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La distance des deux points focaux de chaque rayon de la

congruence est
c

a chw——ccoscp:ﬁxfz—~xl :
c a

celte distance est donc une fonction rationnelle des coor-
données de ces points focaux. |

Si, d’autre part, A représente la distance comptée & partir
de I'un des points focaux, le point de [lellipse (E) par
exemple, jusqu’a I'une des cyclides orthogonales aux droites
de la congruence, cette distance } est égale a

C
A= — ¢ cos ¢ + const — — & —+ const ;

elle est donc une fonction rationnelle des coordonnées de
I'un ou 'autre des deux points focaux.

CHRONIQUE

Société mathématique suisse.
Lugano, 8 septembre 1919.

[.a Société mathématique suisse a tenu sa neuvieme réunion
ordinaire a Lugano, le 8 septembre 1919, sous la présidence de
M. le Prof. Michel Praxcuerer (Fribourg), & Poccasion de la cen-
tieme assemblée annuelle de la Société helvétique des sciences
naturelles. Le programme de la partie scientifique comprenait
onze communications ; en voici les résumés :

1. — D" Ed. Guirravme (Berne). — Un nouvel algorithme : les
« dérivées homogenes » et une nouvelle opération spatiale :
['«aberration ». — La Théorie de la Relativité restreinte (c'est-a-
dire sans champ de gravitation), qui a été 'objet d’'innombrables
travaux, n’avait pas donné naissance jusqu’ici 2 la création d’étres
mathématiques nouveaux, malgré la haute originalité des concep-
tions sur lesquelles elle repose, et contrairement aux traditions
de la Physique, qui a toujours été I'inspiratrice de la Mathéma-
tique.

Il faut en chercher la raison dans le fait que la Théorie faisait
intervenir la notion fondamentale de temps d’une facon fort
étrange, déconcertant completement lintuition. Nous avons
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montré ailleurs? qu’il était possible d'introduire un paramétlje
unique ¢ pour représenter le temps dans la Théorie de la Relat1-
vité. Voici, trés brievement, les résultats auxquels on parvient,
résultats qui introduisent des notions mathématiques nouvelles :

Dans la Théorie de la Relativité, on rapporte tous les déplace-
ments 4 des systéemes de référence qui sont des trirectangles
euclidiens S 1z, y, z). Mais un changement de systeme se fait a
'aide de la transformation de Lorentsz qui contient, outre les
3 coordonnées habituelles x, y, z de tout point P, un certain
paramétre . Pour deux systemes S, et S,, animés d'une certaine
translation relative, que nous préciserons plus loin, cette trans-
formation est la suivante :

o, = Blay +oawy) o =0y 5 =50 Uy = [luy 4 oaxy) (1)

ot 82 =1: (1 — o?) est une constante. Or, les 4 quantités =, ¥, z,
« ne peuvent étre considérées comme les coordonnées homogenes
d’un point P; nous voulons dire que si on leur attribuait arbitrai-
rement cette signification, on ne serait nullement conduit aux
résultats de la Théorie de la Relativité. Si, par contre, on consi-
dére ces quantités comme des fonctions du temps ¢, on tombe
immédiatement sur la célebre régle d’addition des vitesses
d’Einstein, qui est a la base de la Théorie, en formant les
quotients :

R
—
O
i
2

i . Lo )2 %9
- ¥ . b

X uy i, u, u,

& P =

ou les dérivées par rapport a £: ., y, z sont les composantes des
vitesses de P. La dérivée u est alors le scalaire d’une vitesse
caractéristique de S, qui n’est autre que la vitesse de la lumiére
dans ce systéme. Nous nous trouvons donc en présence d'un
nouvel algorithme qu'on peut appeler «vitesses» ou « dérivées
homogenes ».

Pour en voir la signification spatiale, nous nous placerons
dans le cas trés simple ou les deux systémes S, et S, se réduisent
aux axes O,x, et O,a,, glissant I'un contre 'autre -avec la
vitesse «; P est un point en mouvement sur ces axes, et nous le
supposerons — ce qu on peut toujours faire — lié a un troisiéme
axe O,x, glissant également relativement aux premiers. On a
alors, puisque y, =y, =2z, =13z, =0:

1 Voir Archives des sciences phys. et nat., Grenéve, décembre 1918 et juin 1919.

L’'Enseignement mathém., 20¢ année; 1919. 29
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. . , x .
expression qui ne dépend plus que des rapports =, ce qui nous
u

permet, en changeant d’échelle, de les prendre pour vitesses.
Posons :

X,

2 "
= Ve s
1 Uy
nous obtenons :

— V12 T vy 2
by = 2T Vm (2)
S PPN

Comparons cetle expression 4 celle que donne la Cinématique
classique pour 3 droites glissant les unes par rapport aux autres
avec des vitesses relatives V,,. V,., V,,:

Y = V12 + Vyy -

Tandis que cette derniére relation conduit, 4 tout instant L, a
une configuration unigue pour 'ensemble des trois droites, la
relation (2) donne, a chaque valeur de ¢, trois figures distinctes
selon le systéme o 'on se place pour envisager les deux autres.
Si, par exemple, on se met sur S, S, et S, sembleront avoir les
positions apparentes S, et S, , (voir la figure). Nous dirons
qu'il y a «aberration ». Cette désignation se justifie par le fait
que l'expression (2) contient en particulier I’aberration astro-
nomique.

., S, -
L=

S|

Sz
S
SJ,B/

La Théorie ne faisant connaitre que les positions apparentes,
on se demandera quelles sont les positions ¢raies. Dans toutes
les Géométries, euclidiennes ou non-euclidiennes, la composition
des vecteurs s’effectue suivant un polygone fermé. La réegle (2),
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par contre, conduit a une figure ouverte, ce qui produit
I’c aberration ». Pour connaitre les vitesses vraies, il faudrait
trouver des fonctions des vitesses apparentes, qui s’additionnent
suivant une figure fermée. Il y a deux possibilités : 1° privilégier
un systéme et lui attribuer le repos absolu; 2° prendre pour
vitesses vraies les arguments des tangentes hyperboliques repré-
sentant les vitesses apparentes. Les trajectoires vraies seraient
alors les géodésiques de surfaces & courbure négative. La vitesse
vraie de la lumiére aurait une valeur limite infinie.

En terminant, disons que l'introduction d’un parameétre unique
¢t pour représenter le temps dans la Théorie de la Relativité,
permet d’éliminer immédiatement la célebre « contraction » de
Lorentz, qui apparait ainsi comme une entité purement fictive.

2. — Dr Giov. Frrrr (Lugano). — Sur la courbe des points
brillants de sphéres concentriques. — Soit A le point lumineuax, A,
" le point de vue, O le centre des sphéres, M un point brillant (par
réflexion), situé dans le plan AA,O. Prenons un systéme d’axes
rectangulaires, O comme origine et 'axe O« passant par le milieu
de AA,. Soient alors p, ¢; p,, — ¢; v, y les coordonnées respec-
tives de A, A, et M. Les coefficients angulaires des droites AM,
y—4q y+q

P .

[.e coefficient angulaire de la bissectrice de I'angle AMA, égalé a
celui de OM donne

NTTd—aVitae
Vite - Viee

Remplacons a et a, par leurs valeurs, nous obtenons pour le
lieu des points de réflexion sur les sphéres de centre O

A, M et OM sont alors respectivement a —

M
x—p x —

(p + po) (22 4 9%y — (p — ps)(2® — %) ¢ — 2(¢* + ppJay =0 . (1)

Ce lieu passe par A et par A,, il a un point double en O. Il y a
pour toute valeur de 2 3 valeurs de y; 'une d’elles est toujours
réelle et positive. Pour 2 — -+, on a asymptotiquement
y == P— P g parallele a Ox. Pour toute valeur de y il y a deux
1

p+p
2 20" 2
valeurs de x quine sont réelles que lorsque |y _4_\/(/) T+
P+ p

Lorsque A et A, sont équidistants de O, p = p, et ’équation se
réduit a

[p(x® 4+ %) — (p* + ¢*)x]y =0 .
Le lieu est alors formé de l'axe des x et de la circonférence

7 [ q ] .
2t + yr— Pg%ﬁ x == 0 dont le centre est sur l'axe des x et qui




440 CHRONIQUE

passe par O. Quand A est a I'infini: p = %, équation du lieu se
réduit & [y — g) 2 — 2p, 2y + (¢ + y)y* = 0, qui a Yy == g comme
asymptote.

La construction graphique de la courbe peut se faire point par
point au moyen des tangentes menées par A et A, aux circonfé-
rences de centre O. On obtient pour chaque circonférence deux
couples de tangentes ayant 4 points d’intersection qui sont des
points de la courbe.

Les points brillants d’une sphére s'obtiennent par l'intersection
du lieu des points brillants avec le grand cercle situé dans le
plan AA, O, donc par résolution du systéme simultané formé par
(1) et par 2* + y* = 2. On obtient pour déterminer x et y deux
équations du 4° degré, par conséquent 4 points qui peuvent étre
tous réels ou dont 2 peuvent étre imaginaires. Notons cependant
que dans chaque cas deux points seulement sont des points de
réflexion de rayons physiques, I'un sur la partie convexe, l'autre
sur la partie concave de la sphere. Les 2 autres points répondent
seulement a la condition géométrique de la bisection de I’angle
supplémentaire des 2 droites passant par A et A, .

3. — D" K. Merz (Coire). — Métrigue dans les ovales des
courbes algébriqgues. — Considérons I'intérieur d’un ovale comme
'image du plan illimité dans une transformation quadratique.
- Admettons dans ce plan la métrique euclidienne et faisons
correspondre aux segments et aux angles de ce plan leurs images
dans P'ovale en les affectant des mémes nombres comme mesure.
Nous définissons de cette maniére a l'intérieur de l'ovale une
métrique générale non euclidienne, ayant sa réalisation dans le
plan.

1*r exemple'. [ = (2 — a¥)(x — b) — y*> = 0 posséde

lorsque @ <C & un ovale compris dans — @ < x < 4+ 4. La trans-
2

formation £ =— xT, 7? :% fait correspondre aux points P(x, y) de

Iintérieur de l'ovale les points P’(£, 7) du plan illimité. Aux
coordonnées x, y de P envisagées comme distances aux axes
correspondent dans le plan (&, ) un arc « d’une courbe du 3wme
ordre et un arc d’hyperbole ¢ donnés par

v = f \/ I — )+ @,
4f3
&5

! Voir I'exemple des Verhandlungen d. Schweiz. Naturforsch. Gesell., 1917, II, p. 135
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0 i ' b ' ’ ’ ’ )
ou f, = of fo == °f [’élément d’arc est donné par ds® = du* +

of [2f — xfy — Vs T .
do? — 2dudy cosp et tg g — ﬁ@g%;?f—i\?‘—;%ﬁ-f; . Les géo-

désiques a lintérieur de lovale sont des arcs de courbes du

3me ordre.

ome ggemple. [= (2 — a) (2 — b —y* =103 a <] b. On ne
. | . N . P Y

considere que les valeurs de x, y qul sont a I'intérieur de l'ovale

— a < 2 << + a. On obtient

‘- @2[)2 o S '72)2 + x2y2(2x2 — a2 — [)2,)_2 de |
ﬁ, [(,Lz — a®)(x? — b2 — 9'2]3

L, x2)'2 + (x2 - a2)2(x2 ___/Tz)—:zdT .
—( [(x2 _ a2)(x2 - bz) _ 3"2J3 v

_ [ — a?) (2% — b?) — 1% (a?h® — & -
89 = xy[at 4+ y? — a?b? 4 (2% — a?) a2 — b%) (222 — a® — b7 '

Les géodésiques de l'ovale sont ici les arcs de courbes du 4™
ordre, images des droites a§ + By = y. La distance dans l'ovale
se détermine par des arcs de courbes du 4™ ordre.

L. — Prof. D* W.-H.Young, F. R. S. (Lausanne et Aberytstwyth).
— Sur la notion de Uaire. — Plusieurs mathématiciens de notre
temps ont essayé de préciser la notion de l'aire d’'une snrface
courbe, mais avec peu de succeés. [’autear a construit une théorie
qui s’applique, non seulement aux su rfaces, mais aux variétés de
n’importe quelles dimensions. La théorie est fondée sur 'idée
de Vaire d’une courbe gauche. L’aire d’un polygone est la somme
des moments de forces, représentées par les cotés du polygone.
Inscrivons dans une courbe un polygone ayant tous ses cOtés
inférieurs en longueur a d : si, en faisant tendre d vers zéro,
I'aire du polygone tend vers une limite unique, celle-ci est V'aire
de la courbe. Avec cette définition, par exemple, chaque courbe
rectifiable plane posséde une aire donnée par la formule

1 2
A = §J %x(u) dy(u) — y(u) dx(u)% .
Si la courbe est 'image du périmétre du rectangle (a, b; a’, b')
dans une correspondance continue
x=xu,v), y==zu,v), (e=x=ad), b<y=0b),

le probleme se pose de transformer I'expression obtenue dans
I'intégrale double bien connue

a b

. D(x,y‘)
A= .
| f‘/b(u,v) dudy .
a b
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Prenons maintenant une correspondance continue et biuni-
voque

x=x(u, v , y=y(u, v, z =2z(u, v,

et divisons le rectangle fondamental en rectangles partiels, dont
les cotés, paralléles & u =0, v =0, ne dépassent pas d en lon-
gueur. Ayant formé la somme S des aires des courbes images de
ces rectangles partiels, nous faisons tendre 5 vers zéro. Si Y5 a
une limite unique %, celle-ci est 'aire de la partie de la surface,
image biunivoque du rectangle fondamental. Le théoréme
principal est le suivant: S/ x(u,v), y(u, v), zlu, v) sont des
integrales par rapport a u, ayant des dérivées partielles par
rapport a u, qui sont, sauf pour un ensemble de valeurs de u de
mesure nulle, toutes inférieures & une fonction sommable de u, et
st la méme chose est vraie quand nous changeons u en v, et v en u,
la surface image du rectangle fondamental a une aire A donnée
parla formule

a)

bl
— 077:) 2 0(z, x)\? d{x., ¥i\2
A —= 7 ey oy g [ d
f})f\/<o(u, V)) s <b(u, V)> 1 (b(u, V)) dudy ,
a

Sous certaines conditions 'auteur arrive au méme but par une

‘méthode de triangulation. Il faut cependant introduire explici-

tement 'ordre double de la surface, de méme que, dans 'approxi-

- mation de la longueur d’une courbe, il est nécessaire de tenir

compte du sens de cette courbe. La triangulation est obtenue en
joignant convenablement par des lignes droites les points de la
surface, images des sommets des rectangles partiels de longueur
= h et de hauteur = % dans le plan des («, ¢]. Pour calculer
I'aire nous laissons d’abord % et puis % tendre vers zéro, et nous
obtiendrons le résultat voulu dans certains cas intéressants. Sans
donner les conditions les plus générales, nous remarquons que,
si xlu, v), y(u, ¢) et z(u, ¢) sont des intégrales doubles, cette
méthode est valable, d’autant plus que la limite obtenue est dans
ce cas indépendante de la maniére avec laquelle % et % tendent
vers zéro.

5. — Prof. Dr L.-Gustave Du Pasquier (Neuchatel). — Sur un
probleme de cinématique. — Une barre rigide AB de longueur /,
peut tourner librement, avec la vitesse ¢,, autour de son extré-
mité A supposée fixe. Une seconde barre BC également rigide,
mais de longueur /, = /,, peut tourner, avec la vitesse ¢,, libre-
ment autour de l'extrémité B de la premiere. Dans ces circons-
tauces, le point C, extrémité libre de la seconde barre, décrit
une « courbe gp » dont la forme et les propriétés dépendent :
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1° des longueurs /, et /,;

2° du rapport des v1tesses p, et v,

3° du sens des rotations autour de A et de B, en particulier
(lorsqu’elles s’effectuent dans un méme plan), si elles ont lieu
dans le méme sens, ou non.

Il est remarquable que ces mémes courbes gp puissent étre
engendrées cinématiquement d’'une maniére simple par les dispo-
sitifs suivants: Un point mobile P est animé d’'un mouvement
donné sur un segment XY d’une droite d. En méme temps, d
tourne autour de I'un de ses points, I, supposé fixe en dehors du -
dit segment. La trajectoire du mobile P est encore une courbe
gp. — Un point mobile P parcourt une certaine ellipse, avec la
vitesse ¢, (mouvement de circulation); simultanément, cette
ellipse tourne avec la vitesse ¢, autour d’'un pole fixe, I, qui
coincide a chaque instant avec 'un de ses foyers. La trajectoire s
qui résulte pour P de la combinaison de ce mouvement de rota-
tion avec celui de circulation est de nouveau une courbe gp. —
Le conférencier déduit les équations de ces courbes dans le cas
ou elles sont planes, en coordonnées cartésiennes et polaires,
puis en énumere une série de propriétés et indique une généra-
lisation du probleme a I'espace

La communication se termine par d’intéressantes applications
des courbes gp a quelques mécanismes, a 'astronomie et a la
mécanique de la relativité.

— Prof. D" A. Seeiser (Zurich). — Sur les lignes géodési-
ques des surfaces convexes. — Considérons les llgnes géodésiques
d’une surface convexe fermée, issues d’un point P, & partir de P
jusqu’au premier foyer. Elles engendrent une surface recouvrant
la surface convexe partout au moins une fois. La continua-
tion de ces lignes a partir du premier foyer jusqu’au deuxiéme
engendre de nouveau une surface de recouvrement qui, quand
certaines conditions sont remplies, couvre toute la surface
convexe. Par ('haque point P il passe donc au moins une géodé-
sique qui, aprés avoir touché I'enveloppe une seule fois rentre au
point P. On démontre que la plus courte est une géodésique
fermée, ce qui donne une démonstration nouvelle d’un théoreme
de Pomcar (American transactions, t. 6, p. 237), a savoir que sur
chaque surface convexe fermée il existe au moins une géodésique
fermée.

— Prof. D* M. Praxcuerer (Fribourg). — Sur la méthode
dmz‘eamnon de Rayleigh-Ritz. — lLe procédé de Raylelo“h Ritz
A(Raylmg)h: Phil. Mag. (5), 47 (1899), p. 566-72 et (6), 2 (1911),
p. 225-229; Ritz : Gott. Nachr., 1908, p. 236-40. J. reine angew.
Math., 135 {1908}, p. 1-61. Ann. d. Phys. (4), 28 [1909), p. 737-786.
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(Euvres, p. 192-316) pour I'intégration des équations linéaires aux
dérivées partielles du type elliptique qui résultent d’'un probleme
du caleul des variations (prenons pour fixer les idées I'équation
AdAdu — du =0) exprime la solution sous forme d’une série
nw = 2x;¢; procédant suivant un systéme de fonctions données @;
que nous supposerons orthogonal, fermé et normé et calcule les
coefficients 2z, comme solutions, au sens de la méthode des
réduites, d’'un systeme
% Wy Xy — A, = f; (1)

d’une infinité d’équations linéaires a une infinité d’inconnues.
[.La méthode de Ritz ne démontre la légitimité du procédé que
dans le cas ou 2 < 0. En supposant connues Uexistence et les pro-
priétés des fonctions fondamentales de A Au — Au =0, il est
cependant possible de prouver que le procédé de Ritz est appli-
cable pourtoute valeur de 1 qui n’est pas une valeur fondamentale
et qu’il permet de calculer valeurs et fonctions fondamentales par
la résolution, au sens de la méthode des réduites, du systeme
homogeéne correspondant a (1). La démonstration se base sur
I'’étude de la forme quadratique (non bornée) Za; x;x, et sur le
fait que cette forme posseéde cependant une résolvante unique
K{w; x) qui, elle, est une forme bornée sauf pour les valeurs de u
qui sont les inverses des valeurs fondamentales. Ainsi se trouve
Justifiée 'application qu’a faite Ritz de son procédé au calcul des

vibrations fondamentales d’une plaque élastique a bords libres
(figures de Chladni).

8. — D" G. Porva (Zurich). — Quelgues problemes de probabi-
lité se rapportant a la « promenade au hasard ». — Imaginons un
réseau régulier de points dans l'espace a d dimensions; relions
tous ces points (nceuds) par des droites paralléles aux axes de
coordonnées. Un promeneur errant sur les droites de ce réseau
se décide au hasard, en chaque nceud, pour une des 24 divections

possibles, le choix de chaque direction ayant la probabilité 57 -

Pour d =1, nous avons simplement une droite indéfinie divisée
en segments égaux et le probléme est une représentation géomé-
trique du jeu de « pile ou face ». Pour d = 2, le probléme repré-
sente la promenade au hasard d’un piéton dans un réseau de rues
et pour d = 3 le chemin d’'une molécule d’'un gaz en diffusion a
travers un cristal du systéme régulier.

Les applications principales du calcul des probabilités peuvent
étre rattachées au schéma de la promenade au hasard ou a des
modifications de ce schéma, qui s’introduisent d’elles-mémes.
Des problemes nouveaux et curieux se rapportant a la promenade
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au hasard, nous ne citerons ici qu’un seul. Deux promeneurs
errant dans le réseau, partant d’un méme nceud, allant toujours
avec la méme vitesse, prennent leurs décisions aléatoires a chaque
neeud, indépendamment 'un de l'autre. La probabilité pour qu’ils
se rencontrent pendant une durée ¢ déterminée croit avec ¢. Cette
probabilité tend-elle vers 'unité lorsque ¢ tend vers I'infini? Oui,
sid=1,2; non, sid=23, 4,5, ..

9. — Prof. D R. Fuerer (Zurich) — Sur quelques théoremes de la
théorie des idéaux et sur leur démonstration. — Soit K un corpsde
Galois quelconque. Hilbert a étudié la décomposition dans K de
chaque nombre premier en idéaux premiers. On peut compléter
ses recherches en considérant 'ensemble des nombres premiers
au lieu de les considérer isolément. En effet, K est cyclique rela-
tivement au corps de décomposition des nombres premiers qui
n’ont pas de diviseur commun avec son discriminant; on peut,
par suite, utiliser la théorie que j’ai donnée des équations abé-
liennes dans un domaine fondamental. Les résultats suivants
entrent en considération. Soit & un corps fondamental, K le corps
supérieur cyclique. relatif; soit fun idéal de # contenant tout idéal
premier du discriminant relatif de K par rapporta %, ala premiere
puissance quand il est premier avec le degré relatif, a une certaine
puissance lorsqu’il est contenu dans le degré relatif. Formons le
rayon de % ayant £ comme guide, On a alors les théoremes :

1. Tous les idéaux premiers d'une classe de rayons (mod. t) de
k se décomposent de la méme maniere dans K. Deuxidéaux de &
sont dits équivalents (mod. /) lorsque leur quotient , multiplié
convenablement par des unités de %, est égal & un nombre «
totalement positif et vérifiant la congraence o = 1 (mod. f).

1. Tous les idéaux de la classe principale de rayons (mod. 1) de
k se décomposent dans K en un nombre d’idéaux premiers égal au
degré relatif.

Considérons tous les nombres premiers du corps de Galois
donné K et formons avec eux, comme plus haut, le guide /. Le
corps d’inertie de tous les idéaux premiers non contenus dans ;-
est encore le corps K. Ce dernier est cyclique de degré n relative-
ment au corps de décomposition d’un idéal premier p (c’est-a-
dire sa norme est p”). Soit 1, z, 2%, ..., 2" 1 le groupe (relatif)
de décomposition. Parmi les conséquences des théoremes I et II
je noterai les suivantes : |

Le groupe de décomposition 1, z, 2%, ... "1 est un sous-groupe
du groupe de décomposition de tout idéal premier du corps de
décomposition, lorsque cet idéal est équivalent (mod. /) dans ce

corps a I'idéal premierp. Si 1, z,s2,...,z""! n’est pas sous-
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groupe d’un sous-groupe cyclique du groupe de Galois, tous les
idéaux premiers du corps de décomposition, qui sont équivalents
a p (mod. /], ont ce corps comme corps de décomposition. Si
n>>1,p n'est jamais un idéal principal (mod. /) dans le corps
de décomposition.

Si done, inversement, on prend un sous-groupe quelconque
1,2z, 2% ..., z1 du groupe de Galois du corps, et si ce sous-
groupe est « le plus grand », ¢’est-a-dire s’il n’est pas sous-groupe
d’un autre sous-groupe cyclique, formons le sous-corps % appar-
tenanta 1,5, 2%, ..., 2!, alors, tous les idéaux premiers de &
qui ne sont pas du premier degré se décomposent dans K en n
idéaux premiers. Tous les idéaux premiers de la méme classe de
rayons (mod. f) de Ik ont le méme corps de décomposition.

[.es démonstrations des théoremes I et II n’ont, jusqu’a présent,
pas été enticrement publiées. Trois méthodes peuvent conduire
au but: celle de Furtwingler basée sur les lois de réciprocité,
ma méthode des classes de rayons et de la répartition en genres,
enfin la méthode analytique de Hecke basée sur son équation
fonctionnelle.

10. — D* S. Bavs (Fribourg). — Une question de Cayley rela-
tive aw probleme des triples de Steiner!'. — Cayley a soulevé,
relativement au probleme des triples ou triades de Steiner, une
uestion intéressante et difficile, jusqu’ici neuve encore de toute
N(N — 1)(N — 2)

6

recherche : Est-il possible de répartir les triples

de N ¢léments en N — 2 systemes de Steiner ?

Pour 7 éléments, cette répartition n’est pas possible ; on peut
écrire deux systemes de Steiner de 7 éléments, n’ayant pas de
triples communs, mais pas davantage. Cayley s’est demandé si par
exemple les 455 triples de 15 éléments pourraient étre disposés en
13 systemes de Steiner. Il a eru donner une démonstration tres
simple que, si les 13 systemes existent (et Cayley dit en termi-
nant qu’il ne le pense pas), ils ne peuvent pas se déduire de 1'un 4
d’entre eux par une permutation cyclique de 13 de ces éléments.

Mais sa démonstration repose sur une prétention qui se trouve

étre entierement fausse. Cayley prétend que dans le rectangle des
couples des 13 éléments 0, 1, 2, ... ,9, 0, 1, 2", disposés de la
maniére suivante :

v Cavewy., Mathem. Papers, 1, p. 481, on Philosoph. Magazine, 37 (1850}, p. 50. — Voir
aussi Nurro. Combinatorik, 1901, p. 202 a 235 et particulierement p. 228. — Dans L’Ensei-
gnement mathématique (Ne 1-2), 1917, j’ai établi que pour 9 ¢léments le probléme de Cayley
est possible et qu’il a 2 solutions diflérentes. Je donnais en commencant la démonstration
de Cayley relative an cas de 15 éléments, parce que intéressante et simple, sans songer a
douter de la prétention sur laquelle clle repose.
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oL 12 23 384 45 56 67 78 89 907 0’1’ 1727 270
02 13 24 35 46 57 68 79 80’ 917 0727 10 21
03 14 25 36 47 58 69 707 817 92”7 070 {11 272
04 15- 26 37 48 54 607 717 82’ 90 01 172 23
05 16 27 38 49 50’7 61/ 72’ 80 91 02 13 2%
06 17 28 39 40’ 517 627 70 81 92 0’3 1’4 275

il n’existe qu’un seul systéme de 6 couples, ayant un couple dans
chaque ligne et renfermant les 12 éléments 1, 2, ..., 1', 2, a
savoir le systéme suivant: 67, 2'1, 58, 1’2, 49, 0'3. Or il en existe
144 autres, remplissant les mémes conditions ; ces systemes vont
par couples de systemes que j'appellerai conjugues, déductibles
I'un de 'autre parla substitation |2, N — z|. Le systeme 1, N. 1;
\—1 N
(N2 Yt N
tique a son conjugué ou self-conjugué. Pour 62 + 3 éléments,
lorsque 67 -+ 1 est un nombre premier (cas de 15 éléments de la
démonstration de Cayley), et pour 6n 4 1 éléments, lorsque
6n — 1 est un nombre premier de la forme 4r — 1, je peux
donner un systéme général de couples, remplissant les conditions
demandées par Cayley, différent de son conjugué et donc autre
que le systeme self-conjugué, au moyen d’une racine primitive «
de 6n + 1, resp. de 6n — 1. Pour 9 éléments, ce systeme avec
son conjugué et son self-conjugué, permettent de construire
immeédiatement le systéme de Steiner suivant:

., donné par Cayley, est le seul iden-

780 713 726 745 815 823 846 016 025 034 124 356

que la substitution cyclique (0123456) transforme successivement
en 6 autres systéemes de Steiner différents par tous les triples, et
renfermant donc avec le premier les 84 triples de 9 éléments.

I.e manque de place ne me permet pas de développer davan-
tage la question; mais le probleme de Cayley: Repartir les
N(N — 1} (N.— 2}

6
Steiner, ou en d’autres termes : trouver N — 2 systemes de Steiner
de N éléments différents par tous les triples, me parait se poser
au contraire d’une maniére positive, pour N — 6n 4 1 et pour
N = 6n 4 3 éléments, N = 7 étant probablement le seul cas pour
lequel il manque de solutions.

triples de N éléments en N — 2 systemes de

1 Ces deux systémes sont respectivement :

Pour 610 - 3 aal, algnt+y . .. , a1 a?n——-l’ a2n ot3”, g 241 aim—{—l’ e
g3n—1 a-’m—1’ g4n gon e gon—1gbn—1
D g —4 3
Pour 612 4+ 1 : a%al, a?a?, ..., abn—%4 46n—3 = on entendant naturellement par

Pélément a¥, le plus petit reste positif de ce nombre (mod. 6n 4 1 resp. 61z — 1).
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11. — Prof. D' I.. CreLigr. — Interpreétation geomeétrique ration-
nelle des quantités imaginaires. — 1. Toutes les opérations de la-
geométrie analytique a deux dimensions supposent que nous
travaillons sur Cendroit du plan fondamental.

51 nous introduisons le concept de [envers du plan, nous
aurons, avec un axe commun, celui des z par exemple, de nouvelles
ordonnées qui correspondent aux valeurs +\/—1 et — V=
ou -+ 7 et — 7.

II. Considérons maintenant une équation algébrique, par
exemple 2* + »? — 16. A toutes les valeurs de correspondent
des valeurs de 7 ; entre — 4 ot + 4 elles viennent sur I’endroit et
forment un cercle; entre — o et — 4, puis entre 4 4 et + oo
elles viennent sur 'envers et forment une hyperbole équiiatere
également comprise dans la formule.

III. Recherchons les points de coupe de la droite & — 5 avec la
courbe 2% + 52— 16. Nous trouvons (5, + 37) et (5, — 3/). Comme
la droite est également représentable sur I'envers, les points de
coupe sont sur lenvers, sur I'hyperbole.

IV. Passons aux points de coupe de la méme courbe avec la
droite y = 22 — 16. Nous trouvons

2 4 — — .
J::%—ig\/ili et )'::——-%qi—g\/lll.

Pour trouver les images de ces points, nous avons deux moyens :

al Nous prenons comme nouvel axe des 2 le diamétre perpen-

diculaire & la droite 'équation de la courbe ne change pas; celle
. ; 16 . - . . .

de la droite devient 2 -— = V5. D’apres le raisonnement précé-
dent nous trouvons les deux points de coupe sur ’envers du plan

et sur ’hyperbole correspondante.
. ; : . 32 16
) Ou bien nous déplacons les axes jusqu’en (—5—, — % ) comme
nouvelle origine et sur Ienvers, a cause du déplacement des

4 -, 8 —
2 axes, nous avons les coordonnées =+ = V11i et —~ g\/’llz ou
. 4 — 8 e 4 -— 8., — .
les pomts(% \/111, z \/11/) et (— g \/Mt, —x V11 z> )

V. On peut opérer de la méme maniére avec une conique quel-
conque et nous arrivons aux conclusions suivantes :

a) Les points de coupe d’une conique avec une droite extérieure
sont les intersections de la droite sur Uenvers du plan avec la
conique associée qui admet la direction de la droite comme dia-
metre conjugué secondaire. Le diametre principal sert daxe réel
commun aux deux faces du plan.
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b) Les valeurs analytiques X — a == biety=""c=di trouyees
comme solutions, correspondent aux mémes points; a et ¢ sont les
coordonnées de la nouvelle origine, sur le centre du segment de
droite entre les points de coupe; b et — b sont les abscisses, tandis
que ¢ et — ¢ sont les ordonnédes de ces points sur l'envers du plan
fondamental.

12. — Dans sa séance administrative, la Société a procédé au
renouvellement de son comité pour 1920 et 1921. M. le prof.
L. Crerier (Berne) a été élu président, M. le prof. O. Sriess
(Bale), vice-président, et M. le prof. Gustave Dunmas (Lausanne)
secrétaire-trésorier.

La prochaine réunion ordinaire aura lieu a Neuchdtel.

Nouvelles diverses. — Nominations et distinctions.

Angleterre. — M. G. H. Harpy, F.R.S., du Trinity College
de Cambridge, a 6té nommé professeur de mathématiques pures
a 'Université d’Oxford.

Belgique. — La Classe des Sciences de I’Académie royale de
Belgique a élu, membre titulaire, M. C1. Servais (Gand), et membre
correspondant M. Th. Depoxper (Bruxelles).

Questions mises au concours. — La Classe des Sciences de
’Académie royale de Belgique a mis au concours les questions
suivantes (séance du 7 mars 1914) :

On demande une contribution importante & la géométrie infini-
tésimale des surfaces courbes. — (Prix : huit cents francs.)

Résumer les travaux sur les systemes de coniques dans espace
et faire de nouvelles recherches sur ces systemes. — (Prix : huit
cents francs.)

Le délai, fixé primitivement au 1°" aotit 1915, a été prorogé au
1¢7 aotit 1920.

France. — College de France. Cours publics du 1°" semestre
a partir du 1° décembre 1919. — Nous relevons les cours suivants
concernant les sciences mathématiques et physiques:

M. HumserT : Quelques applications des fonctions elliptiques.
— M. Hapamarp : L’euvre de Poincaré : théorie des fonctions. —
M. BriLLouiN : Propriétés générales des couches superficielles;
en particulier des couches moléculaires liquides et solides. —
M. Lanceviy : Les aspects successifs et les confirmations expéri-
mentales du principe de relativité.

Académie des Sciences. — L’Académie a décerné le Priz Bordin
a M. S. LerscuETzZ, ingénieur des Arts et Manufactures, professeur
a 'Université de Kansas. |
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