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Remarquons d'ailleurs que la parabole semicubique x - y
est une courbe de troisième ordre, toute située au-dessus de

Taxe 0#, symétrique par rapport à 0y et dont 1 origine est un

point d'arrêt (voir fig. 2) ; on a de la sorte tous les éléments

pour se former une idée de la forme qu a la parabole cubique

cette courbe s'obtiendra en plaçant le plan normalement

au plan xOy de manière que Q tombe en 0 et la droite

se superpose à la parabole semicubique.
Un procédé parfaitement semblable peut s'appliquer à

toute courbe gauche dont la projection orthogonale sur un

plan convenablement choisi soit rectifiable par des fonctions

simples.

Gênes, octobre 1917.

THÉORIE ÉLÉMENTAIRE

DE LA TOUPIE GYROSCOPIQUE

PAR

M. Zack (Odessa).

Parmi les théories de la Mécanique, il y en a peu qui aient
conduit à un plus grand nombre d'applications directes que
la théorie du mouvement gyroscopique. En balistique, en

aéronautique, dans la construction des machines et des

navires il a été possible, grâce au développement de cette

théorie, d'introduire des perfectionnements qui ont eu une
influence quelquefois décisive sur l'évolution de ces diverses
branches de l'art de l'ingénieur. Pourtant, la plupart des

théories soi-disant élémentaires du phénomène gyroscopique
sont ou fausses ou, au moins, inexactes. Quelques-unes
seulement permettent d'obtenir des résultats purement qualitatifs.
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Le but de cet article est de montrer qu'il est facile d'étudier

d'assez prèsle mouvement d'une toupie gyroscopique
par des méthodes élémen(aires.

Les formules ainsi obtenues peuvent être directement
appliquées aux différents cas qui se présentent avec une
approximation dont le degré peut être rapidement déterminé
dans chaque cas particulier.

Les résultats sont applicables surtout lorsque le mouvement
de la toupie autour de son axe est entretenu, parexemple électriquement ou de toute autre manière,

pendammentdu mouvement de l'axe lui-même, comme cela
a lieu dans la plupart des applications.

§ Considérons un solide de révolution ou plutôt unsolide dont l'ellipsoïde d'inertie est de révolution autour
e CL. Soit O xyi,unsystème d axes trirectangulaires mobile

autoui du point O, fixe dans l'espace. Supposons le solide
en rotation autour de l'axe Oz avec une vitesse angulairerelative constante.

Soit o) la rotation instantanée absolue du système O au
temps t et soientp,q,r les projections de « sur les axes

Ox,Oy, Oz.
Les équations d'Euler dans ce cas s'écriront

Aî+ (C—A)?r=L

Adt + (A C)Pr M

dr
dl ~ N

» puisque B — A

On peut étudier le mouvement propre du système O
en faisant abstraction du mouvement relatif du corps par
rapport a O xyz,c'est-à-dire en regardant le corps comme
immobile autour de Oz,àcondition d'introduire la force
d'inertie relative et la force d'inertie complémentaire1.

Remarque. — Si la vitesse angulaire relative du solide
autour de n'est pas constante dans le système d'en-

V. M. Astiisr, Etude sur le phénomène gyroscopique, B. de M., 1909, 8.



LA TOUPIE GYROSCOPIQUE 49

traînement, on peut toujours imaginer un système fictifOxyz
d'entraînement dans lequel la vitesse angulaire relative du

solide serait constante.
En effet, supposons que la rotation relative du solide autour

de Os soit a ß + y où ß est constant et y variable.

Soit la rotation d'entraînement réel; la rotation
d'entraînement fictif sera r — i\ -f- y et la rotation relative /3.

On peut immédiatement faire une application de cette

remarque au calcul du couple autour de CL des forces

d'inertie provenant du mouvement varié relatif autour de CL,

On aura
c(Èlx+dJ.

\dt ^ dt

puisque dans le mouvement absolu il n'y a pas de forces

appliquées; d'autre part
dr±
dtC^=NV

puisque nous considérons le solide comme immobile autour
de 0z 1 en introduisant le couple Nv des forces d'inertie.

De ces deux relations on tire

Ny _ c £ _ cpdt dt

Revenons aux équations d'Euler.
Soit M un point pris dans le corps et soient x, y, z ses

coordonnées au temps t, dans le système Oxyz. Les projections
de la vitesse relative sur les axes Ox, 0y, 0z sont

dx dy dz-ay• Tt5F
0 • (2'

Soit m la masse du point M. Les projections de la force
d'inertie complémentaire sur les axes Ox, 0y, Oz sont

f dz dy\ f dx dz\ dy dx\
~ "ydt ~ ' dt) -2'T*7 -P-Tt) • (3)

1 Nous séparons toujours le mouvement propre du corps autour de 0^ du mouvement
provenant du système Oxyz-, c'est ce premier mouvement qui est supposé nul.

L'Enseignement mathém., 2Ce année; 1918. 4
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ou, eu remplaçant dx,dy,dz par leurs expressions (2),

2mrax

2mray (3')

— 2mpax — 2mqay

Les projections sur les mêmes axes de la force d'inertie
sont

m a.2X ma2y 0 (4)

En faisant la somme des moments de ces forces d'inertie
par rapport aux axes CXr, 0y et 0z et en remarquant que ces
axes sont les axes principaux d'inertie, nous voyons que les
moments des forces d'inertie relative ont des sommes nulles
et que les sommes des moments des forces d'inertie corn-
plémentaires se réduisent respectivement à

— <yaC -f" /?aG 0

En ajoutant à L, M et N ces moments, nous pourrons
écrire les équations d'Euler sous la forme suivante :

A~ (C — k)qr L — qaC

A + (A — c)pr M -I- paC (5)

dr
C-r N

dt

Ces équations nous permettront d'étudier le mouvement
du système Oœyz autour de O en faisant abstraction de la
rotation propre du corps.

§ 2. — Supposons d'abord que l'axe instantané d'entraînement

est constamment situé sur un cône de révolution autour
de Oz et de plus N 0.

Des équations (5) on tire

dr
0 Ji 0 ' d °ù '

L'axe d'entraînement fait avec Oz l'angle cos V ~ et° ft>

puisque le cône est de révolution — Cte, c'est-à-dire &> Cle.
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On peut donc écrire p2 + q2 Cte. En différentiant cette

expression nous obtenons (6) p^ + q 0.

En multipliant la première des équations (5) par p et la

seconde par q, en ajoutant et en tenant compte de (6), nous
obtenons

Lp + M q 0 (7)

Cette dernière relation conduit à la proposition suivante :

Si l'axe instantané d'entraînement est constamment situé

sur un cône de révolution autour de Oz et est constant en

grandeur1, l'axe du couple des forces extérieures est
perpendiculaire au plan passant par l'axe de rotation propre du

corps et l'axe instantané d'entraînement.
Cette proposition a été énoncée pour la première fois,

croyons-nous, par M. Clauzel2, qui l'a démontrée par une
méthode géométrique très élégante, sans préciser d'ailleurs
les conditions de son application.

Supposons maintenant Lp + M q — 0 et de plus N 0.

En remplaçant L et M par leurs valeurs tirées des équations

(5) et en faisant les réductions nécessaires, nous obtenons

l'expression

p -f- 0 d'où p2 + cp Cte (6)

La troisième des équations (5) nous donne r r0. Nous
arrivons ainsi à la proposition suivante :

Si l'axe du couple des forces extérieures est nul ou est

constamment perpendiculaire au plan passant par l'axe de

rotation propre du corps et l'axe instantané d'entraînement,
l'axe instantané d'entraînement est situé sur un cône de
révolution autour de Oz et est constant en grandeur.

Cette proposition peut être regardée comme l'inverse de

la proposition de M. Clauzel.
§ 3. — Nous étudierons deux cas particuliers du mouvement

d'une toupie gyroscopique sous l'influence de la pesanteur.

Une toupie gyroscopique est généralement constituée

1 La seconde condition peut être remplacée par la condition N 0, ce qui revient au
même.

2 G. Clauzel, Effets gyroscopiques, etc. R. d. M., 1912.
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par un disque assez lourd monté sur un axe auquel on
imprime un mouvement de rotation rapide et qui repose par
un de ses points sur un support fixe. Les deux cas que nous
analyserons seront : 1° le cas où l axe de la toupie forme
avec l'horizontale un angle voisin de c'est-à-dire est

presque vertical et 2° le cas où l'axe de la toupie forme avec
1 horizontale un angle voisin de 0, c'est-à-dire est presque
horizontal.

Nous introduirons les angles 9 et y qui déterminent la
position de la toupie à chaque instant. L'angle 9 détermine
la position de l'axe 0z par rapport à l'horizontale et ^ sera
la vitesse angulaire de nutation ; l'angle y détermine l'azi-
muth de 1 axe Oz et sera la vitesse angulaire de précession.

Ces deux angles définiront complètement la position
de la toupie puisque nous la considérons (fictivement) comme
immobile autour de son axe, à condition d'introduire les
forces d'inertie.

réaction au point 0 dont le moment est nul et le poids
appliqué à une distance « de 0 et dont les projections sur les
axes O.r, 0y et Oz sont

L 0 M — Va cos 0 N rrr 0
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Les projections de la rotation instantanée d'entraînement «

sur les axes 0.r, 0y et Oz sont

<70 do
nr\ a fi n :—

dt
"ricos ®

' i Tt' r —5tsin9' (8>

1° Supposons d'abord l'angle 0 voisin de j pendant tout

le mouvement. L'expression Lp + M# se réduit ici à Mq

— Pa cos 0 ~ Or, puisque 9 est voisin de j, cos 9 est voisin

de 0; d'autre part quand 9 s'écarte le plus de y, est

nul puisque 9 est alors minimum ou maximum. Nous pouvons

donc admettre que pendant tout le mouvement M# est

approximativement nul et appliquer les résultats du précédent

paragraphe.
Nous pouvons écrire p2 + q2 + r2 avec /* /*0 où &>0

et ?"q sont les valeurs initiales de la rotation instantanée

d'entraînement et de sa projection sur Oz.
En remplaçant /?, q et r par leurs valeurs en lonction de 9

et <p nous obtenons

m+ (?,)'=»: « î-" - «

La dernière relation peut encore s'écrire

dJ — (10)
dt ~~ sin 0 /

On voit donc que la vitesse angulaire de précession

augmente quand sin 9 diminue, c'est-à-dire quand l'axe de

la toupie-s'écarte de la verticale.
Choisissons comme position initiale la position dans

laquelle 0=^, et comme instant initial le moment quand la

(d%\Tt)

9ira en diminuant et ^ augmentera jusqu'au moment où ~
dont la valeur absolue ira en même temps en diminuant

do
(équation (9)) deviendra nul, à cet instant ^ sera égal à w0
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et sin^, sera égal à /*0. Après cela 9 augmentera de nouveau

jusqu'à — pendant que ~ diminuera jusqu'à r0, ~ étant
positif, 9 continuera à augmenter jusqu'à une valeur sin 0.

ro dz>
:

û0et ft »"gmenterajusqu'à «0.
On voit ainsi que la vitesse angulaire de précession ne

devient jamais nulle et oscille entre les valeurs r0 et w0, que
1 angle 9 varie entre deux valeurs symétriques par rapport à

définies par arc sin — et que la vitesse angulaire de nutation

varie entre 0 et ± j/wj — / *. Du reste r0 diffère peu de

g)0 puisque 9 s'écarte peu de ~.
Nous avons supposé au début que ~ s'annule rapidement

quand 9 s écarte de ^ Cherchons les conditions pour qu'il
en soit ainsi.

La deuxième des équations (5) prendra dans le cas qui nous
occupe la forme suivante :

AS+ <A - ckS - + C-.SÎ • <5'»

Cette équation s obtient en remplaçant p et q par leurs
expressions (8), r par r0 et ^ par son expression (10).

Multiplions cette équation par ^ et intégrons.
On obtient :

A /r/Oy
~2\dt) — tV^sinÔ -f- Ca/*oLogsin0 + (G — A) /-J Log sin 0 + D (11)

où D est déterminé par l'équation suivante :

A /V0\ A /J0\2
2 ULo " + ' c'est-à-di,'e D lv' + 2

° T

On obtient ainsi pour l'expression suivante :

/d0\2 2jPrt('l — S11Ï0) -f- [Ca j'Q + (G — A)/-J] Log sill 0 /r/0\2
(dt) ; â ;

+ (*)„ (12)
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L'équation (12) nous montre 1° que si « et /•, sont nuls,

l9 ne s'annule jamais et augmente lorsque augmente ou
dt

t TU

diminue et 2° que plus « est grand1 moins 9 s ecarte de

puisque ^ s'annule d autant plus îapidement

On voit donc que la supposition que nous avons faite au

début est justifiée par un disque tournait autour

de son axe. Cherchons maintenant la période d'oscillation

de la toupie autour de l'axe vertical. On y arrive facilement

en faisant quelques approximations.
L'équation (5') peut être écrite de la façon suivante :

f/20 (A — CLjcos 0 + P« cos 6 sin 9 Cai-0 cos 6
^

sine yt + - : Ä _

Puisque sin 9,pendanttout le mouvement, est voisin de 1,

remplaçons P asin 9 par P aet posons cos 9 u.

On aura
cos Ö :— u

cT9 du
-sin9^ ^-

• Jd(l\2-d2"
sm dûcos yjl~dt?

d6\ ~

Remarquons que cos ^\dt)'tout mouvement,

est voisin de zéro, négligeons-le et écrivonsd29d*u-sin9rfpdïïL'équation (5") deviendra alors

,2 Ca r0 — P ci (C — A)r^ 0 où m* —- x <13>

dt2 A

la dernière expression pour a assez grand est positive.

L'équation (13) nous permet de calculer la période T d'une

1 Nous ne parlons pas de r0 puisque (C — A) peut être négatil.
1 Log sin 9 est nul ou négatif puisque sin 9^1.
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oscillation simple de la toupie autour de Taxe vertical. On

trouve T On voit que T diminue 1° lorsque a

augmente et 2° lorsque Pa diminue.
2° Passons maintenant à l'autre cas où 9 est voisin de zéro.
Les équations (5) peuvent s'écrire en remplaçant p, q et r

par leurs expressions (8) de la façon suivante :

A
d2® dQ dÔ </0

~d?C0S0 dt 0d~t ~ lit

+ (A — C)ro cos 0 — — cos G -)- C»^1 cos 0 (14)

do

j - sin 0 :— r0 puisque N — 0

Remarquons que r0 est voisin de 0 puisque 9 en diffère
très peu. Pour la même raison nous pouvons, au lieu de
cos0, écrire 1 dans les équations (14), c'est-à-dire écrire

AW>+ [C(a+ ro>- 2Aro]^ 0

(14'>

A^-[C(a + ,«)-A'»^+ Pa ° •

Posons

m2 _ C(g F ro> — 2Ar0 C(a + >•„) - kr„
A A

m2 et n2sont positifs si a est supposé grand. Posons d'autre

part u.Leséquations (14') s'écriront

du 2de

dH2P« _
(15)dt*~ "u+ T - 0 •

De la première de ces équations nous pouvons tirer :

jt — 37 ; portons ceci dans la seconde équation, nous
obtenons

d2'1
2 2 2 P" A+ m2n2u — m2-- — 0 (16)
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Posons
Ptf 1

»

II -T—2 H 9—2" o 6
A/r m~/r

L'équation (16) pourra alors s'écrire

4t?Aor* + + «pÇ - ,»'Ç o (16-)
//r ir a • A

d'où nous tirons

£2 _j_ m2^2 _ Q d'où ^ imn el Ç2 — ïmn

Nous avons donc

Pa
u •=. -j--2 + Aj cos m//£ 4" Ag sin m//* (17)

En nous servant des relations posées plus haut, nous obtenons

successivement :

1 du 77 11
K 4

— — —- — A, s m mnt A„ cos milt
dt m2dt m

1 m 1

1 1 f6 «A. cos mut 0A„ sin mnt 4- K'
m1 1 m2

Pa 1 1
© — —5t H A, sin mnt A9 cos mnt -j- K"
1 A tr mil mil -

En nous donnant les quatre valeurs initiales (pour t 0)

de 0, <j>, ~ et soit 0O \ <p0, 0'o et jv0, nous pourrons écrire

quatre équations pour déterminer les quatre constantes Aiy
A2,K' et K".

Nous aurons

9„ — -„A. + K' 9' — - A,0 m2 1 ^ 0 m

1 IV/
% -— A2 + K" > "o Â7T2 + Al

(18)

On en tire
a m a' A

Pa
2 „ o ' 1 Z/0 An2 '

_ Jîp
/t2"« ' " - uo t ^2 Am2//2

K" — m
1

fi' K ' - 0 _l_-
"<> Va

K — ?0 — 72 öo ' K — ü0 + —2

(18')

1
60 doit être voisin de 0.
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Considérons le cas particulier où <p0 0O u0 — 0'0 ~ 0.
On aura :

A2 0 IC" 0 Aj — — K' —A n2 ' An2 m2 '

9 et <p s'écriront alors

a P« Pa ^t) r= ———- cos mnt — -—— Pail - - cos mnt)An2 m2 An2 m2 '

Ptf

On voit que l'axe de la toupie décrit une cycloïde1.
Remarquons encore que si a est très grand on peut négliger

r0 devant a et écrire m2 a2 9 et <p deviennent alors

P a
6 — — -—j (1 — cos m21)

A ne

Vü .99 — 7—T[m"t — sin m2t)
A mr

Plus a augmente, plus m augmente et plus la cycloïde
s'aplatit et la période d'oscillation de l'axe de la toupie

2rautour de l'horizontale -4 diminue.
m*

Nous avons supposé au début que 9 s'écarte peu de 0.
Cherchons les conditions pour qu'il en soit ainsi. Il est
évident qu'il faut d'abord que 90 soit ou nul ou très peu différent
de zéro.

Ecrivons l'expression générale de 9. On aura

A "0 i
1

• "o P«
0

2 cos mnt + t—2—2" cos mnt "P — sln mnt 4~ ~^> —ni2 An2 m2 mn m2 An2 ni2 0

f un Va ~\
[ M

1
— —ô :—i—5- [1 — cos mnt] 4- — 6a sin mnt 4- (L

fm2 An2m2 J J 1

mn 0 0

On voit tout de suite que pour que 9 s'écarte peu de 90

(qui lui-même est nul ou très petit), il faut que m et n soient
très grands, c'est-à-dire a très grand.

§ 4. — Cherchons les conditions d'une précession simple

1 Au lieu de 0 et ® il faut considérer les coordonnées — m0 et ncp.
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(sans nutation) et uniforme, c'est-à-dire les conditions pour

que pendant tout le mouvement et w0 ou o et "g

sont déterminés par les conditions initiales.
La deuxième équation (14) pour e «0 prendra la forme

cos 0[Aro — C (a + /„)] + Pa cos 9 0 (19)

Cette équation admet comme première solution cos 0 — 0

ou o= o0"2 • prend alors la valeur constante n0 /0.

L'axe de la toupie étant au début vertical, reste vertical et

la toupie tourne autour de son axe avec une vitesse angulaire
- constante (a -f- /'0). Nous avons vu plus haut que la toupie

amenée dans une position légèrement différente de la

verticale oscille autour de cette position si « est suffisamment

grand. C'est donc une position stable.

Passons maintenant à la seconde solution. L'équation (19)

peut être transcrite de la façon suivante

[A,.o_C(a+ro)]J + P« 0 (19')

cîo

ou en remarquant que /*0 — sm e

[(A — C) u2 sin 9 Cau — Va (19")

où a été remplacé par u. On obtient pour sin tf l'expression

suivante

Supposons pour plus de généralité que l axe de la toupie
est articulé sur son support. On aura alors les conditions
suivantes — 1 ^ sin e ^ 1, ce qui revient à

__ (À — C)m2 ^ Ca« — Pa ^ (A — C)u2 (21)

Supposons A^G. Les conditions (21) peuvent être écrites

sous la forme d'inégalités suivantes :

(A — C)«2 - Ca« -f- Va — 0 (I)

(A — C)u2 + Catt — Va ^ 0 (II)
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Les racines de (1) égalé à zéro sont

u
Ca ± V C2 a2 — 4Pa(A — C)

2|A — C)
~~

Les racines de (II) égalé à zéro sont

u
— Ca ± VC2a2 + 4Pfl(A — C)

2 (A — C)

Nous ne considérerons que les cas où a est suffisamment
grand pour que les racines ne soient pas imaginaires. Soit
A )> G1. On voit tout de suite que les racines de (I) sont
toutes deux positives, et puisque pour u 0, (I) est positif,
u doit être situé en dehors de l'intervalle des racines. De
même, les racines de (II) sont l'une positive et l'autre négative,

et puisque pour u 0 (II) est négatif, u doit être situé
en dehors de l'intervalle des racines. Il est facile de s'en
convaincre graphiquement.

Soit maintenant A <( G. On voit tout de suite que les
racines de (I) sont l'une positive et l'autre négative, et puisque
pour u 0, (I) est positif, u doit être situé dans l'intervalle
des racines. De même, les racines de (II) sont toutes deux
positives, et puisque pour ^ 0, (II) est négatif, u doit être
situé dans l'intervalle des racines. Il est facile de s'en
convaincre graphiquement.

On voit donc que pour qu'il y ail précession simple et
uniforme dans les cas où A ^ G, u doit prendre une valeur
satisfaisant aux conditions trouvées plus haut.

Soit encore A C. L'équation (19") s'écrira

On voit tout de suite que sin e peut prendre une valeur
quelconque tandis que u est déterminé par (22).

§ 5. — Etudions maintenant la stabilité du mouvement de

précession simple et uniforme. Ce mouvement est déterminé

G a u — Pa 0

d'où

(22)

1 C'est ce qui arrive le plus souvent.
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par e0 et «0, qui sont des constantes satisfaisant aux équations

(14) Supposons qu'on amène l'axe de la toupie dans une

position s 0o + xet qu'on fasse varier sa vitesse^de

précession d'une quantité J, de sorte que g "o+Tf Nous

supposons que xet Xsont des infiniment petits. Cherchons

s'ils sont des fonctions périodiques du temps. Si cela avait

lieu, le mouvement serait évidemment stable.

En développant cos e et sin e suivant les puissances de

et en négligeant les infiniment petits du second ordre, on

obtient:
cos G cos 0o — x Sin G0

sin G sin G0 + x cos G0 (24)

D'autre part, puisque e0 et u0 sont des constantes, on peut

écrire :

dG _ dx d^_6 __ ^9 _ «T /25)
cTt dt ' di2 dt2 ' dt2 dt2

Remplaçons dans les équations (14) r0 par ^sind et

portons ensuite dans les équations obtenues les valeurs (23),

(24) et (25).
En négligeant les infiniment petits de second ordre et en

remarquant que u0 et o0 sont des solutions de ces équations,

on obtiendra

A^OOS0° AMosil,0«^.'+ (C ~~ A)"«si"0«rff + 0 '

A
''

(A — C)2h0^ sin 0O cos 0o — Pax sin 0O — Ca^-cos0o

-f- C au0x sin G0 0

Posons maintenant

x — F sin (ot -\- f) et r G cos (pt -f- f)

On aura :

^ pF cos (p t+ f) — p2'" sin(p< +
dt d\ (27)

-r —— pG sin (p< + f)-X — — p2G cos (p +
dt "t
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En portant ces expressions dans (26) et en divisant la pre-mière équation par cos {pt -\- f) et la seconde par sin {pt -f- f)

on obtient
— A p2G cos 0O — Ai/0 sin 0O p F + (C — A)uQ sin 0O pF + Gap F 0

A p2 b (A C) 2u0 sin 0Q cos 0O p G — Va sin 0Q F (28)
-f- C a cos 0O p G -f- C a itQ sin 60 F 0

De la première de ces équations on tire

F Gp cos 0O ~ ^
G a -f (C — A) u0 sin 0O — A*/0 sin 0Q

'

Portons cette expression de F dans la deuxième des équations
de (28) et divisons par G p cos o0, nous aurons

A-p3 -f [Ca -f (C — A)Mosin0o — A//0 sin0o][(A — C)2//osin0o — Ca]
-f- AP« sin 0O — ACai/() sin Û(| 0

d'où

c» [(A ' C)/,o si" 90 + A»n sin 8„ - CalRA - C)2„0 sin — Ca]
A3 " ~

P«sin0o Cauosin0n
A + A *

Pour que p soit réel, c'est-à-dire p2 positif, il faut que a
soit suffisamment grand ; x et seront alors périodiques et
le mouvement w0, oQ sera stable. Plus a est grand, plus p est
grand aussi et plus la période de x et ^ est petite, cette
période étant égale à r —.

p

Si cl est assez grand on peut écrire :

r2 _ Cai/0 sin 0Q Va sin 0n

A2 A A •

Il y a intérêt à ce que Pcl soit petit, le mouvement est alors
plus stable, t étant plus petit.

Pour 90 0, (29) devi-ent p2 ~ et on retrouve le
résultat du § 3. En effet, la période est définie pour 0

par z y où p^ et dans le § 3 par r ce que pour
oa 0 devient ^ où mn puisque /0 0.

Zurich, 1917.


	THÉORIE ÉLÉMENTAIRE DE LA TOUPIE GYROSCOPIQUE

