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118 M.-FR. DANILLS

cond. Il s’ensuit que dans ce cas les Q. aussi sont colli-
néaires. q.e.d.

VI

28. — Si I'on pose dans 'expression fondamentale du par.
24 pour satisfaive a la condiiion i 1mposee aux A, p, ...

= [¢a’t] Ay = [ab't] A, = [b¢'t]
= [a’bt] vy = [§’ cr] by = [¢’at]

on trouve évidemment
A6+ pe = VVhe Vea’

etc., mais si comme au par. 26 on remplace les vecteurs
arbitraires a, ', ... par Vb¢. VB¢, ..., cette derniére expres-
sion devient, abstraction faite d’un hcteur scalaire, facile a

déterminer ‘
Va. v, b'¢

de sorte qu'on aboutit a I'identité entre sept vecleurs quel-
conques : .
[abe][Va. v, 6¢" Vb.t, 0’ Ve, t,a'b]

, (X10)
— [a’B’c’][Va’, t,bc Vb, r.ca V¢, r.ab]=0 .

Cette identité nous servira d’abord a demontrer pour la
spheére un théoréme de Mobius!:

Soient A, et A deux tr Lanales sphériques et 1 une d/ozte
sphérigue quelconque

Lorsque les droites p, qui relient les points P,=(, a) aux
somimels A du second trian cr/e sont concour antes, il en estde
méme des droites Py qui /elwnt les points P, = (1, a) aux
sommels A; du premier triangle.

Car, si le vecteur de la diozte sphérique 7 est t et si les
vecteurs des sommets A, et A] sont a, b, ¢ et o', b, ¢ nous
aurons successivement pour les points P,, P; et les droites

[)l, p .

P, = Vi, be Pl = V. b¢

p. = Va', ¢, be p.=Va,t.b¢ .

! Crelle’s Journal, Bd. 3, 1828. — Werke I, S. 444.
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I’identité nous montre que les p, sont concourantes lorsque
les p; le sont. q. e. d. |

2. Nous pouvons cependant tirer de notre identité un théo-
reme tout différent en interprétant le vecteur £ non pas comme
correspondant a une droite sphérique, mais comme appar-
tenant & un point P. Le théoréme en question est le suivant :

Par un point quelconque de la surface sphérique P(t) on
méne des normales p, el p; aux cotés a; et a; de deux triangles
sphériques et ensuite par les sommels A} et A, des droutes
sphériques q, et q; normales aux p; et p;. Lorsque les q; sont
concourantes, il en est de méme des q;.

En effet on trouve dans ce cas pour les vecteurs des droites
Pis Ph et g,y ¢ immédiatement

P = Ve, be pi= Ve, b'¢
q, = Vd', t, be q. = Ve, t, b¢

Lorsque les ¢, sont concourantes, le produit pseudo-sca-
laire du premier terme de notre identité s’annule; la dispa-
rition du second terme qui en est la conséquence montre
que dans ce cas les ¢, aussi sont concourantes et inverse-
ment. q.e.d. |

3. Dans le cas-limite du plan nous aurons, quel que soit

le point P, la droite p, normale 4 a, et ¢, de nouveau nor-

male a4 p,, cest-a-dire ¢, paralléle au coté @, du premier
triangle. Le théoréme qui, pour le plan, est dit a M. J- Neu-
bergt, peut étre formulé:

Etant donnés deux triangles plans A. et A; et les droites

q, et q; menées par les sommets A et A; paralléles aux cotés

a. et ay; lorsque les droiles q, sont concourantes, il en est de
méme des droites q; *.

29. — Nous arrivons & une autre identité entre sept vec-
teurs en remplacant &, &, ... par Vbe, Vb'¢', ..., en posant
ensuite _ .

| A, = [bra’] Ay -:.:.[ctbf] g = [atc:’ ]
p = [eea’] gy = [0eb] " py = [bre’]

1 Mathesis, 1882, p. 144, 1883, p. 86, 1914, p. 91.
2 Voir par 23, 3. :
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Dans ce cas nous avons
A\ Vea 4+ p,Vab = Va, Vea’Vhe
etc., de sorte que nous arrivons a l'identité

[0'6°CF[Va, Vea'Vbe VB, Veb'Vea Ve, Vee Vab]
+ [abc]2[va/' .\(rravﬁlcl ‘\rbl’ thvc/a/ Vcr, Vtcvalﬁ’] = O .

Nous n'en donnons qu'une seule application. Soit P(t) un
potnt quelconque de la surface sphérique; soient

ALE(!:B’C A;Ea,! B,; C’
a; = Vbe, Vea, Vab  a, = VB¢, Ve'a’, Va'b’

les sommets et cotés de deux triangles sphériques. Les
droites sphériques qui relient le point P aux sommets du
second (premier) triangle, coupent les cotés du premier (se-
cond) triangle en

Q, = VVta’Vbe Q= VVea V¢’

etc., et I'identité nous apprend : lorsque les droites (As, Q)

sont concourantes, les droites (A}, Q) le sont également.
On arrive & un autre théoréme en considérant t comme le

vecteur d'une droite. .

VII

30. — Nous revenons a l'identité vectorielle du para-
graphe 22 :

[Vaa” VB6' Vee'] + [VBe’ Ve’ Vab'] + [Veb” Vae' Vba'] = 0

qui peut nous fournir une démonstration trés simple du
théoréme suivant : | |

Sotent A, A,, A, les sommets d’un triangle sphérique,
P un point quelconque de la surface sphérique, p,, p,, p, les
normales abaissées de ce point sur les cétés du triangle et
coupant ces cotés dans les neuf points

3 Py v Py Py ; Py 39
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