tout l'édifice d'après des
principes logiques.
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En géométrie, par exemple, il suffit d'en appeler uniquement

à la proposition qui concerne la linéarité de l'équation
du plan et la transformation orlhogonale des coordonnées
ponctuelles pour construire ensuite, et parle seul moyen de
l'analyse, la science cependant si vaste de la géométrie
euclidienne dans l'espace. De même la théorie des nombres
s'édifie entièrement d'après les règles et les lois de calcul
qui sont valables pour les nombres entiers. C'est encore un
rôle analogue que jouent en statique, le principe du
parallélogramme des forces, en mécanique les équations différentielles

de Lagrange sur le mouvement et en électrodynamique
les équations de Maxwell, à condition toutefois d'adjoindre

à ces dernières un postulat relatif à la rigidité et à la charge
de l'électron. Semblablement la thermodynamique se laisse
en entier construire sur le concept de la fonction énergétique

et sur les définitions de température et de pression
qui en sont tirées au moyen des variables (entropie et volume).
Nous trouvons de même au centre de la théorie du
rayonnement la loi de Kirchhoff qui règle les rapports entre l'émission

et l'absorption, dans le calcul des probabilités la loi des
erreurs de Gauss, dans la théorie des gaz le principe de
l'entropie conçu comme le logarithme négatif de la probabilité

d'un état donné, dans la théorie des surfaces la
représentation d'un élément curviligne par une forme quadratique
différentielle, dans la théorie des équations le théorème
concernant l'existence des racines, dans la théorie des nombres
premiers le principe relatif à la réalité et à la fréquence des
zéros dans la fonction riemanienne £(/)',

Tous ces principes fondamentaux peuvent, à un premier
point de vue, être envisagés comme les axiomes de domaines
scientifiques spéciaux dont l'extension progressive s'achève
ensuite d'une façon purement logique à l'intérieur de l'édifice

conceptuel déjà exécuté. C'est surtout dans les
mathématiques pures que ce point de vue s'affirme avec netteté, et
c'est aux travaux qui s'en sont inspirés que nous devons le
développement prodigieux de la géométrie, de l'arithmétique,

de la théorie des fonctions et de toute l'analyse.
Cela étant, et pour les cas dont nous avons parlé, le pro-
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blême relatif aux fondements d'un domaine scientifique spécial

semblait avoir trouvé une solution ; mais celle-ci ne

pouvait être que provisoire. En fait et dans chaque domaine le

besoin se faisait sentir de fonder jusqu'aux propositions
spécifiées plus haut, bien qu'elles fussent considérées comme
des axiomes fondamentaux. C'est ainsi que Ton s'efforça
de prouver soit la linéarité de l'équation du plan et Porthogo-
nalité de la transformation qui exprime un mouvement, soit
les lois du calcul arithmétique, soit le parallélogramme des

forces ou encore les équations du mouvement de Lagrange
et la loi de Kirchhoff sur l'émission et l'absorption, soit enfin
le principe de l'entropie' et la proposition relative à l'existence

des racines d'une équation.
Mais l'examen critique de ces « preuves » fit reconnaître

qu'en soi elles n'en sont pas; en réalité elles ne font que
rendre possible le retour à certaines propositions plus
fondamentales encore qui elles-mêmes apparaissent comme de

nouveaux axiomes en lieu et place des lois à démontrer.
C'est de cette façon qu'ont pris naissance les axiomes ainsi
dénommés à juste titre aujourd'hui, de la géométrie, de

l'arithmétique, de la statistique, de la mécanique, de la théorie

du rayonnement ou de la thermodynamique. Ces axiomes
forment une couche sous-jacente plus profonde en opposition

à la couche axiomatique superficielle, caractérisée par
les principes fondamentaux posés en premier lieu et que
nous avons énoncés pour chaque domaine scientifique spécial.

Le procédé de la méthode axiomatique, tel que nous
venons de le décrire, revient donc à poser plus profondément
les fondations qui soutiennent chacun des domaines scientifiques

spéciaux, travail analogue à celui qui est nécessaire
pour rehausser un bâtiment sans en compromettre la sécurité.

Pour qu'une théorie scientifique représentée par un édifice

de concepts remplisse son but, deux exigences sont
avant tout requises; la première concerne la dépendance et
respectivement l'indépendance des propositions de cette
théorie, la deuxième Vabsence de contradiction dont ces
propositions prises dans leur ensemble doivent témoigner.
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Occupons-nous tout d'abord de la dépendance et de

l'indépendance des axiomes.
L'exemple classique dont on se sert pour prouver

l'indépendance d'un axiome est fourni en géométrie par le postulat
des parallèles qu'Euclide, reniarquons-le, rangeait déjà
parmi les axiomes. Par là, il écartait la question de savoir si
cette pioposition n était pas elle-même conditionnée par les
autres axiomes. Aussi, la méthode de recherche préconisée
par Euclide est-elle restée typique de toute recherche axio-
matique, et depuis ce grand savant la géométrie est-elle
devenue l'exemple modèle de la science axiomatique.

La mécanique classique nous offre un autre exemple
d'investigation concernant l'indépendance des axiomes. Comme
nous 1 avons fait remarquer, les équations de Lagrange sur
le mouvement pouvaient etre envisagées provisoirement
comme les axiomes de la mécanique, car elles suffisent
complètement à fonder les formules générales relatives à des
forces quelconques et aux conditions quelconques qui les
accompagnent. Mais une recherche plus approfondie montre
qu il est inutile pour l'édification de la mécanique, de postuler

à la lois des forces et des conditions quelconques, et que
par là le système des postulats peut être diminué. Cette
constatation conduit d un côté au système d'axiomes posés
par Boltzmann, qui ne suppose que des forces, spécialement
centrales il est vrai, mais qui n'exige âucune condition
additionnelle, de l'autre au système d'axiomes défini par Hertz,
lequel rejette les forces pour faire appel à des conditions,
plus spécialement à des liaisons rigides. Ces deux systèmes
d axiomes constituent ainsi une couche plus profonde dans
l'axiomatisation progressive de la mécanique.

Si nous considérons maintenant dans la théorie de Galois
relative aux équations l'existence des racines d'une équation
comme un axiome fondamental, celui-ci n'en reste pas moins
un axiome dépendant ; car il peut; en tant, que proposition
existentielle, être dérivé des axiomes de l'arithmétique,
comme Gauss l'a montré le premier.

Il en va de même si dans la théorie des nombres premiers
nous considérons comme axiomatique la proposition concer-
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nant la réalité des zéros de la fonction riefnaiiienne Ç(t) : pour
creuser plus à fond la couche des axiomes purement
arithmétiques la preuve de cette affirmation de réalité serait
nécessaire, car c'est cette preuve qui seule garantirait la certitude

des importantes conséquences que nous avons pu, en la

postulant, établir pour la théorie des nombres premiers.
Il faut signaler comme étant d'un intérêt tout particulier

pour un processus axiomatique la question relative à

l'indépendance des principes d'un domaine scientifique par rapport

à l'axiome de continuité.
Dans la théorie des nombres réels, on montre par exemple

que l'axiome dit d'Archimède sur la mesure est indépendant
de tous les autres axiomes arithmétiques. Cette constatation

est, comme on le sait, d'une importance capitale pour la
géométrie ; mais elle me paraît avoir aussi pour la physique un
intérêt majeur, car elle nous conduit au résultat suivant :

d'une part nous pouvons, en juxtaposant des longueurs
terrestres, calculer les dimensions et les distances des corps
dans l'espace, c'est-à-dire mesurer les grandeurs célestes par
une mesure terrestre; d'autre part les mesures métriques
permettent d'exprimer les distances jusque dans l'intérieur
des atomes. Ces faits toutefois ne sont .en aucune façon une

conséquence logique des principes eoncernantla congruence
des triangles et la configuration géométrique, mais uniquement

le résultat d'une recherche empirique. Dans le monde

physique, la validité de l'axiome archimèdien a donc
besoin selon le sens indiqué d'une confirmation expérimentale
directe à peu près comme la proposition relative à la somme
des angles d'un triangle au sens connu.

D'une façon générale je pourrais formuler comme suit
l'axiome de continuité en physique « Lorsqu'un degré
quelconque de précision est assigné d'avance à la validité d'une
formule physique, il existe de petits domaines à l'intérieur
desquels les hypothèses faites pour la formule peuvent
varier librement sans que l'écart d'avec cette dernière dépasse
le degré de précision prescrit. » Cet axiome ne fait au fond
qu'exprimer ce qu'il y a d'immédiat dans la nature de l'expérience

; il est toujours implicitement supposé par les physi-
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ciens, sans avoir été jusqu'à maintenant formulé d'une façon
particulière.

Si, par exemple, de l'axiome concernant l'impossibilité
d'un « perpetuum mobile » de deuxième espèce on fait avec
Planck dériver le second principe de la Thermodynamique
on utilise nécessairement cet axiome de continuité.

Ce dernier est également indispensable pour fonder la

statique en utilisant l'axiome du parallélogramme des forces,
ou du moins en choisissant certains autres axiomes qui s'en

rapprochent beaucoup. C'est ce que Hamel a montré d'une
manière très intéressante par l'emploi du principe relatif à la

possibilité pour le continuum d'être bien ordonné,
On peut de même déplacer en profondeur les axiomes de

la mécanique classique, si en vertu de l'axiome de continuité,
on se représente le mouvement continu comme décomposé

par le moyen d'impulsions en des mouvements rectilignes et
uniformes qui se suivent un à un avec rapidité ; il faut alors
utiliser comme un axiome mécanique essentiel le principe
du travail maximum de Bertrand conformément auquel
après chaque choc le mouvement qui en réalité se produit
est toujours celui pour lequel l'énergie cinétique du système
est un maximum en face de tous les mouvements compatibles
avec le principe de la conservation de l'énergie.

Quant aux plus récentes tentatives de fonder la physique
et spécialement l'électrodynamique, elles reposent complètement

sur des théories du continuum et par suite elles impliquent

dans la plus large mesure l'idée de continuité; je ne
les examinerai cependant pas ici, parce que ces recherches
n'ont pas atteint un degré de perfection suffisant.

Passons maintenant à d'examen du deuxième problème
dont nous avons parlé plus haut, à savoir la question concernant

l'absence cle contradiction des axiomes. Cette question
est de la plus haute importance, car la présence d'une
contradiction dans une théorie en compromettrait toute la stabilité.

Or il peut arriver que la notion de non-contradiction
interne ne se concilie que difficilement avec des théories
depuis longtemps acceptées et qui ont fait leurs preuves. Je
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rappelle, par exemple, dans la théorie cinétique des gaz les

difficultés relatives à la réversibilité périodique.
Souvent aussi il arrive que la non-contradiction interne

d'une théorie est considérée comme allant de soi, alors qu'en
réalité de profonds développements mathématiques seraient
nécessaires pour la prouver. Pour illustrer ce fait, considérons

le problème suivant tiré de la théorie de la conduction
de la chaleur : distribution de la température à l'intérieur
d'un corps homogène dont la surface est maintenue à une

température déterminée qui varie suivant les régions. Cela,

étant, le postulat relatif au maintien de l'équilibre de température

ne renferme en fait aucune contradiction interne. Mais
en théorie il est nécessaire de proiiver que le problème bien
connu concernant les valeurs-limites de la fonction potentielle

est toujours résoluble, car seule la solution de ce
problème montre qu'une distribution de la température satisfaisant

à l'équation de la conduction calorifique est en principe
possible.

Mais en physique surtout il ne suffit pas de prouver que
les principes d'une théorie s'accordent entre eux ; il faut
encore montrer que ceux-ci ne contredisent pas les principes
d'un domaine scientifique voisin.

Par exemple et comme je l'ai récemment fait voir, l'axiome
de la théorie du rayonnement comporte, outre la loi
fondamentale de Kirchhoff sur l'émission et l'absorption, une
proposition spéciale sur la réflexion et la réfraction de rayons
lumineux isoles que l'on peut énoncer en ces termes : soit
deux rayons de lumière naturelle et de même énergie; ils
tombent chacun d'un côté sur une surface qui sépare deux
milieux et cela suivant des directions telles quo, le premier
après son passage, le second après sa réflexion suivent la
même direction. Dans ces circonstances, le rayon qui naît
de leur union est de nouveau un rayon de lumière naturelle

et de même énergie. Cette proposition, comme on le
constate en fait, n'est en aucune manière en contradiction
avec l'optique; mais en sus elle peut être dérivée comme
une conséquence de la théorie électromagnétique de la
lumière.

L'Enseignement mathém., 20J année, 1918 9
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Comhie on le sait tes résultats de la théorie cinétique des

gaz sont en accord parfait avec la thermodynamique.'
De la même f nçoni l'inertie électromagnétiq
tiond'Einstein sont compatibles avec les concepts

correspondants de la théorie classique en tant que ceux-ci sont
envisagés comme les cas-limites des concepts plus généraux
qui sont à la base des nouvelles théories.

Au contraire la théorie moderne des quanta et la connaissance

progressive de la structure interne des atomes ont
conduit à des lois qui contredisent directement l'électrody-
namique édifiée jusqu'à présent sur les équations de Maxwell.

G est pourquoi à 1 heure actuelle l'électrodvnamique,
ainsi que chacun le reconnaît, a impérieusement besoin d'une
nouvelle base et d'une radicale transformation.

Comme on le voit par tout Ce qui précède, la réfutation deS
contradictions qui surgissent doit toujours s'effectuer par un
changement dans le choix des axiomes ; la difficulté consiste
alors à découvrir un choix tel que toutes les lois physiques
constatées découlent logiquement des axiomes choisis.

Il en va autrement lorsque les contradictions se dressent
dans les sciences théoriques pures. Gomme exemple classique

d'un pareil événement on peut citer la théorie des
ensembles etde paradoxe de l'ensembltous les ensembles
dont l'origine remonte déjà à Cantor. Ce paradoxe est si
pesant que des mathématiciens hors ligne comme Kronecker
et Poincaré ont, à cause de lui, refusé le droit d'existence
à toute la théorie des ensembles, qui est cependant l'un des
rameaux les plus riches et les plus vigoureux des mathématiques.

La méthode axiomatique vint heureusement remédier à
cet état de choses précaire. Par la mise au jour d'axiomes
appropriés Zermelo, d'un côté, restreignit l'arbitraire des
définitions concernant les ensembles, et de l'autre, limita
avec précision les énoncés admissibles én les reportant suites

éléments des ensembles. De cette manière il réussit à

développer la théorie des ensembles de façon à en faire
tomber les contradictions verbales tout en lui laissant, malgré

les restrictions imposées, la même étendue et la même
capacité d'application.
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Daus tous les cas envisagés jusqu'ici, il s'est agi de
contradictions qui avaient surgi au cours du développement d'une
théoriè et dont la disparition nécessitait la refonte d'un sys^
tème d'axiomes. Mais il ne-, suffit pas d'éviter les contradictions

qui peuvent se présenter, si l'on veut rendre aux
mathématiques par elles compromises leur réputation d'être le
modèle de la science la plus rigoureuse. Par soil essence
même la méthode, axiomatique a des exigences beaucoup
plus étendues; elle doit en particulier prouver que, dans
chaque-cas et sur là base du système d'axiomes posés, les
contradictions sont absolument impossibles à l'intérieur d'un
domaine scientifique.

; Conformément à cette exigence, j'ai démontré dans les
Fondements de la géométrie la non-contradiction des axiomes
posés en faisant voir que toute contradiction qui découlait
logiquement d'axiomes géométriques devait nécessairement
se manifester aussi dans l'arithmétique du système des nombres

réels.
Pour les théories physiques elles-mêmes, il suffit non moins

évidemment de ramener le problème de la non-contradiction
interne à la non-contradiction des axiomes arithmétiques.
C'est ainsi que j'ai montré la non-contradiction des axiomes
indispensables à la théorie du rayonnement en construisant
pour elle un système, d'axiomes composés d'éléments analytiques

indépendants, ce qui suppose la non-contradiction de
l'Analyse.

L'on peut et l'on doit, cas échéant, procéder d'une façon
semblable dans l'édification d'une théorie mathématique.
Considérons par exemple comme des axiomes la proposition
qui dans le développement de la théorie des groupes de Galois

est relative à Xexistence des racines et le principe qui
dans la théorie des nombres premiers définit la réalité des
zéros de l'a fonction riemanienne Ç (t) ; il faut alors dans chacun

de ces cas prouver la lion-contradiction du système
d'axiomes envisagé, et pour cela démontrer par le moyen de
l'Analyse la proposition concernant l'existence des racines,
comme aussi le principe riemannien relatif à la fonction £(J},
car c'est seulement de cette manière que l'achèvement de la
théorie est assuré.
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De même le problème de la non-contradiction d'un

système d'axiomes pour les nombres réels se laisse ramener à

un problème qui regarde les nombres entiers. C'est le mérite

de Weierstrass et de Dédekind de l'avoir montré par
leur théorie des nombres irrationnels.

L'axiome des nombres entiers et les bases de la théorie des
ensembles constituent toutefois des cas uniques d'exception.
Le chemin qui conduirait à un domaine scientifique plus spécial

encore que le leur paraît inaccessible, car en dehors de
la logique il n'existe plus aucune discipline à laquelle un
dernier recours serait encore possible.

Cependant comme le devoir d'établir la non-contradiction
est inéluctable il est nécessaire, semble-t-il, d'axiomatiser la
logique elle-même et de prouver que la théorie des nombres
comme celle des ensembles ne sont que des parties de la

logique.
Cette voie a été depuis longtemps préparée, surtout par

les profondes recherches de Frege ; mais elle a été finalement

ouverte avec succès par Russell, aussi profond logicien

que mathématicien pénétrant. Dans l'achèvement de la
tâche grandiose que ce dernier a entreprise pour axiomati-
ser la logique on pourrait à bon droit voir le couronnement
de l'œuvre même d'axiomatisation.

Cet achèvement toutefois nécessite encore un travail
nouveau et multiple. Une réflexion plus approfondie montre en
effet bien vite que le problème de la non-contradiction dans
les ensembles et les nombres entiers ne se suffit pas à lui-
même, mais qu'il se rattache à un vaste domaine de que,stions
très difficiles qui relèvent de la théorie de la connaissance
tout en ayant une couleur nettement mathématique. Pour
caractériser brièvement cet ensemble de questions, je me
bornerai à une simple énumération. Un problème
mathématique comporle-t-il toujours une solution Question capitale

à laquelle se rattache subsidiairement la suivante : le
résultat d'une recherche mathématique est-il toujours
contrôlable Dans le même ordre d'idées, qu'entendre par le
critérium cle simplicité relatif aux preuves mathématiques
Comment définir dans les mathématiques et la logique le
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rapport entre le contenu et la forme En quoi consiste enfin

la détermination d'un problème mathématique par un nombre

fini d'opérations
L'axiomatisation de la logique ne pourra nous satisfaire

entièrement que le jour où toutes les questions de cette

nature seront résolues et éclairées dans leur rapport.
La dernière surtout concernant la détermination par un

nombre fini d'opérations est la plus connue et la plus

fréquemment discutée, parce qu'elle regarde au plus haut point
l'essence de la pensée mathématique.

Je voudrais augmenter l'intérêt qu'on lui porte en m
attachant à quelques problèmes mathématiques spéciaux dans

lesquels elle joue certainement un rôle.
Comme on le sait, la théorie des invariants algébriques

renferme un théorème fondamental d'après lequel il existe

toujours un nombre fini d'invariants tout à fait rationnels,

grâce auxquels tousles autres invariants semblables peuvent
être représentés d'une façon complètement rationnelle, La

première preuve générale de ce fait a été donnée par moi;
elle satisfait pleinement, je crois, notre besoin de simplicité
et de clarté ; il est impossible toutefois de la transformer de

façon à pouvoir, par son moyen, assigner des limites au nombre

cependant fini des invariants qui composent tout le
système ou d'établir réellement ces derniers. Des réflexions
tout autrement conduites et des principes nouveaux ont été

nécessaires pour constater que la détermination du système
total des invariants exige uniquement des opérations dont le

nombre est fini et se trouve renfermé dans des limites qui
peuvent être assignées à l'avance.

La théorie des surfaces nous offre un autre exemple de ce

fait. En effet la géométrie des surfaces du quatrième ordre
soulève une question fondamentale, à savoir : de combien de

nappes, séparées les unes des autres, une surface de cette
espèce peut-elle tout au plus se composer?

Pour répondre à cette question la première tâche qui s'impose

est de prouver que le nombre de ces nappes doit être
fini. Il semble facile d'en donner la preuve en s'engageant
comme suit dans la théorie des fonctions. On suppose l'exis-
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tence de nappes infiniment nombreuses et l'on' choisit un
point et un seul à l'intérieur de chaquè portion d'espace
limitée par une nappe. Mais le lieu où: se condensent ces
points qui parleur choix sont infiniment nombreux serait
un point d'une .singularité telle qu'il faut l'exclure pour Une
surface algébrique.

La voie indiquée par la théorie des fonctions ne nous permet
donc en aucune façon d'assigner au nombre des nappesde la surface une limite supérieure. C'est pourquoi il vaut

mieux avoir recours à des considérations basées sur le nombre
des points d'intersection; ces derniers nous enseignent

finalement que le nombre des régions recherchées ne peutêtre supérieur à 12.
Bien que cette deuxième méthode soit si différente de la

première, nous ne pouvons cependant ni la réduire ni la
transformer au point de décider s'il existe réellement une
surface du 4""' ordre à 12 nappes.

Mais puisqu'une forme quaternaire du 4me ordre possède
35 coefficients homogènes, nous pouvons nous représenter
intuitivement une surface déterminée du 4e ordre par un
point situé dans un espace à 34 dimensions. Le discriminant

de la forme quaternaire du 4me ordre est, dans les
coefficients qu'elle possède, du degré 108 ; égalé à zéro il représente

dans l'espace à. 34 dimensions une surface du 108,ne
ordre. Comme d'autre part les coefficients du discriminant
lui-même sont des nombres entiers déterminés, le caractère
topologique de la surface discriminantielle se laisse fixer
avec précision d'après les lois qui nous sont familières dans
1 espace à deux ou trois dimensions. De cette façon nous
pouvons être renseignés exactement sur la nature et la
signification des territoires particuliers que la surface discriminantielle

découpe dans 1 espace à 34 dimensions. Représentées
alors par les points de chaque territoire ainsi défini, les

surfaces du 4me ordre possèdent toutes sûrement le même
nombre de nappes. Cela étant, il est possible par un
dénombrement fini, bien que très fatigant et de longue haleine,
de confirmer si une surface du 4me ordre existe ou non avec
des nappes en nombre // < J2.
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Les .considérations géométriques que nous venons de

développer constituent la; troisième voie à suivre pour répondre

à la question posée. Elles permettent de le faire par un

nombre fini d'opérations. En principe donc, notre problème
est largement épuisé : il se trouve ramené à un problème
d'un ordre à peu près analogue à la tâche de découvrir le

-chiffre de rang 1010 que bon obtient en développant r. sous
forme de fraction décimale. Ge problème peut être manifestement

résolu bien que la solution en reste inconnue.
En fin de compte il vaut mieux utiliser les recherches

profondes et difficiles que Röhn a faites au moyen de l'algèbre
et de da géométrie. Ces recherches en effet1 nous font voir
qu'une surface du 4rne ordre ne peut pas comporter 11 nappes :

en réalité il n'en peut exister que 10. Cette quatrième
méthode est donc la seule qui apporte la solution complète du

problème posé.
Ces développements spéciaux indiquent comment diverses

méthodes de démonstration sont applicables au même
problème ; ils permettent d'étudier de plus près, comme il le faut,
la nature en soi de la preuve mathématique, si l'on veut
éclaircir avec succès des questions analogues à celle de la

détermination d'un problème par un nombre très grand, mais
fini, d'opérations.

Tous les problèmes essentiels que je viens de caractériser,
et parmi lesquels celui relatif au nombre des opérations n'est
que le dernier traité et mentionné, me paraissent un champ
important dont la découverte est toute récente. Pour
conquérir ce champ nous devons, c'est là ma conviction, considérer

comme l'objet d'une recherche à part le concept de la
Démonstration spécifiquement mathématique, exactement
comme l'astronome doit prendre en considération le
mouvement de la station où il se trouve et le physicien la théorie

de ses appareils, ou encore exactement comme le philosophe

est tenu de critiquer la raison elle-même.
La réalisation de ce programme constitue une tâche qui

pour le moment est certes loin d'être achevée.

1 Un exposé sommaire en a été fait par F. Klein dans ses « Conférences sur les mathématiques

» Paris, Hermann, p. 29. (Note du traducteur.)
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Pour conclure je voudrais en quelques mots résumer ma

conception générale sur la nature de la méthode axiomatique.
Selon moi tout ce qui peut être objet de pensée scientifique

est acquis, sitôt que la forme en est mûre pour une théorie,
à la méthode axiomatique et par là indirectement aux

mathématiques. Plus nous pénétrons dans les couches tou-
jouis plus profondes des axiomes au sens indiqué
précédemment, plus nous acquérons sur la nature de la pensée
scientifique des vues toujours plus profondes ; plus aussi
nous devenons conscients de l'unité de notre savoir. Dans
1 édifice des sciences enfin, dessiné par la méthode axiomatique,

les mathématiques paraissent appeler à jouer un rôle
directeur.

CHRONIQUE

Albert Gauthier-Villars.

C'est avec un profond regret que nous avons appris la mort de
M. Albert Gauthier-Villars, 1 un des éditeurs de URnseignement
mathématique. Ancien élève de l'Ecole polytechnique (promotion
1881), Albert Gauthier-Villars avait renoncé à la carrière militaire
pour continuer, suivant les traditions familiales, la direction de
la célèbre maison d'éditions scientifiques. Engagé volontaire
depuis le début de la guerre, il a succombé à son poste, en qualité

de capitaine d'artillerie lourde, le 14 juillet, à l'âge de 57 ans.
En annonçant à l'Académie des sciences la mort du savant, et

sympathique éditeur des Comptes rendus, M. Emile Picard, Secrétaire

perpétuel, a rappelé la haute compétence et la grande aménité
de ce savant qui ne comptait que des amis dans le monde

scientifique français et qui emporte les regrets'de tous ceux qui
l'ont connu.

^

La mort prématurée d'Albert Gauthier-Villars laissera un grand
vide dans la maison d'éditions qu'il dirigeait avec tant de distinction.

Que tous ses collaborateurs reçoivent l'assurance de notre
vive sympathie.
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