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116 M.-FR. J) A NIË LS

Lorsque sont concourantes les normales abaissées de Ai,
A,, A3 sur les côtés a[, ci\, o'z et sur les côtés ci\, ci's. a1, il
en est de même des normales abaissées de Ai, Ai, Ai sur les
côtés ax, <?2, ciz et at, a3, a2, en d'autres mots :

Lorsque les deux triangles sphériques A. et Aj sont di-
ortliologiques en Ax, ils le sont encore en A[ï

V

26. Nous pouvons encore dans l'expression fondamentale

[<tW][M -f ftc...] ± [<tfic][x;fi' + fj/c' ...]

remplacer les vecteurs arbitraires et, <t\ 0, par les vecteurs
également arbitraires V0C, V0V, Vc<t, et ensuite, poursatisfaire à la condition imposée aux i., prendre

\ <t'. fi X2 — fi' c \ c'. a

C p.2 =r fi' # tj.;{ — c'. fi

Dans ce cas nous avons évidemment

+ ^Vafi Va. a\ fie

etc., de sorte que nous arrivons à l'identité

[a'fi'c']2[Va ,d', fie VfiJ'.cd V(,c',ë]
[afic]2[Va', a, fiv Vfi', fi, c'a' Yc'. c a'fi'] '0 • (xi)

27. Nous allons faire de cette identité deux applications.
1. D aboi d elle nous servira à démontrer un théorème de

M. R. Bricard1 :

Soient A. et A', deux triangles sphériques.
Lorsque les points d'intersection Q. cles droites (A., A!) ee p.

avec les côtes a. du premier triangle sont collinéciiresi les
droites de jonction q. des points (a., a!) P. avec les sommets
A. du second triangle sont concourantes et inversement.

1 Nouvelles Annales de Mathématiques, 1906, p. 96.
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- En effet, si les vecteurs des sommets-et côtés des deux

triang-les sont:

At Vbc -, Yftt : Y aß aJ a' ; 0' : c'

at a ; ft ; c «• YftV ; Vc'a' ; Va'ft'

nous trouvons pour les vecteurs de la droite /q, du point
du point P1 et de la droite q1

Pl Xa',bc Pj ^ Va. ft'c'

Qj Va a', ftc ^ Va', a, ft'c'

Lorsque les points Q. sont collinéaires, le premier terme
de notre identité s'annule; le second terme disparaissant
alors également, les droites q. sont concourantes et inversement.

q. e. d.
2. On peut tirer de notre identité encore la généralisation

pour la sphère d'un théorème dû à M. Constantinescu1
Soient A. et A^. deux triangles sphériques. Lorsque les

normales abaissées des A. sur les côtés a! du second
triangle coupent les côtés ai du premier triangle en trois points
collinéaires Q., les normales q! abaissées des A! sur les a.

coupent les côtés a! du second triangle également en trois
points collinéaires Q!.

En effet, lorsque les côtés et les sommets des deux triangles
sphériques sont

A. vftc ; Vca ; Vaft A^. VftV ; Vc'a' ; Va'ft'

a.. a ; ft ; c a' ; ft' ; c'

nous aurons successivement pour les normales qi et q[ et
pour leurs intersections Qd et Q2 avec les côtés a{ et a[

q1 Va', ftc q[ Va, ftV

Qi Va. a', ftc Q[ Va', a, ft'c'

Lorsque les points Q. sont collinéaires, le premier terme
de l'identité s'annule, ce qui entraîne la disparition du se-

1 Mathesis, 1913, p. 69.
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cond. Il s ensuit que dans ce cas les ÇK aussi sont colli-
néaires. q. e. d.

VI

28. — Si l'on pose dans l'expression fondamentale du par.
24 pour satisfaire à la condition imposée aux 1., p..

\ [ta'x] \ [<*$'*] ^ [ht'x]

^ [a'hx] [j-2 ~ [G'cr] [j-3 — [c'a*]

on trouve évidemment

\h + Vit — YVflc Vra'

etc., mais si comme au par. 26 on remplace les vecteurs
arbitraires <t, par V0C, V0'c\ cette dernière expression

devient, abstraction faite d'un facteur scalaire, facile à

déterminer
Y# %, h't'

de sorte qu on aboutit à l'identité entre sept vecteurs
quelconques :

[<rffc][Va X ; Vt' va. X, cV Vc, X, <tT]
— IWe'][V<t', x, ht W, x, cet Vc', *, afl] ee 0

'XI1'

Cette identité nous servira d'abord à démontrer pour la
sphère un théorème de Möbius 1 :

Soient A{ et A! deux triangles sphériques et 1 une droite
sphérique quelconque.

Lorsque les droites p. qui relient les points P. ^ (1 a.) aux
sommets A! du second triangle sont concourantes, il eu est de
même des droites p! qui relient les points PI (1, a!) aux
sommets A. du premier triangle.

Car, si le vecteur de la droite sphérique I est X et si les
vecteurs des sommets A. et A'. sont a, G, C et a\ c' nous
aurons successivement pour les points P., P[. et les droites
Pn Pi :

P, Yx, ht p; Vï ht'
px Y#', x, ht p[~Ya,x, h't'

1 Crelle s Journal, Bd. 3, 1828. — Werke I, S. 444.
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