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IDENTITES VECTORIELLES 111
qu'on y remplace ¢, par VHf. En tenant coml;te de ce que
Tttt = VOL. Ve p, = 6.VE 11y
nous trouvons en e,[”)fet qu’elle prend la forme

[6.VL, t1t4][ﬁ VI, tgfs,] + [6.VI, tot b V[, 1'3151]
+ 6.V, t,e,](6. VL 11] =0

Or, si [ est une droite sphérique quelconque, le point
J'intersection de cetle droite avec le coté (£:¢x) du quadrangle
complet des t; (¢ =1, 2, 3, 4),” point que nous voulons ap-
peler Pi, sera VI, t:t.. L'identité nous apprend la propriété
connue de linvolution des six points

P,, P P, , P P P

23 3 24 31 7 34 12

&
pourvu que b soil toujours le vecteur symbolique du para-
graphe 17 correspondant a certaine conique.

I11

99. — Nous arrivons maintenant 4 une identilé nouvelle,
qui admet plusieurs interprétations et qui, peut-étre plus
que les précédentes, montre tout le profit qu’on peut tirer
de ces relations vectorielles, non seulement pour démontrer
facilement et pour relier entre eux des théorémes assez dil-
férents connus, mais encore pour en trouver des nouveaux.

C’est 'identité

[Vaa’ VB Vee'] + [Vbe’ Vea' Vab'] 4+ [Veb" Vac' Vha] =0 . (1X)

L.a démonstration en est simple, quand on remarque que
le second et le troisieme terme se déduisent du premier par
permutation circulaire positive des vecteurs @, B, ¢ et par
permutation circulaire négative des vecleurs @', b', ¢'. Nous
obtenons ainsi en développant les trois produits pseudo-
scalaires ‘

[Aaa’c'] [6'6c] — [oac] [667¢’]
[6¢'6"1[a"ca] — .[c’ﬁa] [ca’D’]
[¢6’a’] [¢'ab] — [6"¢][ac’a’]

dont la somme est identiquement nulle.
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23. — Applications. — 1. Si les vecteurs ¢, b. ¢ déter-
minent les sommets A; d'un premier, a'. b', ¢’ les sommets B;
d’un second triangle sphérique ou plan, les produits vecto-
riels du premier et du second terme désignent les trois droites
A;B; resp. A;B;4q, ete. L’identilé tout entiére nous apprend
que les triangles sont triplement perspectifs, lorsqu’ils sont
doublement perspectifs, autrement dit: lorsque les droites
(As, Bi) et les droites (A;B,44) sont concourantes, il en est de
méme des droites (A;, B, ), car la disparition des deux pre-
miers termes de l'identilé entraine celle du dernier.

2. Si les vecteurs a, b, ¢ déterminent les sommets A; d’un
premier, a', b, ¢ les cotés a;, d’un second triangle sphérique
ou plan, les produits vectoriels du premier terme désignent
les normales-abaissées des sommets A; sur les colés a,,etc.,
et la méme identité nous apprend que deux triangles sphé-
riques ou plans sont triplement orthologiques lorsqu’ils soni
doublement orthologiques, aulrement dit: lorsque les nor-
males abaissées des sommets A; sur les cotés a, et les nor-
males abaissées des sommelts A; sur les cotés a;,, sont con-
courantes; il en est de méme des normales abaissées des
sommets A; sur les cotés a_ .

3. Supposons en troisiéme lieu que nous ayons deux tri- .
angles sphériques ou plans, dont les sommets sont A, A et
les cotés a;, a;. Supposons en outre que les vecteurs a. b, ¢
déterminent les sommets du premier, &' b'¢’ les « milieux
extérieurs»* du second triangle. Dans ce cas les produits
externes du premier terme de notre identité sont trois droites
par les A; et « paralléles » aux a,, de méme ceux du second
terme désignent trois droites passant par les A; et « paral-
leles» aux a;.+1, ceux du troisiéme terme enfin correspondent
aux droites qui, passant par les A; sont « paralléles » aux a, .

On dit que deux triangles sont simplement métaparalléles,
lorsque les trois premiéres droites sont concourantes, dou-

blement ]orsque les trois droiles suivantes sont également

! Nous entendons par « milieu extérieur » du coté (t;, t;) du triangle
sphérique le point ¢, — ¢, qui est & une distance 7/2 du « milieu intéricur »

L+t
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concourantes, tripklement enfin lorsque les trois derniéres
le sont aussi. Or, notre identité nous apprend : lorsque deux
triangles sphériques ou plans sont doublement métaparal-
leles, ils sont aussi triplement métaparalléles’.
4. Une application toute différente de notre identité nous
est fournie par la théorie des coniques. Soient
¢ ¢ b o ¢ B '

!

t, ot ottt ()

les vecteurs des cotés et des sommets d’'un hexagone inscrit

dans une conique sphérique ou plane. Dans ce cas les points
d’intersection '
| Vaa’ ., VBH, Ve

sont collinéaires d’aprés le théoreme de Pascal, et notre
identité (IX) nous donne
[VBe' Ve’ Vab'] + [Veb” Vac’ Vba’] =0 .

Or, si nous remarquons 1° que chaque terme de cette équa-
tion contient les six vecteurs une seule fois, 2° que B, ¢’, etc.,
sont, abstraction faite de certains coeflicients scalaires,

Vit, , Vet . Ve, Vet ., Ve, Vur,
1 1 13 2 3 3

3° que par conséquent les six produits vectoriels qui se
trouvent dans la derniére équation peuvent étre remplacés

par
el . (nesly . [Gntly

— [t er e, — [ty — [E e t]t,

nous'voyons sans peine que la derniere équation donne pour
la sphére comme pour le plan le théoréme de Pappus, d’apres
lequel pour six points t; et £, d’'une conique

IARNIREA [t; tr ][] = [yl te]

Il est évident que nous obtenons un aulre hexagone ins-

1 Pour deux triangles plans voir J. Neusere, Mathesis, 1883, p. 216, 1886,
p. 134, 1914, p. 92.

L’Enseignement mathém., 20¢ année ; 1918. 8
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L

crit dans la méme conique en soumettant les’ £, 1,,t, seuls
a une permutation circulaire ; dans ce cas nous trouvons :

[tttk gl = [yl e]

" La division des deux derniéres équations conduit pour six
points d'une conique sphérique a la relation

[l el ee] (vl el
[ttt ]l (L] [t't t.]

qul n’est autre chose que le théoréme bien connu de Carnot.
Nous interrompons ici les appllcatlons de l'identité poury
revenir au paragraphe 30. "

v

24. — Les identités entre six vecteurs des paragraphes
précédents ne sont pas les seules possibles. 1l y en a d’autres;

'alnsl on demontle sans peine que

[a'B'C'] [)\ b -+ Uy € )»C _l— o @ - )\oa + PgB]
T labe A+ pic N+ pa” NaH pb]
est identiquement nul, pourvu que l'expression scalaire
#7\2 Ay 4w v
ne change pas en valeur absolue, lorsque les a. b, ¢ sont
remplacés par les a'h'¢’ et inversement.
25. — On satisfait déja a la condition imposée aux 2, et p,
en prenant

P c.qa Ay =  @a.b’ Ay = b.¢

1

I

| o =—b.a o = — ¢.0" py=—a.¢

¢l ¢est ainsi quon arrive A I'identité

[a’ﬁ’c’][Va’, be V6", ca V', ab] 4 [abe][Va. b'¢" VB, c’a’ Ve a1 =0 (X)
Applications. — 1. Supposons que les sommels et les cOtés

de deux triangles sphériques ayent les vecteurs

Vb'e’; Vea's Va'b”

IH

A= b ¢ A;
a, = Vhe; Vea; Vab a;

4

@6 ;¢
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