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M.-FR. DANIËLS
cond. Il s ensuit que dans ce cas les ÇK aussi sont colli-
néaires. q. e. d.

VI

28. — Si l'on pose dans l'expression fondamentale du par.
24 pour satisfaire à la condition imposée aux 1., p..

\ [ta'x] \ [<*$'*] ^ [ht'x]

^ [a'hx] [j-2 ~ [G'cr] [j-3 — [c'a*]

on trouve évidemment

\h + Vit — YVflc Vra'

etc., mais si comme au par. 26 on remplace les vecteurs
arbitraires <t, par V0C, V0'c\ cette dernière expression

devient, abstraction faite d'un facteur scalaire, facile à

déterminer
Y# %, h't'

de sorte qu on aboutit à l'identité entre sept vecteurs
quelconques :

[<rffc][Va X ; Vt' va. X, cV Vc, X, <tT]
— IWe'][V<t', x, ht W, x, cet Vc', *, afl] ee 0

'XI1'

Cette identité nous servira d'abord à démontrer pour la
sphère un théorème de Möbius 1 :

Soient A{ et A! deux triangles sphériques et 1 une droite
sphérique quelconque.

Lorsque les droites p. qui relient les points P. ^ (1 a.) aux
sommets A! du second triangle sont concourantes, il eu est de
même des droites p! qui relient les points PI (1, a!) aux
sommets A. du premier triangle.

Car, si le vecteur de la droite sphérique I est X et si les
vecteurs des sommets A. et A'. sont a, G, C et a\ c' nous
aurons successivement pour les points P., P[. et les droites
Pn Pi :

P, Yx, ht p; Vï ht'
px Y#', x, ht p[~Ya,x, h't'

1 Crelle s Journal, Bd. 3, 1828. — Werke I, S. 444.
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L'identité nous montre que les p. sont concourantes lorsque

les p. le sont. q. e. d.

2. Nous pouvons cependant tirer de notre identité un théorème

tout différent en interprétant le vecteur % non pas comme

correspondant à une droite sphérique, mais comme appartenant

à un point P. Le théorème en question est le suivant :

Par un point quelconque de la surface sphérique P(t) on

mène des normales p4 et p! aux côtés a. et aide deux triangles

sphériques et ensuite par les sommets A[ et A. des droites

sphériques q. et q! normales aux et pj. Lorsque les q. sont

concourantes, il en est de même des qr
En effet on trouve dans ce cas pour les vecteurs des droites

Pi et Qi immédiatement

Pl \t,bc p; Vï,BV

q, =" V<*', t, &C ?; Vft, t, G'*'

Lorsque les qt sont concourantes, le produit pseudo-scalaire

du premier terme de notre identité s'annule; la disparition

du second terme qui en est la conséquence montre

que dans ce cas les q. aussi sont concourantes et inversement.

q. e. d.

3. Dans le cas-limite du plan nous aurons, quel que soit
le point P, la droite px normale à al et qi de nouveau
normale à pi, c'est-à-dire qx parallèle au côté ax du premier
triangle. Le théorème qui, pour le plan, est dû à M. /• Neu-

bergx, peut être formulé :

Etant donnés deux triangles plans et A! et les droites

q. et q! menées par les sommets A! et parallèles aux côtés

aj et a!; lorsque les droites q. sont concourantes, il en est de

même des droites q! 2.

29. -— Nous arrivons à une autre identité entre sept
vecteurs en remplaçant fl, par Vftc, VG:C\ en posant
ensuite

V=[W] *,=.[0*1 \ \Mt'2

Hi .[ott'] p-2 [<&*'] '
p-3 [•«'] •

1 Mathesis, 1882, p. 144, 1883, p. 86, 1914, p. 91.
2 Voir par 23, 3.
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Dans ce cas nous avons

\\ca + ujoß v«, Vra'Vfic

etc., de sorte que nous arrivons à l'identité

[a'6Vf [Vu, Vnt'vjc Vß, VtJ'Vcft Vf, Vfc'Vaß]

+ [<t®c]2[Vrt'. VtitVfiV vß', VrßVf'ft' vc'. Vrevu'6'] o

Nous n'en donnons qu'une seule application. Soit P(*) un
point quelconque de la surface sphérique; soient

Ai«* • B • c a', ß',

"i V'ßc, Vfit, Vflß a. VßV, Vf'tt', Vrt'ß'

les sommets et côtés de deux triangles spliériques. Les
dioites sphériques qui relient le point P aux sommets du
second (premier) triangle, coupent les côtés du premier
(second) triangle en

Q, VVrct'Vßf Q( VVntVß'c'

etc., et 1 identité nous apprend : lorsque les droites (At-, Q*)
sont concourantes, les droites (A), Q() le sont également.

On arrive à un autre théorème en considérant t comme le
vecteur d'une droite.

VII

30. — Nous revenons à l'identité vectorielle du
paragraphe 22 :

O««' VM' Vre'] + [Vßf' Vc«' Vaß'i + [vfß' Vae' Vß«'] o

qui peut nous fournir une démonstration très simple du
théorème suivant :

Soient A,, As, A3 les sommets triangle
P un point quelconque de la surface sphérique, p,, ps, p3 les
normales abaissées de ce point sur les côtés du triangle et
coupant ces côtés dans les neufpoints

' ' i-' '' ''si ' ' ' ''23 ^ P33 ;


	VI

