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116 M.-FR. DANJIELS

Lorsque sont concourantes les normales abaissées de A,
Ay, A, sur les cotés a), al, a, et sur les cotés «., a.. a., il
en est de méme des normales abaissées de A, A, A, surles
cOtés a,, a,, a,eta,, a,, a,, en d’autres mots :

Lorsque les deux triangles sphériques A, et Al sont di-
orthologiques en A,, ils le sont encore en A;.

\Y%

26. — Nous pouvons encore dans I'expression fondamen-
tale

[T + ue...] = [abe][X 6 + pe ]

remplacer les vecteurs arbitraires ¢, o, 6. ... par les vecteurs
également arbitraires Vbe, Vb'¢', Vea. ... et ensuite, pour
satisfaire a la condition imposée aux 1, p, ..., prendre

AN =a".b by = ¢ A, =¢.q
g

1
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Ao
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l
=
‘\'
k=3
=
I
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Dans ce cas nous avons évidemment
MVea 4+ p,Vab = Va. a’, be
etc., de sorte que nous arrivons a I'identité

[a’6'¢[Va. o’ b V. 6", ¢ca Ve, ¢, ab]
— [abc]*[Va'. a. 8¢ VB, b.¢'a" V' ¢ ab]=0 . - (XT)

27. — Nous allons faire de cette identité dewr applications.
— 1. D’abord elle nous servira a démontrer un théoréme de
M. R. Bricard?* : |

Soient A, et A] deux triangles sphériques.

Lorsque les points d’intersection Q; des droites (A;, A)) = p,
avec les cotés a. du premier iriangle sont collinéaires, les

droites de jonclion q, des points (a., a;) = P, avec les sommets

1

A; du second t/'z'angle sont concourantes et inversement.

' Nouvelles Annales de Mathématiques, 1906, p. 96.
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. En effet, si les vecteurs des sommets-et cotés-des deux
triangles sont:

A, = Vbe ; Vea s \'abv A,

l

i
a
=
ﬁ\

a,=a; b; ¢ a, =Vb'¢’ ;5 Vo ; Vb’
nous trouvons pour les vecteurs de la droite p,, du point Q,,
du point P, et de la droite ¢,

p. = Yo', be P, = Va. b'¢
Q, = Va.da' be g, =Va'. a. b'¢ .

Lorsque les points Q, sont collinéaires, le premier terme
de notre identité s’annule; le second terme disparaissant
alors également, les droites ¢, sont concourantes et inverse-
ment. (. e.d. :

2..On peut tirer de notre identité encore la généralisation
pour la sphére d’un ¢théoréme dit a M. Constantinescu?

Soient A, et A’ deux triangles sphériques. Lorsque les
normales |, abaissées des A; sur les cotés a; du second tri-
angle coupent les c6tés a, du premier triangle en trois points
collinéaires Q,, les normales q; abaissées des A; sur les a,
coupent les cotés a, du second triangle également en trois
points collinéaires Q;.

En effet, lorsque les cotés et les sommets des deux triangles
sphériques sont

A,

12

[l

Vbe ;5 Vea ;s Vab A

a; b ¢ a

E V’b/cl'; Vc/a/ ; 'VYaIB/

a;

Il

14
i
nous aurons successivement pour les normales q, et ¢, et
pour leurs intersections Q, et Q, avec les cotés «, et a!
. = V', be 7, = Va, b'¢
Q, = Va.d, be Q= Vd', a, b'¢ .

Lorsque les points (), sont collinéaires, le premier terme
de l'identité s’annule, ce qui entraine la disparition du se-

Y Mathesis, 1913, p- 69.

A A e
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cond. Il s’ensuit que dans ce cas les Q. aussi sont colli-
néaires. q.e.d.

VI

28. — Si I'on pose dans 'expression fondamentale du par.
24 pour satisfaive a la condiiion i 1mposee aux A, p, ...

= [¢a’t] Ay = [ab't] A, = [b¢'t]
= [a’bt] vy = [§’ cr] by = [¢’at]

on trouve évidemment
A6+ pe = VVhe Vea’

etc., mais si comme au par. 26 on remplace les vecteurs
arbitraires a, ', ... par Vb¢. VB¢, ..., cette derniére expres-
sion devient, abstraction faite d’un hcteur scalaire, facile a

déterminer ‘
Va. v, b'¢

de sorte qu'on aboutit a I'identité entre sept vecleurs quel-
conques : .
[abe][Va. v, 6¢" Vb.t, 0’ Ve, t,a'b]

, (X10)
— [a’B’c’][Va’, t,bc Vb, r.ca V¢, r.ab]=0 .

Cette identité nous servira d’abord a demontrer pour la
spheére un théoréme de Mobius!:

Soient A, et A deux tr Lanales sphériques et 1 une d/ozte
sphérigue quelconque

Lorsque les droites p, qui relient les points P,=(, a) aux
somimels A du second trian cr/e sont concour antes, il en estde
méme des droites Py qui /elwnt les points P, = (1, a) aux
sommels A; du premier triangle.

Car, si le vecteur de la diozte sphérique 7 est t et si les
vecteurs des sommets A, et A] sont a, b, ¢ et o', b, ¢ nous
aurons successivement pour les points P,, P; et les droites

[)l, p .

P, = Vi, be Pl = V. b¢

p. = Va', ¢, be p.=Va,t.b¢ .

! Crelle’s Journal, Bd. 3, 1828. — Werke I, S. 444.
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