Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 20 (1918)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR CERTAINES IDENTITÉS VECTORIELLES ET LEUR

INTERPRÉTATION DANS LA GÉOMÉTRIE SPHÉRIQUE ET PLANE

Autor: Daniëls, M.-Fr.

Kapitel: V

DOI: https://doi.org/10.5169/seals-18026

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Lorsque sont concourantes les normales abaissées de A_1 , A_2 , A_3 sur les côtés a_1' , a_2' , a_3' et sur les côtés a_1' , a_3' , a_2' , il en est de même des normales abaissées de A_1' , A_2' , A_3' sur les côtés a_1 , a_2 , a_3 et a_1 , a_3 , a_2 , en d'autres mots:

Lorsque les deux triangles sphériques A_i et A_i' sont diorthologiques en A_1 , ils le sont encore en A_1' .

V

26. — Nous pouvons encore dans l'expression fondamentale

$$[\mathfrak{a}'\mathfrak{b}'\mathfrak{c}'][\lambda_1\mathfrak{b} + \mu_1\mathfrak{c} \ldots] \pm [\mathfrak{abc}][\lambda_1'\mathfrak{b}' + \mu_1'\mathfrak{c}' \ldots]$$

remplacer les vecteurs arbitraires \mathfrak{a} , \mathfrak{a}' , \mathfrak{b} , ... par les vecteurs également arbitraires $\nabla \mathfrak{bc}$, $\nabla \mathfrak{b'c'}$, $\nabla \mathfrak{ca}$, ... et ensuite, pour satisfaire à la condition imposée aux λ_i , μ_i ..., prendre

$$egin{array}{lll} \lambda_1 = \mathfrak{a}' \cdot \mathfrak{b} & \lambda_2 = \mathfrak{b}' \cdot \mathfrak{c} & \lambda_3 = \mathfrak{c}' \cdot \mathfrak{a} \\ \mu_1 = \mathfrak{a}' \cdot \mathfrak{c} & \mu_2 = \mathfrak{b}' \cdot \mathfrak{a} & \mu_3 = \mathfrak{c}' \cdot \mathfrak{b} \end{array}.$$

Dans ce cas nous avons évidemment

$$\lambda_{1}V\mathfrak{ca}+\mu_{1}V\mathfrak{ab}=V\mathfrak{a}$$
 . \mathfrak{a}' , \mathfrak{bc}

etc., de sorte que nous arrivons à l'identité

$$\begin{split} & [\mathfrak{a}'\mathfrak{b}'\mathfrak{c}']^2[\mathrm{V}\mathfrak{a} \cdot \mathfrak{a}', \ \mathfrak{b}\mathfrak{c} \quad \mathrm{V}\mathfrak{b} \cdot \mathfrak{b}', \ \mathfrak{c}\mathfrak{a} \quad \mathrm{V}\mathfrak{c} \cdot \mathfrak{c}', \ \mathfrak{a}\mathfrak{b}] \\ - & [\mathfrak{a}\mathfrak{b}\mathfrak{c}]^2[\mathrm{V}\mathfrak{a}', \ \mathfrak{a} \cdot \mathfrak{b}'\mathfrak{c}' \quad \mathrm{V}\mathfrak{b}', \ \mathfrak{b} \cdot \mathfrak{c}'\mathfrak{a}' \quad \mathrm{V}\mathfrak{c}' \cdot \mathfrak{c} \cdot \mathfrak{a}'\mathfrak{b}'] \equiv 0 \ . \end{split} \tag{XI}$$

27. — Nous allons faire de cette identité deux applications. — 1. D'abord elle nous servira à démontrer un théorème de M. R. Bricard 1:

Soient A, et A, deux triangles sphériques.

Lorsque les points d'intersection Q_i des droites $(A_i, A_i') \equiv p_i$ avec les côtés a_i du premier triangle sont collinéaires, les droites de jonction q_i des points $(a_i, a_i') \equiv P_i$ avec les sommets A_i' du second triangle sont concourantes et inversement.

¹ Nouvelles Annales de Mathématiques, 1906, p. 96.

En effet, si les vecteurs des sommets et côtés des deux triangles sont:

$$egin{aligned} \mathbf{A}_i &\equiv \mathbf{V} \mathbf{b} \mathbf{c} \; ; \; \mathbf{V} \mathbf{c} \mathbf{a} \; ; \; \mathbf{V} \mathbf{a} \mathbf{b} \end{aligned} \qquad egin{aligned} \mathbf{A}_i' &\equiv \mathbf{a}' \; ; \; \mathbf{b}' \; ; \; \mathbf{c}' \\ a_i &\equiv \mathbf{a} \; ; \; \mathbf{b} \; ; \; \mathbf{c} \end{aligned} \qquad a_i' &\equiv \mathbf{V} \mathbf{b}' \mathbf{c}' \; ; \; \mathbf{V} \mathbf{c}' \mathbf{a}' \; ; \; \mathbf{V} \mathbf{a}' \mathbf{b}' \end{aligned}$$

nous trouvons pour les vecteurs de la droite p_4 , du point Q_4 , du point P_4 et de la droite q_4

$$egin{aligned} p_1 & \equiv \mathrm{V} \mathfrak{a}', \, \mathfrak{b} \mathfrak{c} & \mathrm{P}_1 & \equiv \mathrm{V} \mathfrak{a} \cdot \mathfrak{b}' \mathfrak{c}' \ & \mathrm{Q}_1 & \equiv \mathrm{V} \mathfrak{a} \cdot \mathfrak{a}', \, \mathfrak{b} \mathfrak{c} & q_1 & \equiv \mathrm{V} \mathfrak{a}', \, \mathfrak{a} \cdot \mathfrak{b}' \mathfrak{c}' \end{aligned}$$

Lorsque les points Q_i sont collinéaires, le premier terme de notre identité s'annule; le second terme disparaissant alors également, les droites q_i sont concourantes et inversement. q. e. d.

2. On peut tirer de notre identité encore la généralisation pour la sphère d'un théorème dû à M. Constantinescu 1

Soient A_i et A_i' deux triangles sphériques. Lorsque les normales q_i abaissées des A_i sur les côtés a_i' du second triangle coupent les côtés a_i du premier triangle en trois points collinéaires Q_i , les normales q_i' abaissées des A_i' sur les a_i coupent les côtés a_i' du second triangle également en trois points collinéaires Q_i' .

En effet, lorsque les côtés et les sommets des deux triangles sphériques sont

$$egin{aligned} \mathbf{A}_i &\equiv \mathbf{V} \mathfrak{b} \mathfrak{c} \; ; \; \mathbf{V} \mathfrak{c} \mathfrak{a} \; ; \; \mathbf{V} \mathfrak{a} \mathfrak{b} \end{aligned} \qquad egin{aligned} \mathbf{A}_i' &\equiv \mathbf{V} \mathfrak{b}' \mathfrak{c}' \; ; \; \mathbf{V} \mathfrak{c}' \mathfrak{a}' \; ; \; \mathbf{V} \mathfrak{a}' \mathfrak{b}' \end{aligned} \\ a_i &\equiv \mathfrak{a} \; ; \; \mathfrak{b} \; ; \; \mathfrak{c} \end{aligned} \qquad a_i' &\equiv \mathfrak{a}' \; ; \; \mathfrak{b}' \; ; \; \mathfrak{c}' \end{aligned}$$

nous aurons successivement pour les normales q_1 et q_1' et pour leurs intersections Q_1 et Q_2 avec les côtés a_1 et a_1'

Lorsque les points Q_i sont collinéaires, le premier terme de l'identité s'annule, ce qui entraîne la disparition du se-

¹ Mathesis, 1913, p. 69.

cond. Il s'ensuit que dans ce cas les Q_i' aussi sont collinéaires. q. e. d.

VI

28. — Si l'on pose dans l'expression fondamentale du par. 24 pour satisfaire à la condition imposée aux $\lambda_i, \, \mu_i \dots$

$$\begin{array}{lll} \lambda_1 = [\mathfrak{ca'r}] & \lambda_2 = [\mathfrak{ab'r}] & \lambda_3 = [\mathfrak{bc'r}] \\ \mu_1 = [\mathfrak{a'br}] & \mu_2 = [\mathfrak{b'cr}] & \mu_3 = [\mathfrak{c'ar}] \end{array}$$

on trouve évidemment

$$\lambda_1 \mathbf{b} + \mu_1 \mathbf{c} = VV \mathbf{b} \mathbf{c} V \mathbf{r} \mathbf{a}'$$

etc., mais si comme au par. 26 on remplace les vecteurs arbitraires $\mathfrak{a}, \mathfrak{a}', \ldots$ par $V\mathfrak{bc}, V\mathfrak{b'c'}, \ldots$, cette dernière expression devient, abstraction faite d'un facteur scalaire, facile à déterminer

de sorte qu'on aboutit à l'identité entre sept vecteurs quelconques :

Cette identité nous servira d'abord à démontrer pour la sphère un théorème de Möbius 1:

Soient A_i et A_i' deux triangles sphériques et 1 une droite sphérique quelconque.

Lorsque les droites p_i qui relient les points $P_i \equiv (l\,,\,a_i)$ aux sommets A_i' du second triangle sont concourantes, il en est de même des droites p_i' qui relient les points $P_i' \equiv (l\,,\,a_i')$ aux sommets A_i du premier triangle.

Car, si le vecteur de la *droite* sphérique l est \mathfrak{x} et si les vecteurs des sommets A_i et A'_i sont \mathfrak{a} , \mathfrak{b} , \mathfrak{c} et \mathfrak{a}' , \mathfrak{b}' , \mathfrak{c}' nous aurons successivement pour les points P_i , P'_i et les droites p_i , p'_i :

$$egin{aligned} \mathbf{P_1} & \equiv \mathbf{Vr} \,, \, \, \mathbf{bc} & \mathbf{P_1'} & \equiv \mathbf{Vr} \,, \, \, \mathbf{b'c'} \ \\ p_1 & \equiv \mathbf{Va'}, \, \mathbf{r} \,, \, \, \mathbf{bc} & p_1' & \equiv \mathbf{Va} \,, \, \mathbf{r} \,, \, \, \mathbf{b'c'} \,\,. \end{aligned}$$

¹ Crelle's Journal, Bd. 3, 1828. — Werke I, S. 444.