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Remarquons d’ailleurs que la parabole semicubique x2=y°
est une courbe de troisieme ordre, toute située au-dessus de
I'axe Ox, symétrique par rapport a Oy et dont 'origine est un
point d’arrét (voir fig. 2); on a de la sorte tous les éléments
pour se former uneidée de laforme qu'a la parabole cubique :
cette courbe s’obtiendra en placant le plan £Qy normalement
au plan x0y de maniére que Q tombe en O et la droite Q&
se superpose a la parabole semicubique. ‘

Un procédé parfaitement semblable peut s’appliquer a
toute courbe gauche dont la projection orthogonale sur un
plan convenablement choisi soit rectifiable par des fonctions
simples. |

- Génes, octobre 1917.

THEORIE ELEMENTAIRE
DE LA TOUPIE GYROSCOPIQUE

PAR

M. Zack {Odessa).

Parmi les théories de la Mécanique, il y en a peu qui aient
conduit a un plus grand nombre d’applications directes que
la théorie du mouvement gyroscopique. En balistique, en
aéronautique, dans la construction des machines et des
navires il a été possible, grace au développement de cette
théorie, d'introduire des perfectionnements qui ont eu une
influence quelquefois décisive sur I'évolution de ces diverses
branches de l'art de l'ingénieur. Pourtant, la plupart des
théories soi-disant élémentaires du phénoméne gyroscopique
sont ou fausses ou, au moins, inexactes. Quelques-unes seu-
lement permettent d’obtenir des résultats purement quali-
tatifs. |
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Le but de cet article est de montrer qu’il est facile d’étu-
dicr d'assez prés le mouvement d'une toupie gyroscopique
par des méthodes élémeniaires.

Les formules ainsi obtenues peuvent étre directement
appliquées aux différents cas qui se présentent avec une
approximation dont le degré peut étre rapidement déterminé
dans chaque cas particulier.

Les résultats sont applicables surtout lorsque le mouve-
ment de la toupie autour de son axe est entretenu, par
exemple électriquement ou de toute autre maniere, indé-
pendamment du mouvement de 'axe lui-méme, comme cela
a lieu dans la plupart des applications.

§ 1. — Considérons un solidé de révolution ou plutot un
solide dont P'ellipsoide d’inertie est de révolution autour
de Oz. Soit Oxyz an systeme d’axes trirectangulaires mobile
autour du point O, fixe dans espace. Supposons le solide
en rotation autour de I'axe Oz avec une vitesse angulaire
relative constante.

Soil @ la rotation instantanée absolue du systeme Oxyz au
temps ¢ et solent p, ¢, r les projections de w sur les axes
Ox, Oy, Oz.

Les équations d’Euler dans ce cas s'écriront

Adl—-f— (C—A)gr =1,

dt
A—d—z—}—(A-—C)pr:M,

dt

.dr . . L
(‘th = N, puisque B = A .

On peut étudier le mouvement propre du systéeme Ouxyz
en faisant abstraction du mouvement relatif du corps par
rapport a Oxyz, c’est-a-dire en regardant le corps comme
immobile autour de Oz, a condition d'introduire la force
d'inertie relative et la force d’inertie complémentaire .

RuMARQUE. — Si la vitesse angulaire relative du solide
autour de Oz n’est pas constante dans le systeme réel d’en-

1 V. M. AstiuR, Etude sur le phénoméne gyroscopique. R. de M., 1909, 8.
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trainement, on peut toujours imaginer un systeme fictif Oxyz :
d’entrainement dans lequel la vitesse angulaire relative du
solide serait constante. . |
En effet, supposons que la rotation relative du solide autour
de Oz soit « = f3 + y ou 3 est constant et y variable. |
Soit r, la rotation d'entrainement réel; la rotation d’en-
trainement fictif sera r =r, + y et la rotation relative — 3. |
On peut immédiatement faire une application de cette
remarque au calcul du couple autour de Oz des forces
d’inertie provenant du mouvement varié relatif autour de Oz.

On aura
dr, dy .
C<_d? + 22) =10 .

puisque dans le mouvement absolu il n’y a pas de forces
appliquées; d’autre part

dr,

Vo,

puisque nous considérons le solide comme immobile autour
de Oz 1! en introduisant le couple N, des forces d’inertie.
De ces deux relations on tire
dy

do.
N=—Cg=—Cz"

Revenons aux équations d’Euler.
Soit M un point pris dans le corps et soient x, ¥, z ses coor-
données au temps ¢, dans le systeme Oxyz. Les projections

de la vitesse relative sur les axes Ox, Oy, Oz sont
da ‘ dy

—-— = ar ,

o _ dz__'
dt U dt —

d’_t-_—-

0. ‘ (2)

Soit m la masse du point M. Les projections de la force
d’inertie complémentaire sur les axes Ox, Oy, Oz sont

de  dy iz da dy  dx
— 2m ((IE —_— ’?ﬂ) , — 2111<l’m———-pm> , — 2m<p(—i‘? —_ q%) , (3)

1 Nous séparons toujours le mouvement propre du corps autour de Oz du mouvement
provenant du systéme Oxyz; c’est ce premier mouvement qui est supposé nul.

e

1’Enseignement mathém., 2C¢ année; 1918. 4
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ou, en remplacant dx, dy, dz par leurs expressions (2),

2mrax
2mray . (3%)

— 2mp o - 2mqay .

Les projections sur les mémes axes de la force d’inertie

sont
molx , maly 0. (4)

En faisant la somme des moments de ces forces d’inertie
par rapport aux axes Ox, Oy et Oz et en remarquant que ces
axes sont les axes principaux d’inertie, nous voyons que les
moments des forces d’inertie relative ont des sommes nulles
et que les sommes des moments des forces d’inertie com-
plémentaires se réduisent respectivement

— qaC , + paC 0 .

En ajoutant a L, M et N ces moments, nous pourrons
écrire les équations d’Euler sous la forme suivante :

A%[;-—l—(c-—A)(/r:L—qaC,

A_%—{—-(A———C)pr:M + paC, (5)
dr
ng =N .

Ces équations nous permettront d’étudier le mouvement
du systéme Oxyz autour de O en faisant abstraction de la
rotation propre du corps.

§ 2. — Supposons d’abord que I'axe instantané d’entraine-
ment est constamment situé sur un céne de révolution autour
de Oz et de plus N == 0.

Des équations (5) on tire

Jdr

7= 0, d’ou r

~

A . r r
L’axe d’entrainement fait avec Oz l'angle cosV === et

)

L i A ] ’ : r i : >
“puisque le cone est de révolution * = C', c’est-a-dire » = C".
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On peut donc écrire p2+‘ ¢? = C'». En différentiant cette
expression nous obtenons (6) 1)% + qgg = 0.

En multipliant la premiére des équations (5) par p et la
seconde par ¢, en ajoutant et en tenant compte de (6), nous
obtenons ,

Lp + Mg =0 . (7)

Cette derniére relation conduit a la proposition suivante :

St Uaxe instantané d’entrainemeut est constamment Situé
sur un cone de révolution autour de Oz et est constant en
grandeur?, l'axe du couple des forces extérieures est perpen-
diculaire au plan passant par Uaxe de rotation propre du
corps et Uaxe instantané d’enirainement.

Cette proposition a été énoncée pour la premiere fois,
croyons-nous, par M. CrauzeL? qui I'a.démontrée par une
méthode géométrique trés élégante, sans préciser d’ailleurs
les conditions de son application.

Supposons maintenant Lp + Mg = 0 et de plus N = 0.

En remplacant L et M par leurs valeurs tirées des équa-

tions (5) et en faisant les réductions nécessaires, nous obte-
nons ’expression '

{ d '
p(d/l) + q-g% =0 - dou pt 4+ ¢ = Cte | (6)
La troisi¢me des équations (5) nous donne r = r,. Nous

arrivons ainsi & la proposition suivante :

St Uaxe du couple des forces extérieures est nul ou est
constamment perpendiculaire au plan passant par Uaxe de
rotation propre du corps et Uaxe instantané d’entrainement,
laxe instantané d'entrainement est sttué sur un cone de révo- .
lution autour de Oz et est constant en grandeur.

Cette proposilion peut étre regardée comme l'inverse de
la proposition de M. Clauzel. |

§ 3. — Nous étudierons deux cas particuliers du mouve-
ment d'une toupie gyroscopique sous l'influence de la pesan-
teur. Une toupie gyroscopique est généralement constituée.

1 La seconde condition peut &tre remplacée par la condition N =0, ce qui revient au
méme.

2 G. CLAuziL, Effets gyroscopiques, etc. R. d. M., 1912.
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par un disque assez lourd monté sur un axe auquel on im-
prime un mouvement de rotation rapide et qui repose par
un de ses points sur un support fixe. Les deux cas que nous
analyserons seront: 1° le cas ou l'axe de la toupie forme

K
9
presque vertical et 2° le cas ol 'axe de la toupie forme avec
Phorizontale un angle voisin de 0, c’est-a-dire est presque
horizontal.

avec l'horizontale un angle voisin de c’est-a-dire est

Nous introduirons les angles 6 et P qui déterminent la
position de la toupie a chaque instant. L’angle ¢ détermine

. . . d
la position de I'axe Oz par rapport a ’horizontale et - sera
la vitesse angulaire de nutation ; I'angle ¢ détermine l'azi-

: do . . ’
muth de 'axe Oz et -, sera la vitesse angulaire de préces-

sion. Ces deux angles définiront completement la position
de la toupie puisque nous la considérons (fictivement) comme
immobile autour de son axe, a condition d’introduire les
forces d’inertie.

Les seules forces réelles qui agissent sur la toupie sont la
réaction au point O dont le moment est nul et le poids ap-
pliqué & une distance @ de O et dont les projections sur les
axes Ox, Oy et Oz sont

L=0, M=Pacosl. N=0O.
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Les projections de la rotation instantanée d’entrainement e
sur les axes Ox, Oy et Oz sont

— T eost g = - r,:EsinG. (8)

1e Supposonsvd'abord Pangle 6 voisin de -‘;- pendant tout
le mouvement. L’expression Lp + Mg se réduit ici @ Mg =

— Pa cosag%. Or, puisque 6 est voisin de%, cos @ est voi-
sin de 0; d’autre part quand 6 s’écarte le plus de %, 2—2 est
nul puisque 6 est alors minimum ou maximum. Nous pou-
vons donc admettre que pendant tout le mouvement Mg est
approximativement nul et appliquer les résultats du précé-
dent paragraphe.

Nous pouvons écrire p? + ¢* + r? = w? avec 1 =1, Ol oy
et r, sont les valeurs initiales de la rolation instantanée
d’entrainement et de sa projection sur Oz.

En remplacant p, ¢ et r par leurs valeurs en fonction de 6
et ¢ nous obtenons

2 - 2 -
(%) -+ (g%) = o)ﬁ el % sinl = r, . . (9)

La derniére relation peut encore s’écrire

de 1,
dt ~ sinf ° “O)

. s . , . de

On voit donc que la vitesse angulaire de précession —

augmente quand sin@ diminue, c'est-a-dire quand l'axe de
la toupie-s’écarte de la verticale.

Choisissons comme position initiale la position dans la-

qhelle 0 ==

5+ et comme instant initial le moment quand la

, g . , ‘ db
vitesse angulaire autour de 1'axe Oy est négative : (Zfi) < 0,
‘ 0
. .. do . 3 )
¢ ira en diminuant et -, augmentera jusquau moment ou 7
dont la valeur absolue ira en méme temps en diminuant

(équation (9)) deviendra nul, & cet instant (Tj sera égal a o,
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et sinf,, sera égal a r;. Aprés cela 9 augmentera de nou-

" . T d dcpd. . . iy db ,
veau jusqu-a 3 pendant que q¢ drminuera jusqua r,, - étant

positif, 6 continuera a augmenter jusqu’a une valeur sin#,
Py do

Y - v k)
ey et 7 augmentera jusqu'a o,.

Oun voit ainsi que la vitesse angulaire de précession ne
devient jamais nulle et oscille entre les valeurs Iy €t wy, que
langle 6 varie entre deux valeurs symétriques par rapport a

. . . . r . .
Oz définies par arcsin —- et que la vitesse angulaire de nuta-
o

tion varie entre 0 et —- l/w: — 13- Du reste r, differe peu de
s

wo puisque 6 s'écarte peu de 7

: , ds : '
Nous avons supposé au début que - sannule rap}dement

quand 0 s’écarte de % Cherchons les conditions pour qu’il

en soit ainsi.
La deuxieme des équations (5) prendra dans le cas quinous

occupe la forme suivante :
daz 2 cos 0 cos 0

Agﬁ + (A — €)» —= — Pacosb 4 Car,

Osin)

(5%)

sinf
Cette” équation s’obtient en remplacant p et ¢ par leurs

. d s
expressions (8), r par r, et (7? par son expression (10).

T , . db ..
Mulhphons cette équation par —- et intégrons.
On obtient :

2
%(Z—?) —= — Pasin b 4 Car, Logsin 4+ (C — A)r: Logsint + D , (11)
ou D est déterminé par I’équation suivante :

A (db — > y 5t — P i\_ @2
—i;((-j—l-)t:)__-——la—{—D, c'est-a-dire D_I(¢+2<dt0.

0

| d

db

On obtient ainsi pour (dt

2 .
> 'expression suivante :

— (12)

dne  2iPall — sinb) + [Car, + (C — A)r¥] Log sin d0\?
(?ﬂ> = AT * <d7>

0
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L’équation (12) nous montre 1° que si o et ry sont nuls,

db

T ne s'annule jamais et augmente lorsque 6 augmente ou

diminue et 2° que plus « est grand' moins § s’écarte de —723,
puisque Z—i% g'annule d’autant plus rapidement*.

On voit donc que la supposition que nous avons faite au
début est justifiée par un disque tournant rapidement autour
de son axe. Cherchons maintenant la période d’oscillation
de la toupie autour de l'axe vertical. On y arrive facilement
en faisant quelques approximations.

L'équation (5') peut &tre écrite de la facon suivante:

(A — C)ricosl + P« cos O sinf) — Car,cosf B
i =

d?

sin 9({-9
t

+ 0. (3"
Puisque sin 6, pendant tout le mouvement, est voisin de 1,
remplacons Pa sin @ par Pa et posons cos 6 — u.
On aura

cos 0 —= u ,
sinea’@_du
dt — dt’
——sin()‘f—f—j ~ cos 0 (j—e 2_d2u
di? PU\dt) T de

do\?
Remarquons que COSO(Z?> , pendant tout le mouvement,

est voisin de zéro, négligeons-le et écrivons

. d?f d?u
— 8in ) =— — ——

diz = dt*
L’équation (5”) deviendra alors

dPa o, ‘ 2_Car0—Pa+(C—-A)r§ )
(“2 + mu = ou me° — A ; (13)

la derniére expression pour « assez grand est positive.
L’équation (13) nous permet de calculer la période T d'une

1 Nous ne parlons pas de ry puisque (C — A) peut é&tre négatif.
1 Log sin § est nul ou négatif puisque sin 6 <1.
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oscillation simple de la toupie autour de l'axe vertical. On
. 2 . . .
trouve T==". On voit que T diminue 1° lorsque o aug-
m

mente et 2° lorsque Pa diminue.
2° Passons maintenant a l'autre cas o 9 est voisin de zéro.
Les équations (5) peuvent s’écrire en remplacant p, ¢ et r
par leurs expressions (8) de la facon suivante :

d?o db . o db
A—dt2 COSO—ArOd—2+(L—A)’0£Tt—~Ca(7t
d2f do _ de ;
AW-}-(A—C)rOJt-cosO_—Pacos()—}—CocJtcosO (14)
do . . .
J? sin =r, puisque N =0 .

Remarquons que r, est voisin de 0 puisque 6 en differe
trés peu. Pour la méme raison nous pouvons, au lieu de
cos @, écrire 1 dans les équations (14), c’est-a-dire écrire

d? ' 9
A-Jt_f + [Cla+ r) — 24r]) % =0,
d?6 d 1%)
2]
Posons
C(a -+ r)) — 2Ar Cla 4+ r,) — Ar
2 — 0 0 2 0 0
m* — A ef n® — A ,

m? et n® sont positifs si « est supposé grand. Posons d’autre

dC‘D . ’ . . ’ p .
part — = u. Les équations (14') s’écriront

du do
i 29"
dt " dt_—'O’

15
d? 5 Pa___O (15)
W———u u—{-—X = 0.

De la premiere de ces équations nous pouvons tirer :

df 1 du . " .
71 = — ;> portons ceci dans la seconde équation, nous

obtenons :

d?u | Pa
" 4+ m?n?u — m"’—A- =0 . (16)




LA TOUPIE GYROSCOPIQUE 57

Posons
_..gt

An2 men?

L’équation (16) pourra alors s’écrire

1 ——Et . ___r Pua Pa A

2A e A e ne— — m?— =20, 16
mznzg5 0 R + A A (167)

) 0 2
d’ou nous tirons
£2 4+ m?n?2 =0, d’ou £, = imn el £, = — imn .
Nous avons donc ]

L. i 17
U= + A, cos mnt 4 A, sinmnt . (17)

En nous servant des relations posées plus haut, nous obte-
nons successivement : |

df 1 du n A, ; A ;
i T e iy e S — sin mnt — — A, cos mnt ,
dt m2dt m . m

1 1
— — A cosmnt — — A, sin mnt + K’ ,
m? m?

0

[

e ! A, ) p 2L A, t + K"
. T s Sln mnt — — cos mn
An? mn mn +

En nous donnant les quatre valeurs initiales (pour ¢ = 0)

d() dm . ..
de 0, o 7 et o, soit @, 1, 90 O, €t Uy, nous pourrons écrire

quatre equatlons pour déterminer les quatre constantes A,,
A,, K' et K".
Nous aurons

00 = “—A + K’ ’ l — — — 9
n m -
(18
w——lA—}-h" __ Pa 1)
T mn ’ Yo = An2 T A
On en tire
m Pa
Ay =—70 A= Uo—a
. 18’
K' = o — ¢ K = 0 Yo Pa -
— %o n2o’ e m? AnZ2

1§, doit otre voisin de 0.
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. r " . . LY S e — A/ —
Considérons le cas particulier ot ¢, = 0, = u, = ¢y =
On aura:

Pa i Pa

A, =0, K'=0, A, == o Broe —
2 ‘ Ll An?’ An2m?
6 et ¢ s’écriront alors
Pa Pa
o= nt———_———Pal--c¢ 1t
ARZEme cos m AEmE a | cos mnt)
Pa '
© —
' An?

On voit que I'axe de la toupie décrit une cycloide .
Remarquons encore que si « est trés grand on peut négliger

;e Ca .
o devant ¢ et écrire m? — n? — —- 0 et ® deviennent alors
Pa |
f — — T (1 — cos m?¢)
nm
Pa . )
i v (m2t — sin m?t) .
m

Plus « augmente, plus m augmente et plus la cycloide

s’aplatit et la période d’oscillation de l'axe de la toupie
. 2 g5 s
autour de I’horizontale —; diminue,

Nous avons supposé au début que 6 s’écarte peu de 0.
Cherchons les conditions pour qu’il en soit ainsi. Il est évi-
dent qu’il faut d’abord que 6, soit ou nul ou treés peu différent
de zéro.

Ecrivons 'expression générale de . On aura

Pa 1 Pa

T, . i u
) = — - cos mnt ———— cos mnt —— sin mnt . ERO S 0
m? + AnZm? + mn + m? An2m? +

u Pa . 1 .
= ["702 — W:I [1 — cos mnt] + e 0, sin mnt 4 0,
On voit tout de suite que pour que 6 s’écarte peu de 6,
(qui lui-méme est nul ou trés petit), il faut que m et n soient
trés grands, c’est-a-dire « trés grand.
§ 4. — Cherchons les conditions d’une précession simple

1 Au lieu de 0 et @ il faut considérer les coordonnées — mf et ng.




LA TOUPIE GYROSCOPIQUE 59

(sans nutation) et uniforme, c’est-a-dire les conditions pour
' . do .

que pendant tout le mouvement 6 == 6, el 7 =i, OU 6, et u,

sont déterminés par les conditions initiales. |
La deuxiéme équation (14) pour 6 = 4, prendra la forme

. , |
cos 0[Ar, — C (o + 7’0)]51-;'? 4+ Pacosh =0 . (19)

Cette équation admet comme premiére solution cosg =10

ou § =g, = i;“—, g: prend alors la valeur constante u, =71,

L’axe de la toupie étant au début vertical, reste vertical et
la toupie tourne autour de son axe avec une vitesse angulaire
- constante (« + r,). Nous avons vu plus haut que la toupie
amenée dans une position légérement différente de la ver-
ticale oscille autour de cette position si « est suflisamment
grand. C’est donc une position stable.
Passons maintenant & la seconde solution. L’équation (19)
peut étre transcrite de la facon suivante

[Ar, — Cla 4 rﬁ\](gg 4+ Pa=20, (199

(4]

- do .
ou en remarquant que r, = —-sSin4g

dt
[{A — C)u?sin 0 = Ceou — Pa , (19")

) d ) I3 ’ ‘ ’ 4 .’ *
ou (5 a été remplacé par . On obtient pour sin 6 Uexpression
suivante

. Cau — Pa
smO»(A_C—)?. (20)

Supposons pour plus de généralité que I'axe de la toupie
est articulé sur son support. On aura alors les conditions
suivantes — 1 = sins < 1, ce qui revient a

— (A —=Clu?* £ Cau — Pa = (A —C)e?, (21)

Supposons A = C. Les conditions (21) peuvent étre écrites
sous la forme d’'inégalités suivantes:

(A —Clu? - Cau + Pa ,
(A —Cu*+ Cau —Pa=0. (IT)

i
=
=
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Les racines de (I) égalé a zéro sont

__ Ca= VC¥2 = 4Pa(A — C|
- 2(A — C)

u

Les racines de (II) égalé a zéro sont

— Ca =+ V/C2a2 + 4Pa(A — C)
21A — C)

u —

Nous ne considérerons que les cas ou « est suffisamment
grand pour que les racines ne soient pas imaginaires. Soit
A > GL On voit tout de suite que les racines de (I) sont
toutes deux positives, et puisque pour u = 0, (I) est positif,
u doit étre situé en dehors de l'intervalle des racines. De
méme, les racines de (II) sont 'une positive et I'autre néga-
tive, et puisque pour u == 0 (1I) est négatif, « doit étre situé
en dehors de lintervalle des racines. Il est facile de s’en
convaincre graphiquement.

Soit maintenant A < C. On voit tout de suite que les
racines de (I) sont'une positive etl'autre négative, et puisque
pour v =190, (I) est positif, u doit étre situé dans l'intervalle
des racines. De méme, les racines de (II) sont toutes deux
positives, et puisque pour « =20, (II) est'négatif, « doit étre
situé dans l'intervalle des racines. Il est facile de s’en con-
vaincre graphiquement.

On voit donc que pour qu’il y ail précession simple et
uniforme dans les cas ou A == C, u doit prendre une valeur
satisfaisant aux conditions trouvées plus haut.

Soit encore A — C. L’équation (19”) s’écrira

Cau — Pa =0,
d’ou
‘ Pa
On voit tout de suite que siné peut prendre une valeur
quelconque tandis que u est déterminé par (22).
§ 5. — Etudions maintenant la stabilité du mouvement de

précession simple et uniforme. Ce mouvement est déterminé

1.C’est ce qui arrive le plus souvent.
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par 6, et,, qul sont des constantes satisfaisant aux équations
(14). Supposons qu’on amene ’axe de la toupie dans une
position § =6, + et qu'on fasse varier sa vitesse de pré-

. 3 ' ., dy - do dy :
cession d une quantite —, de sorte que —- = U, + 5 Nous
dy . . .

supposons que X el 3—3 sont des infiniment petits. Cherchons ?

'ils sont des fonctions périodiques du temps. Si cela avait
lieu, le mouvement serait évidemment stable. | ‘

En développant coss et sing suivant les puissances de |
et en négligeant les infiniment petits du second ordre, on
obtient: |

cos § = cos f, — x sin 0 , (23)

sin 0 = sin 6, + x cosl, . (24)

D’autre part, puisque ¢, et 7, sont des constantes, on peut
éerire :
dé  dx aze . d*x d®e  d%y

dide e T At de T de ]

(29)

s , . do .
Remplacons dans les équations (14) r, par —=sin¢ et por-
tons ensuite dans les équations obtenues les valeurs (23),
(24) et (25). |
En négligeant les infiniment petits de second ordre et en

remarquant que u, et 6, sont des solutions de ces équations,
on obtiendra

d*y : ) | dx ) dx dx
chos 0, — Auosmﬁo—(?t + (C — A)y,sin 00:1—? -} Ca.(n. — 0,
d?x dy . :
A ) + (A —- C)QUO(—J:Z- sin 0, cos 6, — Pax sin 6, — Cagﬁt_ cos 6, (26)
+ Cauyxsinfy = 0.
Posons maintenant
x:FSiﬂ(pt—{—f') et )':GCOS(pt+f) ) X
On aura:
dx . ; d*x o
:ﬁ—?}' cos (pt + [) FTE — — p? I sin (pt 4~ f)
27
dy d2y (27)

-3 = pG sin (pl 4 fl  Sz=— c?Geos (pt 4+ f) .
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En portant ces expressions dans (26) et en divisant la pre-
miére équation par cos (ot + /) et la seconde par sin (o + f)
on obtient
— Ap?Geos 0, — Auw, sin o 4+ (C— A)u,sinG, o F + CagF =0
—-AgF — (A oG — Pasin 0, F - (28)

C) 2110 sin 60 cos 6

+ Cacos

)

0
¢G + Cauysinl) F =0 .

()
De la premiére de ces équations on tire

A
°Ca + (C — A)y, sin Oy — Augysinf, °

F = Gp cos

Portons cette expression de F dans la deuxieme des équa-
lions de (28) et divisons par G cos 6,» MOUS aurons

A?e? 4+ [Ca 4 (C — A)uysin Oy — Auy sin 0][(A — C)2u, sin 0, — Caqf
-+ APa sin 0, — ACou/O sinffjy = 0 ,
d’on
. [(A — C)uo sin b, + Au0 Si'jﬁoﬁf Ca][(A — C)Qljo gin 0, — Ca]

e - T

AZ

. (29)
Pa sin 0, Cczuo sin 0,

A A
Pour que 4 soit réel, c'est-a-dire p? positif, il faut que
soit suffisamment grand ; x et d—-; seront alors périodiques et

le mouvement u,, 6, sera stable. Plus « est grand, plus p est

. . (] 3 . ,
grand aussi et plus la période de x et Eiz est petite, cette pé-

riode étant égale a = —(~
Si « est assez grand on peut écrire :

2

_ Cg? n Cau, sin"OO o Pa 5110_0
A2 A A ’

-

Iy aintérét a ce que Pa soit petit, le mouvement est alors
plus stable, ¢ étant plus petit.

0

C2a
A2
sultat du § 3. En effet, la période est définie pour 6, — 0

et on retrouve le ré-

Pour g, =0, (29) devient p? =

y 2r

23 . Ca
par r — ; ou p = e et dans le § 3 par ¢ = g ce que pour

. 27 . Ca .
6 — (0 devi — ou mn — —— puisque 7. — ().
" ent o ou mn 1 puisque r,

)

Zurich, 1917.
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