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La dislance des deux points focaux de chaque rayon de la

congruence est
i a ca ch to — c cos 9 — x, ;

c a 1

celte distance est donc une fonction rationnelle des
coordonnées de ces points focaux.

Si, d autre part, X représente la distance comptée à partir
de l'un des points focaux, le point de l'ellipse (E) par
exemple, jusqu'à 1 une des cyclides orthogonales aux droites
de la congruence, cette distance X est égale à

o

^ — C COS o -f- const -x, 4- const ;
a 1

elle est donc une fonction rationnelle des coordonnées de
l'un ou l'autre des deux points focaux.

CHRONIQUE

Société mathématique suisse.

Lugano, 8 septembre 1919.

l^a Société mathématique suisse a tenu sa neuvième réunion
ordinaire à Lugano, le 8 septembre 1919, sous la présidence de
M. le Prof. Michel Planchebel (Fribourg), à l'occasion de la
centième assemblée annuelle de la Société helvétique des sciences
naturelles. Le programme de la partie scientifique comprenait
onze communications ; en voici les résumés :

1. — Dr Ed. Guillaume (Berne). — Un nouvel algorithme : les
« dérivées homogènes » et une nouvelle opération spatiale :
Vt aberration ». — La Théorie de la Relativité restreinte (c'est-à-
dire sans champ de gravitation), qui a été l'objet d'innombrables
travaux, n'avait pas donné naissance jusqu'ici à la création d'êtres
mathématiques nouveaux, malgré la haute originalité des conceptions

sur lesquelles elle repose, et contrairement aux traditions
de la Physique, qui a toujours été l'inspiratrice de la Mathématique.

Il faut en chercher la raison dans le fait que la Théorie faisait
intervenir la notion fondamentale de temps d'une façon fort
étrange, déconcertant complètement l'intuition. Nous avons
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montré ailleurs1 qu'il était possible d'introduire un paramètre
unique t pour représenter le temps dans la I héorie de la Relativité.

Voici, très brièvement, les résultats auxquels on parvient,
résultats qui introduisent des notions mathématiques nouvelles :

Dans la Théorie de la Relativité, on rapporte tous les déplacements

à des systèmes de référence qui sont des trirectangles
euclidiens S (x, y, z). Mais un changement de système se fait a

l'aide de la transformation de Lorentz qui contient, outre les

.3 coordonnées habituelles x, y, z de tout point P, un certain

paramètre u. Pour deux systèmes S1 et S2, animés d'une certaine
translation relative, que nous préciserons plus loin, cette
transformation est la suivante :

aq ß(j'2 + a zz2) ; r1 — r2 f sq ~2 ; zq ß(z/2 + a-r2) (P

où ß'1 1 : (1 — a2) est une constante. Or, les 4 quantités xy y, z,
n ne peuvent être considérées comme les coordonnées homogènes
d'un point P; nous voulons dire que si on leur attribuait arbitrairement

cette signification, on ne serait nullement conduit aux
résultats de la Théorie de la Relativité. Si, par contre, on considère

ces quantités comme des fonctions du temps t, on tombe
immédiatement sur la célèbre règle d'addition des vitesses
d'Einstein, qui est à la base de la Théorie, en formant les

quotients :

h t
h

; h ;
Ï2 -21 fi

zz1 zq zq zz2 zz2 zz2

•où les dérivées par rapport à t : x, y, z sont les composantes des

vitesses de P. La dérivée a est alors le scalaire d'une vitesse
caractéristique de S, qui n'est autre que la vitesse de la lumière
dans ce système. Nous nous trouvons donc en présence d'un
nouvel algorithme qu'on peut appeler « vitesses » ou « dérivées
homogènes».

Pour en voir la signification spatiale, nous nous placerons
dans le cas très simple où les deux systèmes S1 et S2 se réduisent
aux axes 0., xA et 02.r2, glissant l'un contre l'autre avec la
vitesse «; P est un point en mouvement sur ces axes, et nous le

supposerons — ce qu'on peut toujours faire — lié à un troisième
axe 03 x3 glissant également relativement aux premiers. On a

-alors, puisque yi — y^ ~ zx z^ 0 :

.r0
~h a

Xx ZZ2

1 Voir Archives des sciences phys. et nat., Genève, décembre 1918 et juin 1919.

L'Enseignement mathém.,.20e année; 1919. 29
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expression qui ne dépend plus que des rapports ce qui nous
U

permet, en changeant d'échelle, de les prendre pour vitesses.
Posons :

Xî -T2— — ^3 5 ~ *'23 5 a ^12 '
U1 ll2

nous obtenons :

1 + ^1«
(2)

Comparons cette expression à celle que donne la Cinématique
classique pour 3 droites glissant les unes par rapport aux autres
avec des vitesses relatives V12, V23, V13 :

Y — V -4- V13 *12 1 V 23 *

landis que cette dernière relation conduit, à tout instant t, à
une configuration unique pour l'ensemble des trois droites, la
relation (2) donne, à chaque valeur de t, trois figures distinctes
selon le système où l'on se place pour envisager les deux autres.
Si, par exemple, on se met sur S1, S2 et S3 sembleront avoir les
positions apparentes S2?1 et S3>1 (voir la figure). Nous dirons
qu'il y a « aberration ». Cette désignation se justifie par le fait
que l'expression (2) contient en particulier l'aberration
astronomique.

La Théorie ne faisant connaître que les positions apparentes,
on se demandera quelles sont les positions craies. Dans toutes
les Géométries, euclidiennes ou non-euclidiennes, la composition
des vecteurs s'effectue suivant un polygone ferme. La règle (2),
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par contre, conduit à une figure ouverte, ce qui produit
1'« aberration ». Pour connaître les vitesses vraies, il faudrait
trouver des fonctions des vitesses apparentes, qui s'additionnent
suivant une figure fermée. Il y a deux possibilités : 1° privilégier
un système et lui attribuer le repos absolu ; 2° prendre pour
vitesses vraies les arguments des tangentes hyperboliques
représentant les vitesses apparentes. Les trajectoires vraies seraient
alors les géodésiques de surfaces à courbure négative. La vitesse
vraie de la lumière aurait une valeur limite infinie.

En terminant, disons que l'introduction d'un paramètre unique
t pour représenter le temps dans la Théorie de la Relativité,
permet d'éliminer immédiatement la célèbre « contraction » de

Lorentz, qui apparaît ainsi comme une entité purement fictive.

2. — Dr Giov. Ferhi (Lugano). — Sur la courbe des points
brillants de sphères concentriques.— Soit A le point lumineux, A1

le point de vue, O le centre des sphères, M un point brillant (par
réflexion), situé dans le plan AAjO. Prenons un système d'axes
rectangulaires, O comme origine et l'axe Ox passant par le milieu
de AAr Soient alors /?, q ; pl9 — q ; x, y les coordonnées respectives

de A, Aj et M. Les coefficients angulaires des droites AM,
y — (i y (t r

A, M et OM sont alors respectivement a —, > ax
* ol p oc P\ '

Le coefficient angulaire de la bissectrice de l'angle AMA1 égalé à

celui de OM donne

a \/l -f- fq — cix \/l -f- #2
y

v/r+Tj - \/r+T2 *

Remplaçons a et ai par leurs valeurs, nous obtenons pour le
lieu des points de réflexion sur les sphères de centre O

ip+Pi) (x* + y2)y — — Pi) (x2 — y2) —2 (f + ppi)xy =0 • (1

Ce lieu passe par A et par A1, il a un point double en O. Il y a

pour toute valeur de x 3 valeurs de y ; l'une d'elles est toujours
réelle et positive. Pour x — ± ce

9 on a asymptotiquement
Ü V

y —
p -\- p

q Para^®^e a Q'v' -P0111* toute valeur de y il y a deux

valeurs de.x qui ne sont réelles que lorsque \ y\^- ^ '

P + Pi
m

Lorsque A et At sont équidistants de O, p pi et l'équation se
réduit à

[p(x2 -{- f) — (p2 + q2)x]y 0

Le lieu est alors formé de l'axe des x et de la circonférence

x1 -f y1 —
r/2 x — 0 dont le centre est sur l'axe des x et qui
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passe par 0. Quand A est à l'infini : p x l'équation du lieu se
îéduit k [y q) x2 Zp^y -)- [q + y) y2 — 0, qui a y q comme
asymptote.

La construction graphique de la courbe peut se faire point par
point au moyen des tangentes menées par A et A^ aux circonférences

de centre 0. On obtient pour chaque circonférence deux
couples de tangentes ayant 4 points d'intersection qui sont des
points de la courbe.

Les points brillants d'une sphere s'obtiennent par l'intersection
du lieu des points brillants avec le grand cercle situé dans le
plan AAt 0, donc par résolution du système simultané formé par
(1) et par x2 -f- ?/2 — r2. On obtient pour déterminer x et y deux
équations du 4e degré, par conséquent 4 points qui peuvent être
tous réels ou dont 2 peuvent être imaginaires. Notons cependant
que dans chaque cas deux points seulement sont des points de
réflexion de rayons physiques, l'un sur la partie convexe, l'autre
sur la partie concave de la sphère. Les 2 autres points répondent
seulement à la condition géométrique de la bisection de l'angle
supplémentaire des 2 droites passant par A et Ad.

3. — Dr K. Merz (Coire). — Métrique dans les ovales des
courbes algébriques. — Considérons l'intérieur d'un ovale comme
l'image du plan illimité dans une transformation quadratique.
Admettons dans ce plan la métrique euclidienne et faisons
correspondre aux segments et aux angles de ce plan leurs images
dans 1 Ovale en les affectant des mêmes nombres comme mesure.
Nous définissons de cette manière à l'intérieur de l'ovale une
métrique générale non euclidienne, ayant sa réalisation dans le
plan.

fer exemple b f (x2 — a2) (x — b) — y2 0 possède
lorsque a b un ovale compris dans — a x g -f a. La
transformation g2 'y-, J fait correspondre aux points P (oc, y) de

l'intérieur de l'ovale les points P'(£, rj du plan illimité. Aux
coordonnées x, y de P envisagées comme distances aux axes
correspondent dans le plan (g, rj un arc u d'une courbe du 3
ordre et un arc d'hyperbole v donnés par

;me

=J^/W - *£) +>» + vV; ^

--f'^WEIË±^±SRdy

1 Voir l'exemple des Verhandlungen d. Schweiz. Naturforsch. Gesell., 1917, II, p. 135
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-, f — f - L'élément d'arc est donné par did +
h ' ôy

_ 2fW-xfi-yq Les géo-
dv2 — 2dudv cos (p et tg ^ — 2/'|>72 + j/VJ — lx'2 + y2)tiU

désiques à l'intérieur de l'ovale sont des arcs de couibes u

3me ordre.

2me exemple.f=(x2-a2) (x2- - 0 ; a < On ne

considère que les valeurs de #, y qui sont a 1 inteneur de 1 oAale

— a < x < + a. On obtient

C /pdid— x4 — y2)2 + x2y2(2xa ^ _

" ~J V

_ r" -J y -[(X2 _ Äs,(a;* _ F) - r2]8 "

[(x2 - a2) (x2 — I'2) — r2] [a2 Id — **)
'S -i. i " -- «262+ (x2 — a2) (x2 - Id) |2x2 — a2 — è2)

'

Les géodésiques de l'ovale sont ici les arcs de courbes du 4'1,e

ordre, images des droites a)-+ ßYLadistance dans 1 ovale

se détermine par des arcs de courbes du 4me ordré.

4. _ Prof. Dr W.-H. Young, F. R. S. (Lausanne et Aberytstwyth).

— Sur la notion de l'aire. — Plusieurs mathématiciens de notre

temps ont essayé de préciser la notion de l'aire d une surface

courbe, mais avec peu de succès. L'auteur a construit une théoiie

qui s'applique, non seulement aux surfaces, mais aux variétés de

n'importe quelles dimensions. La théorie est fondée sur l'idée

de Yaire d'une courbe gauche. L'aire d'un polygone est la somme

des moments de forces, représentées par les côtés du polygone.
Inscrivons dans une courbe un polygone ayant tous ses côtés

inférieurs en longueur à à : si, en faisant tendre $ vers zéro,

l'aire du polygone tend vers une limite unique, celle-ci est Yaire

de la courbe. Avec cette définition, par exemple, chaque courbe

rectifiable plane possède une aire donnée par la formule

a — \f\ *•(«) dr(u) — r(«) (") \

Si la courbe est l'image du périmètre du rectangle b;
dans une correspondance continue

* m x(u, f) y z(u, f) (a ^ x fis a') b ^ y ^ //)

le problème se pose de transformer l'expression obtenue dan

l'intégrale double bien connue
s

r rbJfLiï dudv.J J ö (u, F)
a b
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Prenons maintenant une correspondance continue et biuni-

voque
x=zx[u, <>) y=zy(u, v) z z(u, v)

et divisons le rectangle fondamental en rectangles partiels, dont
les côtés, parallèles à u 0, v — 0, ne dépassent pas $ en
longueur. Ayant formé la somme des aires des courbes images de
ces rectangles partiels, nous faisons tendre 5 vers zéro. Si a
une limite unique S, celle-ci est l'aire de la partie de la surface,
image biunivoque du rectangle fondamental. Le théorème
principal est le suivant: Si x(u,v), y(u,v), z(u,v) sont des
intégrales par rapport à u, ayant des dérivées partielles par
rapport à u, qui sont, sauf pour un ensemble de valeurs de u de
mesure nulle, toutes inférieures à une fonction sommable de u et
si la meme chose est vraie quand nous changeons u en v, et v en u
la surface image du rectangle fondamental a une aire A donnée
par la formule

a=//#5'«^ab " \ / \ /

Sous certaines conditions l'auteur arrive au même but par une
méthode de triangulation. Il faut cependant introduire explicitement

l'ordre double de la surface, de même que, dans l'approximation
de la longueur d'une courbe, il est nécessaire de tenir

compte du sens de cette courbe. La triangulation est obtenue en
joignant convenablement par des lignes droites les points de la
surface, images des sommets des rectangles partiels de longueur
^ h et de hauteur ^ k dans le plan des (u v). Pour calculer
l'aire nous laissons d'abord k et puis h tendre vers zéro, et nous
obtiendrons le résultat voulu dans certains cas intéressants. Sans
donner les conditions les plus générales, nous remarquons que,
si x(u, v), y (m, vj et z(uf v) sont des intégrales doubles, cette
méthode est valable, d'autant plus que la limite obtenue est dans
ce cas indépendante de la manière avec laquelle k et h tendent
vers zéro.

o. — Prof. Dl L.-Gustave Du Pasquiek (Neuchâtel). — Sur un
problème de cinématique. — Une barre rigide AB de longueur lx

peut tourner librement, avec la vitesse v1, autour de son extrémité

A supposée fixe. Une seconde barre BC également rigide,
mais de longueur l2 ^ f, peut tourner, avec la vitesse c2, librement

autour de l'extrémité B de la première. Dans ces circonstances,

le point C, extrémité libre de la seconde barre, décrit
une « courbe gp » dont la forme et les propriétés dépendent:
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1° des longueurs f et l2 ;

2° du rapport des vitesses vi et c2 ;

3° du sens des rotations autour de A et de B, en particulier
(lorsqu'elles s'effectuent dans un même plan), si elles ont lieu
dans le même sens, ou non.

Il est remarquable que ces mêmes courbes gp puissent être
engendrées cinématiquement d'une manière simple par les dispositifs

suivants : Un point mobile P est animé d'un mouvement
donné sur un segment XY d'une droite d. En même temps, d
tourne autour de l'un de ses points, F, supposé fixe en dehors du
dit segment. La trajectoire du mobile P est encore une courbe

gp. — Un point mobile P parcourt une certaine ellipse, avec la
vitesse vi (mouvement de circulation) ; simultanément, cette
ellipse tourne avec la vitesse e2 autour d'un pôle fixe, F, qui
coïncide à chaque instant avec l'un de ses foyers. La trajectoire s

qui résulte pour P de la combinaison de ce mouvement de rotation

avec celui de circulation est de nouveau une courbe gy?. —
Le conférencier déduit les équations de ces courbes dans le cas
où elles sont planes, en coordonnées cartésiennes et polaires,
puis en énumère une série de propriétés et indique une généralisation

du problème à l'espace.
La communication se termine par d'intéressantes applications

des courbes gp à quelques mécanismes, à l'astronomie et à la
mécanique de la relativité.

6. — Prof. D1' A. Speiser (Zurich). — Sur les lignes gèodèsi-
ques des surfaces convexes. — Considérons les lignes géodësiques
d'une surface convexe fermée, issues d'un point p, à partir de p
jusqu'au premier foyer. Elles engendrent une surface recouvrant
la surface convexe partout au moins une fois. La continuation

de ces lignes à partir du premier foyer jusqu'au deuxième
engendre de nouveau une surface de recouvrement qui, quand
certaines conditions sont remplies, couvre toute la surface
convexe. Par chaque point p il passe donc au moins une géodésique

qui, après avoir louché l'enveloppe une seule fois rentre an
point p. On démontre que la plus courte est une géodésique
fermée, ce qui donne une démonstration nouvelle d'un théorème
de Poincaré (American transactions, t. 6, p. 237), à savoir que sur
chaque surface convexe fermée il existe au moins une géodésique
fermée.

7. — Prof. D1, M. Plancherel (Fribourg). — Sur la méthode
d'intégration de Rayleigh-Ritz. — Le procédé de Rayleigh-Ritz
(Rayleigh : Phil. Mag. (5), 47 (1899), p. 566-72 et (6), 22 (1911),
p. 225-229; Ritz : Gött. Nachr., 1908, p. 236-40. J. reine angew.
Math., 135 (1908), p. 1-61. Ann. d. Phys. (4), 28 (1909), p. 737-786.
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Œuvres, p. 192-316) pour l'intégration des équations linéaires aux
dérivées partielles du type elliptique qui résultent d'un problème
du calcul des variations (prenons pour fixer les idées l'équationJ Ju lu z=: 0) exprime la solution sous forme d'une série
il 2xi<pi procédant suivant un système de fonctions données
que nous supposerons orthogonal, fermé et normé et calcule les
coefficients xt comme solutions, au sens de la méthode des
réduites, d'un système

2 aikxh — Xxi U (î)

d une infinité d équations linéaires à une infinité d'inconnues.
La méthode de Ritz ne démontre la légitimité du procédé quedans le cas où x ^ 0. En supposant connues l'existence et les
propriétés des fonctions fondamentales de J Ju ~ lu 0, il est
cependant possible de prouver que le procédé de Ritz est applicable

pour toute valeur de l qui n'est pas une valeur fondamentale
et qu il permet de calculer valeurs et fonctions fondamentales parla résolution, au sens de la méthode des réduites, du système
homogène correspondant à (1). La démonstration se base sur
l'étude de la forme quadratique (non bornée) 2aikxéxk et sur le
fait que cette forme possède cependant une résolvante unique
K(^; x) qui, elle, est une forme bornée sauf pour les valeurs de u
qui sont les inverses des valeurs fondamentales. Ainsi se trouve
justifiée l'application qu'a faite Ritz de son procédé au calcul des
vibrations fondamentales d'une plaque élastique à bords libres
(figures de Chladni).

8. — D1 G. Pölya (Zurich). — Quelques problèmes de probabilité
se rapportant a la « promenade au hasard ». — Imaginons un

réseau régulier de points dans l'espace à d dimensions ; relions
tous ces points (nœuds) par des droites parallèles aux axes de
coordonnées. Un promeneur errant sur les droites de ce réseau
se décide au hasard, en chaque nœud, pour une des 2d directions
possibles, le choix de chaque direction ayant la probabilité ~
Pour d 1, nous avons simplement une droite indéfinie divisée
en segments égaux et le problème est une représentation géométrique

du jeu de « pile ou face ». Pour d 2, le problème représente
la promenade au hasard d'un piéton dans un réseau de rues

et pour d =z 3 le chemin d'une molécule d'un gaz en diffusion à
travers un cristal du système régulier.

Les applications principales du calcul des probabilités peuvent
être rattachées au schéma de la promenade au hasard ou à des
modifications de ce schéma, qui s'introduisent d'elles-mêmes.
Des problèmes nouveaux et curieux se rapportant à la promenade
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au hasard, nous ne citerons ici qu'un seul. Deux promeneuis
errant dans le réseau, partant d'un mênie nœud, allant toujours
avec la même vitesse, prennent leurs décisions aléatoires à chaque

nœud, indépendamment l'un de l'autre. La probabilité pour qu ils

se rencontrent pendant une durée t déterminée croît avec t. Cette

probabilité tend-elle vers l'unité lorsque t tend vers l'infini Oui,
si d 1, 2 ; non, si d — 3, 4, 5,

9. — Prof. Dr R. Fuetbr (Zurich) — Sur quelques théorèmes de la

théorie des idéaux et sur leur démonstration. Soit K un corps de

Galois quelconque. Hilbert à étudié la décomposition dans K de

chaque nombre premier en idéaux premiers. On peut compléter
ses recherches en considérant l'ensemble des nombres premiers
au lieu de les considérer isolément. En effet, K est cyclique
relativement au corps de décomposition des nombres premiers qui
n'ont pas de diviseur commun avec son discriminant; on peut,

par suite, utiliser la théorie que j'ai donnée des équations abé-

liennes dans un domaine fondamental. Les résultats suivants

entrent en considération. Soit k un corps fondamental, K le corps
supérieur cyclique- relatif; soit fun idéal de k contenant tout idéal

premier du discriminant relatif de K par rapport à k, à la première
puissance quand il est premier avec le degré relatif, à une certaine
puissance lorsqu'il est contenu dans le degré relatif, formons le

rayon de k ayant/'comme guide, On a alors les théorèmes :

I. Tous les idéaux premiers d'une classe de rayons {mod. f) de

k se décomposent de la même manière dans K. Deux idéaux de k
sont dits équivalents (mod./') lorsque leur quotient multiplié
convenablement par des unités de k, est égal à un nombre a

totalement positif et vérifiant la congruence a 1 (mod. f).
II. Tous les idéaux de la classe principale de rayons [mod. f) de

k se décomposent dans K en un nombre d'idéaux premiers égal au
degré relatif.

Considérons tous les nombres premiers du corps de Galois
donné K et formons avec eux, comme plus haut, le guide/'. Le

corps d'inertie de tous les idéaux premiers non contenus dans
T'est encore le corps K. Ce dernier est cyclique de degré n relativement

au corps de décomposition d'un idéal premier p (c'est-à-
dire sa norme est p11). Soit :L, z, s2, 3,i—1 le groupe (relatif)
de décomposition. Parmi les conséquences des théorèmes I etil
je noterai les suivantes :

Le groupe de décomposition I, s, s2, zn~l est un sous-groupe
du groupe de décomposition de tout idéal premier du corps de

décomposition, lorsque cet idéal est équivalent (mod. f) dans ce

corps à l'idéal premier p. Si 1, s, z'*2, zn~l n'est pas sous-
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groupe d un sous-groupe cyclique du groupe de Galois, tous les
idéaux premiers du corps de décomposition, qui sont équivalents
à J) (mod./*), ont ce corps comme corps de décomposition. Si
7i > 1, J> n'est jamais un idéal principal (mod. f) dans le corpsde décomposition.

Si donc, inversement, on prend un sous-groupe quelconque
1, z, £2, zn 1 du groupe de Galois du corps, et si ce sous-
groupe est « le plus grand », c'est-à-dire s'il n'est pas sous-groupedun autre sous-groupe cyclique, formons le sous-corps k
appartenant à 1, £, s"2, zll~1 ; alors, tous les idéaux premiers de k
qui ne sont pas du premier degré se décomposent dans K en n
idéaux premiers. Tous les idéaux premiers de la même classe de
rayons [mod. f) de k ont le même corps de décomposition.

Les démonstrations des théorèmes I et II n'ont, jusqu'à présent,
pas été entièrement publiées. Trois méthodes peuvent conduire
au but: celle de Furtwängler basée sur les lois de réciprocité,
ma méthode des classes de rayons et de la répartition en genres,enfin la méthode analytique de Hecke basée sur son équation
fonctionnelle.

10. Dl S. Bays (Fribourg). — Une question de Cayley relative

au problème des triples de Steiner1. — Cayley a soulevé,
relativement au problème des triples ou triades de Steiner, une
question intéressante et difficile, jusqu'ici neuve encore de toute
recherche : Est-il possible de répartir les triples
cle N éléments en N — 2 systèmes de Steiner?

Pour 7 éléments, cette répartition n'est pas possible ; on peutécrire deux systèmes de Steiner de 7 éléments, n'ayant pas de
triples communs, mais pas davantage. Cayley s'est demandé si par
exemple les 455 triples de 15 éléments pourraient être disposés en
13 systèmes de Steiner. Il a cru donner une démonstration très
simple que, si les 13 systèmes existent (et Cayley dit en terminant

qu'il ne le pense pasj, ils ne peuvent pas se déduire de l'un
d'entre eux par une permutation cyclique de 13 de ces éléments.
Mais sa démonstration repose sur une prétention qui se trouve
être entièrement fausse. Cayley prétend que clans le rectangle des
couples des 13 éléments 0, 1, 2, 9, 0', 1', 2', disposés de la
manière suivante :

1 Caylky. Mathern. Papers, I, p. 481, on Philosoph. Magazine, 37 (1850), p. 50. — Voir
aussi Niîtto. Combinatorik, 1901, p. 202 à 235 et particulièrement p. 228. — Dans
L'Enseignement mathématique (N° 1-2), 1917, j'ai établi que pour 9 éléments le problème de Cayley
est possible et qu'il a 2 solutions difïérentes. Je donnais en commençant la démonstration
de Cayley relative au cas de 15 éléments, parce que intéressante et simple, sans songer à
douter de la prétention sur laquelle elle repose.
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01 12 23 34 45 56 67 78 89 90' 0'1' l'2' 2'0

02 13 24 35 46 57 68 79 80' 91' 0'2' l'O 2'1

03 14 25 36 17 58 69 70' 81' 92' O'O l'I 2'2

04 15 26 37 48 59 60' 71' 82' 90 O'I l'2 2'3

05 16 27 38 49 50' 61' 72' 80 91 0'2 l'3 2'4

06 17 28 39 40' 51' 62' 70 81 92 0'3 l'4 2'5

il n'existe qu'un seul système de 6 couples, ayant un couple dans

chaque ligne et renfermant les 12 éléments 1, 2, 1,2, à

savoir le système suivant : 67, 2'1, 58, l'2, 49, 0'3. Or il en existe
144 autres, remplissant les mêmes conditions ; ces systèmes vont

par couples de systèmes que j'appellerai conjugués, déductibles
l'un de l'autre parla substitution \œ, N — x |. Le système 1, N 1 ;

y j\j" i -,2, N 2 ; ; —|— —^— ' donné Par Cayley, est le seul identique

à son conjugué ou self-conjugué. Pour 6n + 3 éléments,
lorsque 6/i + 1 est un nombre premier (cas de 15 éléments de la

démonstration de Cayley), et pour ßn -j- 1 éléments, lorsque
6n — 1 est un nombre premier de la forme 4.r — 1, je peux
donner un système général de couples, remplissant les conditions
demandées par Cayley, différent de son conjugué et donc autre

que le système self-conjugué, au moyen d'une racine primitive a

de ßn _j_ resp. de ßn — l1. Pour 9 éléments, ce système avec

son conjugué et son self-conjugué, permettent de construire
immédiatement le système de Steiner suivant:

780 713 726 745 815 823 846 016 025 034 124 356

que la substitution cyclique (0123456) transforme successivement
en 6 autres systèmes de Steiner différents par tous les triples, et
renfermant donc avec le premier les 84 triples de 9 éléments.

Le manque de place ne me permet pas de développer davantage

la question ; mais le problème de Cayley : Répartir les

y (y 1 WN 9)-' ———— triples de N éléments en N — 2 systèmes de

Steiner, ou en d'autres termes : trouver N — 2 systèmes de Steiner
de N éléments différents par tous les triples, me paraît se poser
au contraire d'une manière positive, pour N 6/2 + 1 et pour
N s ßn -f- 3 éléments, N 7 étant probablement le seul cas pour
lequel il manque de solutions.

1 Ces deux systèmes sont respectivement :

Pour 6?2 —}— 3 : a0 a'1, a1a"~H, a""-1 orn~1 a?n cl*'1 or" "h1 a-5""!"1

rJon—1 a4/i—1
^

a4n a5/i
^ i

a?'1—* cfßn~h

Pour 6?2 —{— 1 : a0 a1, a2 a3 a6'* /jt oém en entendant naturellement par
l'élément a,x, le plus petit reste positif de ce nombre (mod. 6n -{- 1 resp. 6/i — 1).
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11. — I roi. D' L. CitKLiEit. — Interprétation géométrique rationnelle

des quantités imaginaires. — I. Toutes les opérations de la
geometrie analytique à deux dimensions supposent que noustravaillons sur l endroitdu plan fondamental.

bi nous introduisons le concept de l'envers du plan, nousaurons, avec un axe commun, celui des par exemple, de nouvelles
ordonnées quicorrespondent aux valeurs +ou -f- iet— i.

II. Considérons maintenant une équation algébrique, parexemple x -f y*— 16. A toutes les valeurs de x correspondentdes valeurs de y; entre - 4 et + 4 elles viennent sur l'endroit etforment un cercle; entre - =«, et - 4, puis entre + 4 et + c*>elles viennent sur l'envers et forment une hyperbole équiiatèreégalement comprise dans la formule.
III. Recherchons les points de coupe de la droite x o avec lacourbe - x+ 2^=16. Nous trouvons (5, -f 3i) et (5, — 3i). Commela droite est également représentable stir l'envers, les points de

coupe sont suc Veneers, sur Vhyperbole.
IV. Passons aux points de coupe de la même courbe avec ladroite y — 2:v — 16. Nous trouvons

x: T ±~5 ^ '1 ' et y - y ± j v7» i

Pour trouver les images de ces points, nous avons deux moyens •

a) Nous prenons comme nouvel axe des x le diamètre
perpendiculaire a la droite; l'équation de la courbe ne change pas ; celle
de la droite devient x ~— \/5. D'après le raisonnement précédent

nous trouvons les deux points de coupe sur l'envers du planet sur 1 hyperbole correspondante.
b)Ou bien nous déplaçons les axes jusqu'en (j — comme

nouvelle origine et sur l'envers, à cause du déplacement des
2 axes, nous avons les coordonnées /lîi et ±|l/ÏT/ou
les points^ V/Iii, l l/Tïj et (- \ |

V. On peut opérer de la même manière avec une conique
quelconque et nous arrivons aux conclusions suivantes :

a) Les points de coupe d'une conique avec une droite extérieuresont les intersections de la droite sur l'envers du plan avec
conique associée qui admet la direction de la droite commediamètre conjugue secondaire. Le diamètre principal sert d'axe réelcommun aux deux faces du plan.
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b) Les valeurs analytiques x — a dt bi et y c ± di trouvées

comme solutions, correspondent aux mêmes a et c sont

coordonnées de lanouvelle origine, sur le centre du segment de

droite entre les points de coupe ; b et b sont les abscisses tandis

que Cet — c sont les ordonnées de ces points du plan
fondamental.

12. — Dans sa séance administrative, la Société a procédé au

renouvellement de son comité pour 1920 et 1921. M. le pro
L. Crelier (Berne) a été élu président, M. le prof. 0. Spies«

(Baie), vice-président, et M. le prof. Gustave Dumas (Lausanne)

secrétaire-trésorier.
La prochaine réunion ordinaire aura lieu à Neuchatel.

Nouvelles diverses. — Nominations et distinctions.

Angleterre. — M. G. H. Hardy, F.R.S., du Trinity College
de Cambridge, a été nommé professeur de mathématiques pures
à l'Université d'Oxford.

Belgique. — La Classe des Sciences de l'Académie royale de

Belgique a élu, membre titulaire, M. Cl. Servais (Gand), et membre

correspondant M. Th. Dedonder (Bruxelles).
Questions mises au concours. — La Classe des Sciences^ de

l'Académie royale de Belgique a mis au concours les questions
suivantes (séance du 7 mars 1914) :

On demande une contribution importante à la géométrie
infinitésimale des surfaces courbes. — (Prix : huit cents francs.)^

Résumer les travaux sur les systèmes de coniques dans l espace
et faire de nouvelles recherches sur ces systèmes. — (Prix : huit
cents francs.)

Le délai, fixé primitivement au 1er août 1915, a été prorogé au
1er août 1920.

France. — Collège de France. Cours publics du 1er semestre
à partir du 1er décembre 1919. — Nous relevons les cours suivants
concernant les sciences mathématiques et physiques :

M. Humbert : Quelques applications des fonctions elliptiques.
— M. Hadamard : L'œuvre de Poincaré : théorie des fonctions. —
M. Brillouin : Propriétés générales des couches superficielles;
en particulier des couches moléculaires liquides et solides. —
M. Langevin : Les aspects successifs et les confirmations
expérimentales du principe de relativité.

Académie des Sciences. — L'Académie a décerné le Prix Bordin
à M. S. Lefschetz, ingénieur des Arts et Manufactures, professeur
à l'Université de Kansas.
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