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SUR LA REPRESENTATION PROPORTIONNELLE
EN MATIERE ELECTORALE

PAR |

G. Porya (lel‘ich).

Dans plusieurs périodiques non mathématiques?, jai
essayé de melire en contact 'analyse mathématique avec
'énorme diversité des opinions émises sur la question de la
représentation proportionnelle en matiére électorale. La
partie la plus intéressante de la recherche est, me semble-t-
il : trouver, dans une littérature de controverse qui s’éloigne
beaucoup de 'exposition et des sujets mathématiques habi-
tuels, des principes tangibles, des faits susceptibles d’une
explication exacte et les « mettre en équation ». Dans les
travaux cités j’ai énoncé plusieurs résultats mathématiques.
Je les ai vérifiés expérimentalement par des exemples, j'ai
taché de les rapprocher du bon sens sans I'aide des formules,
mais j’ai dit omettre les démonstrations. Dans les lignes
suivantes je donnerai l'analyse exacte, une analyse trés élé-
mentaire d'ailleurs, mais qui ne sera peut-étre pas dépourvue
d’un certain intérét pour quelques lecteurs.

1. — Notations. Soient A, B, C,... L les nombres de suf-
frages obtenus par les listes en présence. Soit S la somme
totale des suffrages exprimés "

A4+B+CH+...4+L=S. 1)

Soit s le nombre des siéges a répartir. En partageant s unités

1 Schweiz. Zentralblatt fiir Staats- und Gemeindeverwaltung, 1919, Ne 1; Journal de statis-.
tique suisse, 1918, No 4; Wissen und Leben, No: de janvier et février 1919. Zeitschrift fir
die gesamte Staatswissenschaft (sous presse}.
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arbitrair ement divisibles proportionnellement aux nombres
A, B, C,... L, on obtient les « parts exactes »

a_zis l)—-]—Sf l—‘L—S
S st " S
On a
a+b+c+ .. . Fl=5s. (2)

Les parts exactes a, b, ¢, ... [ ne sont pas en général des
nombres entiers. Donc si 'on décerne aux diverses listes

respectivement ¢, {3, 7s --- A sleges, on commel inévitable-
ment des erreurs. Les erreurs commises sont respective-
ment « —a. f—0b. ... % —{ pour les différentes listes et
ao—a B—b A — 1 '

A B pour les électeurs des différentes listes.

Sil y a des erreurs, il y en a toujours des positives et des
négatives, la somme de toutes les erreurs élant

*—a—+3—b4+ ...+ %=1

@ — a B—b / (3)

A —
=A- "+ BT + .+ L—=—=0.

On a proposé un trés grand nombre et appliqué effective-
ment un nombre considérable de systémes différents pour
effectuer la répartition des sieges, c’est-a-dire pour déter-
miner les nombres entiers «. B. y,... % en connaissant
A, B, G, ... L. On peut poser, & priori, certaines conditions
tres plausibles, que tout systéme doit remplir pour étre
admissible. Premiérement, si I’on a

A>B>C> . . >,

chaque systéme raisonnable doit donner

a= 8>y >

Remarquons, en second lieu, que chaque régle doit devenir
indéterminée en certains cas particuliers, par exemple si le
nombre s est impairet s’il n'y a que deux listes en présence,
les deux ayant obtenu le méme nombre de suffrages. Pour
qu'un systéme de répartition soit admissible, il faut que ces
cas d’'indétermination soient exceptionnels. Cette condition
sera précisée plus loin. Enfin les entiers «. B, y,...1 doi-
vent « s’approcher » autant que possible des parts exactes
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a, b, ¢, ...l ou plutot les erreurs commises doivent étre
« les plus petites possible ». Cette condition peut étre pré-
cisée de maniéres tres diverses..

2. — Traitement égal des partis. Considérons d’abord les
erreurs commises pour chaque parti. Quelle est Ia réparti-
tion les rendant les plus petites possible ? Le probleme est
indéterminé. En effet, si des erreurs d’observation étaient
en question, nous aurions, aprés tant de recherches théo-
riques et experlmentales sinon des arguments absolument
decisifs, du moins quelques bonnes raisons d’ appliquer la
méthode des moindres carrés. Il s’agit, dans notre cas,
d’erreurs d’ordre juridique, et 4 ma connaissance on n’a
proposé jusqu’ici que des raisons de sentiment qui parlent
plutét en faveur de la méthode des moindres carrés qu’en
celle d’'une autre méthode quelconque. Nous allons essayer
plusieurs méthodes a la fois.

ProBLEME. — Soit ¢(x) une fonction figurée par une courbe
convexe, 0(0) =0, o(x) > 0 pour x = 0. Etant donné les
nombres positifs a. b, ¢, ... |, satisfaisant a (2), trouver des
entiers non-négatifs «, f3, y. ... A satisfaisant a (3) tels que
la somme ¢(a —a) + ¢(f—b) + ... + o(d — 1) soit la plus
petite possible.

En posant, par exemple, o(x) = |x|*. « > 1, on cherche la
solution de notre probléeme de répartition d’aprés la méthode
« des moindres puissances ¢~ ™ ». On écrit la somme en
question comme suit :

+ o (o — b —9(f—1— )
+ (sl =l —e(—=1) + (e2— 1) — o1 — 1))
+o (=)= e —1—10).
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Désignons le nombre des partis concurrents par p. Le
second membre de P'égalité (4) comprend p + 1 lignes. La
O~™ ligne se compose de p termes, indépendants du choix
de «, (3, ¥, ..o A, C'est la longueur des p lignes sulvantes qui
en dépend. La premiére ligne! correspondant au premier
parti, comprend « termes, la seconde ligne (3 termes et ainsi
de suite chaque ligne comprend autant de termes qu’il y a
de siéges attribués au parti correspondant.

Quelle est la grandeur relative de ces termes dans les
p derniéres lignes ? L’hypothése que la courbe Y = o(x) est
convexe (vue d’en bas) entraine 2 que la fonction ‘go(x—}- 1)—o(x)
augmente constamment avec x. Donc la réponse a la ques-
tion : quel est le plus grand des deux termes donnés ? est
('hypothése en question remplie) indépendante de ¢ et ne
dépend que des arguments. On voit facilement que le pro-
bléme, rendre minimum le premier membre (ou le second)
de (4) revient a ceci: choisir dans le tableau suivant, 4 p lignes
et a une infinité de colonnes, |

1—a,2—a, 38 —a,... [a] —a, [a] + 1 — a. .

1—b;2—5b.3—p, ...

1—1,2—1,38—1,... .
« nombres de la premiére ligne, 8 de la seconde, ... 1 de la
P™°, de maniére que les o - B+ y+ ...+ % nombres choisis
soient les s plus petits nombres de tout le tableau.

Dans la premiere ligne il y @ [a] (c’est-a-dire partie entiére
de a) nombres négatifs, voir 1 —a, 2 —q, ... [a] — a, le
suivant [a] + 1 — a est = 1 et les suivants sont > 1. On
constate que dans tout le tableau (5) il y a

[l + (0] +[c] + ... [ = s,

! Cette ligne, comme les suivantes, a été partagée en deux a cause des difficultés d’im-

pression.
? Pour les notions analytiques utilisées, voir JENSEN, Acta Mathematica, t. 30 (1906),

p. 175-193.
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nombres non-positifs et p nombres compris entre 0 et 1.
C’est entre ces [a] + [b] + [¢] + ... + [{] + p nombres que
nous devons chercher les s plus petits du tableau (5), parce
que, évidemment,

s<lal +1+[]4+1+...+[+1.
En résumé,j pour rendre minimum la somme
oo — a) + (B —b) + ... + o(h —

on a la régle suivante : attribuer d’abord aux partis respec-
tivement [a], [b], [c], ... [1] siéges; s'il reste encore des siéges
disponibles (ce qui sera généralement le cas), aitribuer le
complément aux plus grandes des fractions a — [a], b — [b],
c—[c],...1 —[I]. Cest la regle des plus grands restes,
comme on dit couramment. La régle des plus grands restes
ne peut étre indéterminée que dans le cas ou deux des
nombres a — [a], b — [0], ... { — [[] deviennent égaux.

- Le résultat est qu’'une infinité des méthodes, par exemple
celle des moindres carrés, celle des moindres bicarrés, etc.,
appliquées aux erreurs relatives aux listes préconisent la
méme répartition des siéges. Ge résultat peut étre généralisé
encore, en élargissant les conditions auxquelles la fonction
o(x) est assujettie. .

Je ne veux pas formuler les conditions les plus générales ;
on voit par exemple que la démonstration s’applique presque
sans changements a la fonction ¢{x) = | x|, ce qui n’est pas
sans intérét.

Le probléme de répartir les sieges de telle maniére que
le maximum des écarts |a —a|, |8 — b, .., |d — 1] soit
aussi petit que possible, conduit aussi & la regle des plus
grands restes. J'omets la démonstration, parce qu'elle est
facile et bien connue.

3. — Traitement égal des électeurs. D’aprés la nature de
la question, ce ne sont pas les erreurs relatives aux partis,
mais celles relatives: aux électeurs qui importent. En
essayant d’appliquer a ces erreurs-la les différentes mé-
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thodes imaginables, on est amené 3 rendre minimum 'ex-
pression

S(EF) T e ()

par le choix convenable des entiers a, 3, y, ... 2 de la somme

donnée s. En remplacant Sgo<§) par ¢(x), on peut aussi en-

visager I'expression suivante

AN B— b A— 1
acp( p )—}—/):p( 7 )++lqo<—T>

Cest cette derniére que je rendrai minimum en admettant que
la fonction ¢ remplisse les conditions énoncées auparavant.

On a l'identité analogue a (4)

(¢¢<§_1> + bcp(%——l) 4+ o+ lcp(%-—1>

= ag(—1) + bo(—1) 4 ... + lg(— 1)
o) =) o2 ) o)
(o= o (T )
(o5 =) r ) o3 o (i)
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La 0™ ligne du membre droit donne s¢(— 1). Les lignes sui-
vantes ! sont puisées du tableau

(=) vy oG-1)=efi=

1 ’ 1
a a
n n—1
= - —1
(1) =+ (" 1)
1 |
«
1 2 / 1
=)= =)ol
1 ’ 1 ’
b b
n n—1 (7)
— — —— |
oG —1)—= ("5 —1)
.. 1 , .
b

ou on posera n=—1, 2, 3, ... La courbe y = ¢(x) étant con~
vexe, on a, par de simples considérations géomeétriques,

(t - h) — oft T 4+ h) — ofT T 4 H) — o(T
<.D+/1 @)<@<+2 @()<c.°(+H) o (T)

(8)

pourvu quon ait ¢t < T, 0 < & < H. La premiére des inéga-
lités (8) montre que dans chaque ligne du tableau (7) les quan-
tités sont rangées par ordre de leur valeur algébrique crois-
sante. On rend donc minimum Pexpression (6) en choisissant
dans le tableau (7) les s quantités les plus petites en valeur

1 Sont partagées a cause de l'impression.
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algébrique, et en atiribuant a chaque parte autant de siéges
qu'il y a de quantités parmi ces s prises dans la ligne cor-
respondante du tableau (7).

En appliquant cette régle a la fonction o(x) =|x| a la-
quelle la démonstration s’applique aussi, avec de légers
changements, on retrouve la régle des plus grands restes.
Ce qui est évident d’ailleurs d’aprés I'identité

— b A—1
i . ‘+...+l‘——l—‘:la—al+lf3~—’)|+---

a -+ b

- a
a

F =]

Le lecteur est prié d’appliquer aussi la régle a la fonction
p(t) = x% Il retrouvera ainsi la régle des moindres carrés
donnée par M. SaiNte-Lacuit dans un travail 2 qui constitue
un réel progres de la théorie de la représentation propor-
tionnelle, autant que cette théorie est mathématique. C’est
la méthode de M. Sainte-LaGUE que nous avons généralisée
dans l'analyse précédente. En appliquant la régle a d’autres
fonctions, par exemple a g(x) = |x[*, x*, |x[5, ... I'on trou-
vera toujours d’autres méthodes de répartition de siéges®.

On peut faire voir que les méthodes ainsi trouvées sont
réellement différentes en recherchant leurs cas d’indéter-
mination. Si notre régle ne peut pas décider a qui attribuer
un siege, au premier parti ou au second, une relation de la
forme

(=)= (=) =) o5 )

doit avoir lieu. Considérons les entiers «, 8 comme donnés
et les quantités @, b comme. variables. D’aprés (8) le membre

. : 1 :
gauche est une fonction croissante de{;, donc une fonction

décroissante de a. Une remarque analogue a lieu concernant
le membre droit. Il s’en suit que la courbe représentative

1 Voir Annales de Ecole Normale, 3¢ série, tome 27 (1910), p. 529-542. _

% Ces différentes méthodes pour mesurer la petitesse des erreurs peuvent &tre envisagées.
aussi a propos d’autres questions. Par exemple le polyndme qui s’écarte le moins possible
du zéro a une signification qui varie avec la notion de I’écart. On obtient différents poly--
ndmes d’'un degré donné. -
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de la relation (9) dans le plan @, b ne peut rencontrer qu'une
fois une droite paralléle a I’axe des @ ou a I'axe des b. Cette
courbe sera différente quand on remplace ¢{x) par les fonc-
tions différentes | x|, x2, |x|® «x% etc. o

Voici encore une remarque qui me parait importante. Sup-

posons (uon ait
C>..

A>B L

\v4
\v4
\v4

ou ce qui revient au méme,

az2b>c>...21.

Il suit de ces inégalités, en vertu de (8), qu'en parcourant
de haut en bas une colonne quelconque du tableau (7), on
rencontre des quantités toujours plus grandes. Si donc, sur
les s quantités plus petites contenues dans le tableau (7) il
y a « appartenant a-la 1*°, 5 appartenant a la 2™°, ... } appar-
tenant a- p™° ligne, on a nécessairement

2>B2y2 .20

Donc toutes les méthodes de répartition considérées rem-
plissent une condition évidente, qu’on a posée a priori.

On peut évidemment choisir entre une infinité de méthodes
pour mesurer la petitesse des erreurs et 'on peut se poser
une infinité de problémes de minimum. Mais le choix n’est
pas tout & fait arbitraire. Les problémes doivent étre réso-
lubles et les solutions doivent remplir certaines conditions.
C’est ce que nous avons montré pour les problémes traités.
On verra plus loin que d’autres problémes de -minimum,
mentionnés toutefois par plusieurs auteurs, ne remplissent
pas les conditions posées ci-dessus. Il est intéressant de
constater que différentes méthodes, donnant des résultats
divergents quand on les applique aux erreurs relatives aux
électeurs, convergent au méme point quand on les applique
a celles relatives aux partis. |

4. Rapprochement des deux points de vue. Nous avons vu
‘que contrairement a certaines assertions un peu hativement
émises, la regle des plus grands restes traite également
tout aussi bien les électeurs que les parlis, en mesurant la
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petitesse des erreurs par une mesure simple : la somme de
leur valeur absolue. Est-ce que ce systeme est le seul qui
rapproche ces deux points de vue? Nous allons démontrer
qu’il en est ainsi, sous des conditions trés larges. Nous sup-
poserons seulement que la petitesse des erreurs relatives
aux partis soit mesurée par une expression de la forme

Ple—a) +olf —b) + ...+ 00— (10)

ou ¢ désigne une fonction continue. 9(0) = 0. ¢(x) > 0 pour
2= 0. Soit » un nombre rationnel, différent de zéro et n
un entier positif. On choisira successivement deux entiers
positifs, « et 3 satisfaisant aux inégalités

ne —r >0 noe—r < na-+f,

puis deux entiers positifs, A et B satisfaisant a Pégalité

noa —rpr n

na+p""n+

(11)

>l

C'est seulement le quotient B : A qui est déterminé par (11).
C’est avantageux de se figurer A et B grands par rapport a
3 3 g P PP
o et (3. o
Supposons deux élections. A Ia remiére, il y a n - 1
PP p » 1LY
partis concurrents qui ont obtenu respectivement

A, A A ...A B

suffrages et auxquels une loi quelconque attribue respecti-

vement
Va’ av av .. a’ B

sieges. A la seconde il y a deux parlis obtenant respective-
ment nA et B suffrages et na et 3 siéges. Les erreurs com-
mises au détriment ou au profit des électeurs sont absolument
les mémes dans les deux cas. En calculant a aide de (11) les
erreurs commises pour chaque parti, on voit que l'expres-
sion (10) se réduit a

r no + f3
"°‘°<E> i ?<B_— nA 4 BB>
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dans le premier cas et a i
ne + @
» _ 2T bR
<9(')+<?<(3 A B >
dans le second cas. Si I’évaluation des erreurs doit étre la
méme en envisageant les erreurs relatives aux partis et

celles relatives aux électeurs, les deux derniéres expressions
doivent étre égales, ce qui donne

o(r) = no (—;}) . (12)

En vertu de ce qui a été dit, le nombre rationnel r et
Ientier positif » peuvent étre quelconques. L’équation (12)
valable dans cette étendue entraine, suivant des raisonne-
ments classiques, que g(x) est égal a une fonclion linéaire et
homogéne pour les valeurs positives de 2. Une conséquence
analogue a lieu pour £ < 0. On a donc

olxy = ¢, x| pour x > 0
o(r) — ¢y x| pour x < 0,

¢, et ¢; étant deux constantes positives. On peut réunir les
deux formules en une seule en écrivant

€y — 6y

ola) = 2T a4+ D70
La somme (10) se réduit a
i%ua_-apr...+|x—u)+5_;ﬁ(a.-a+...+>\_z)
e, 1 € : ' (13)

=22 (la—al+ ...+ 12—

en vertu de (3). Comme nous avons vu, c'est la régle des

plus grands restes qui rend minimum le membre droit de (13)
c. q.f.d.

5. — Aspect géométrique de la question. Je suppose qu’il
y a trois listes en présence, dont les parties exactes sont
x, ¥y, zet quily a s siéges a distribuer. On a

x4+ v+ z=s, r>0,y>0,z>0. (14)

Si 'on abaisse d’un point intérieur d’un triangle équila-

L’Enseignement mathém., 20c année; 1919. 24
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téral de hauteur s trois perpendiculaires sur les trois cotés
de longueur x, y, z respectivement, les nombres X, Y, 2
satisfont aux relations (14). (Pour démontrer on joint le point
en question aux trois sommets du triangle et on considére
I'aire totale des trois triangles partiels obtenus.) On peut
donc représenter toutes les répartitions de suffrage essen-
tiellement différentes entre 3 partis par ’ensemble des points
a coordonnées rationnelles x, Y, 2 a l'intérieur d’un triangle
de référence équilatéral. Les nombres des suffrages obtenus
sont les coordonnées homogénes du point représentatif,
Les répartitions des suffrages entre deux partis concurrents
peuvent étre représentées sur un segment de droite, celles
entre 4 partis par les points a lintérieur d’un tétraédre
régulier, celles entre p partis dans espace 2 p — 1 dimen-
sions. Jenvisagerai ici de préférence le cas p — 3.

Les différentes répartitions de siéges sont représentées
par des points, dont toutes les trois coordonnées x, Y, z sont
des nombres entiers. Ils sont les sommets d’un réseau de
triangles équilatéraux. Par exemple un sommet du triangle
de référence correspond a lattribution de tous les s sieges
en question a un des partis.

Comment interpréter géométriquement les diverses regles
de répartition ? Une régle quelconque fait correspondre a
chaque point, représentant une répartition déterminée des
,suffrages, un point, différent en général du premier, repré-
sentant la distribution coordonnée des siéges. 11 y a une
infinité de répartitions de suffrages qui ménent 4 la méme
distribution de siéges. Leurs points représentatifs remplis-
sent une aire, entourant le point représentatif de la distri-
bution correspondante de siéges.

Prenons par exemple la régle des plus grands restes qui
estla plus simple. Soient «, ¥, z les coordonnées d’un point.
Ce point représente le résultat d'un scrutin, ou les forces.
numériques des électeurs de 3 listes en présence étaient
dans le rapport x : y : z. Si les partis obtiennent «, 3, y sleges,
ces trois entiers non-négatifs doivent rendre minimum 'ex-

pression
(0 —a)* + (B —2)" + (y — 2)? (15)
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d’aprés un théoréme général précédemment démontré. (L:e
cas particulier qui nous intéresse momentanément fut déja
donné par M. Sainte-Lacuk, L. ¢.). Orle carré de la distance des
“deux points x, ¥, z et a, 8. y est précisément les deux tiers™
de la somme (15), comme on le démontre facilement. Par
conséquent, la régle des plus grands restes fait correspondre
4 un résultat de scrutin &, v, z le sommet le plus rapproché
du réseau considéré ci-dessus. Les différents résultats de
scrutin qui aménent la méme distribution de sieges, sont
représentés par des points plus rapprochés d’un certain som-
met «. 8,y du réseau qu’ils ne sont & aucun autre et remplis-
sent I'aire d’un hexagone régulier, dont le centre est a, B, y-
Les cas ou larégle des plus grands restes devient illusoire
sont situés sur les périphéries des hexagones et forment des
lignes d’indétermination séparant les cellules qui entourent
les points du réseau (voir fig. 1).

£y T

Fig. 1. Fig. 2.

La regle des plus grands restes est la plus simple et la
plus naturelle au point de vue géométrique comme elle I'est
aussi au point de vue arithmétique. Les autres regles engen-
drent d’autres divisions du triangle de référence. Je ne peux
ici que mentionner certaines propriétés. La regle bien
connue d’HonpT est figurée par un amas de cellules qui ont
toutes la méme étendue. Entre les régles de répartition
considérées jusqu’ici, il n’y en a que trois qui donnent nais-
sance a des cellules a limites rectilignes : ce sont celles des
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plus grands restes, de d’Honpr et de SaiNTE-LAGUE. Les
cellules hexagonales de ces deux derniéres méthodes ne sont
pas régulieres. Les différentes méthodes que nous avons
mises en relation avec le traitement égal des électeurs ont
des lignes courbes d’indétermination (voir formule (9) et les
explications qui s’y rattachent). La plupart des méthodes en
usage pratique ne peuvent invoquer aucune raison théorique
en leur faveur, mais elles dépendent toutes des opérations
linéaires et les cellules de leur représentation graphique
sont, par conséquent, limitées par des segments de
droites.

M. Macquarr — dont les mérites pratiques pour la cause
de la R. P. ne peuvent nullement étre diminués par cette
remarque — adresse a la régle des plus grands restes le
reproche suivant!: en adoptant cette regle de répartition,
il peut arriver qu’un parti A luttant deux fois de suite contre
des adversaires B et C obtienne a la seconde élection une
plus faible partie de siéges, quoique ayant une plus forte
partie de suffrages. 1l aurait pu adresser ce reproche a tous
les systéemes imaginables de répartition proportionnelle.
C’est impossible que toutes les lignes d’indétermination
solent paralleéles 4 un des cotés du triangle. On peut donc
bien dépasser quelques-unes de ces lignes en se mouvant
parallelement a4 un des cotés du triangle ou méme passer
d’une cellule a une cellule voisine, appartenant a un sommet
moins élevé du réseau en suivant une direction légerement
ascendante., |

Notre représentation graphique peut élucider une quantité
de paradoxes et réduire a leur juste valeur une foule d’objec-
tions semblables. Arrivons a des services plus importants
qu’elle peut rendre.

6. — Cas d’indétermination exceplionnels et non-ercep-
tionnels. Quand les points d’indétermination sont situés sur
un nombre fini d’arcs simples (c’est-a-dire quine rencontrent
qu'une fois une droite paralléle a un des c6tés du triangle),

1 Voir Revue scientifique (1905), II.
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on pourra dire a bon droit que les cas d’indétermination
sont exceptionnels. C’est dans ce sens qu’on peut affirmer
que les méthodes de répartition examinées jusqu’ici ne don-
nent lieu qu'exceptionnellement a des indécisions. Tandis
que si tous les points (rationnels) remplissant une surface
sont des points d’indétermination, l'indécision n’est plus
exceptionnelle et la réegle doit étre rejetée.

En admettant ce postulat, on doit rejeter la régle suivante :
distribuer les siéges de maniere que l'erreur relative a un
électeur, la plus grande en valeur absolue soit la plus petite
possible. Je dis, en effet, que cette régle sera indéterminée
toutes les fois que s siéges étant a répartir, s = 6, les parts
exactes des trois partis en concurrence satisfont aux inéga-
lités

1 | s s
.1'<—-, ’y>7~,‘7 z>‘i‘» (16)
2 3 3

c'est-a-dire quand les points représentatifs se trouvent a
Pintérieur d’un certain quadrilatére. Au lieu des erreurs

commises pour chaque électeur, je considérerai comme
a4 — X 3 — — 2 .

auparavant les grandeurs N St el qui leur sont
x ¥ z

proportionnelles et je les nommerai simplement « les

erreurs ». La premiére des inégalités (16) entraine

o — X o ¢
— — —1>1poura=1,23, ... 5.

En attribuant au parti ayant la part exacte x 0 sieges, on
est siir d’avoir atteint la limite inférieure de l'erreur maxi-
male

= 1.
X

lO—x

Le nombre des siéges étant assez grand, on pourra trouver
de plusieurs maniéres deux entiers (3, , satisfaisant aux
relations

)

2s
=g

B+Y:S’ {3 3

N

TS (17)

En attribuant 8 siéges au parti a part exacte y, l'erreur
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commise pour chaque électeur est en verig de (16) (17)

On trouvera de méme

__.____<1

-~

i

CG'est donc de plusicurs maniéres que lerreur la plus

’

grande en valeur absolue peut atteindre sa limite inférieure,
c. q. f. d.

M. EQuEr' a proposé de réduire & un minimum la diffé-
rence entre l'électeur le plus et le moins favorisé. Cette
différence est d’ailleurs égale 4 la somme des valeurs abso-
lues de Perreur positive et de l’erreur négative extrémes.
Malheureusement cette régle si plausible ne remplit pas non
plus le postulat relatif aux exceptions, au moins quand il
s’agit de quatre listes ou davantage. Représentons les diffé-
rents rapports possibles entre les forces numériques de
quatre partis par les points a Pintérieur d’un tétracdre régu-
lier. S’il y a 20 sieges a distribuer, la hauteur du tétraédre
sera de 20 unités de longueur. Considérons le point dont les
distances aux 4 faces du tétraédre sont respectivement

x=1,8 Fa=22 z=7,6 t = 8,4 .

Ce point représente un scrutin ou les forces des partis
sont dans le rapport 18 : 22 : 76 : 84. On peut s’assurer par
une discussion numérique que j'omets, qu'en donnant aux

listes
2 2 7 9

ou bien
2 2 8 8

siéges respectivement, la différence dont M. EQuer parle
sera la plus petite possible. En poursuivant la discussion,
on pourra montrer que la régle de M. Equer sera en défaut

! Voir SaiNti-Lacvii, L. c., p. 535.

pop e e
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non seulement pour le point considéré, mais aussi pour tous
les points a I'intérieur d'une sphé}*e de rayon assez petit,
décrite autour du point en question. D’aprés le sens du pos-
tulat énoncé, les points formant un ensemble de méme
dimension que la totalité des cas possibles, ne peuvent plus.
&tre considérés comme non-exceptionnels.

On pourrait aussi considérer le principe : rendre minimum

Verreur négative extréme relative a un électeur. Cette r_égle

est impuissante de choisir entre les répartitions différentes
tant qu’on a s < p et engendre la méthode dite des « plus
fortes fractions » quand s> p (s le nombre de sieges, p le
nombre des partis comme auparavant)®.

Il n’y a qu'une régle de cette sorte qui pour chaque combi-
naison de s et de p ne devient indéterminé qu'exceptionnel-
lement. C’est la régle d’Honpr, qui tend & rendre minimum
Perreur positive extréme? Ce que nous avons dit sert a
juslifier dans une certaine mesure le systeme d’Hondt et
montre que bien qu’il y ait une infinité de principes de
minimum possibles, on ne saurait en choisir un tout a fait
au hasard.

7. Le réle des probabilités. Les élections sont un jeu de
hasard, comme on ’a dit souvent. Est-ce que les chances du
jeu sont égales pour tous les partis?

Je montrerai par un exemple simple comment on peut
trouver ces chances. Envisageons le probléme suivant :

‘Dans une circonscription il y a cinq sieges a distribuer,
3 partis qui se les disputent et la répartition se fait d’aprés
les plus grands restes. Quelle ést 'espérance mathématique
d’une erreur en faveur du parti le plus fort, du parti moyen
et du plus faible? |

Soient les parts exacles des partis en question x, ¥y, 2

x>y >z . (18)

Les inégalités (18) délimitent la sixiéme partie du triangle-
de référence, un triangle rectangle aux angles de 90°, 60° et

30° (voir fig. 1). Il y a autant de cas possibles que de points

1 Voir SaiNti-Lacui, L. e., p. 535
¥ Voir Sainte-Lacui, 1. c., p. 534.
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rationnels dans le dit triangle reclangle. Je suppose que la
probabilité de I'événement qu’un point choisi au hasard
tombe dans un certain domaine est proportionnel a l'aire de
celui-ci. Cette supposition est la plus simple, je 'ai justifiée
en comparant ses conséquences a des données statisliques et
elle peut en outre étre fondée théoriquement!. Calculons
par exemple la probabilité pour que le parti le plus fort et
le parti moyen obtiennent chacun 2 sieges et que le plus
faible en obtienne 1. C’est la probabilité pour qu’'un point
du triangle délimité par les inégalités (18) tombe dans la
moitié supérieure de la cellule entourant le point Q (voir
fig. 1). Elle est égale au quotient des aires de ces deux

: . .6 . . : »
domaines, c’est-a-dire 3 35 » comme on vérifie facilement.

Des probabilités analogues sont réunies dans le tableau
sulvant :

Nombre de siéges obtenus par le parti

le plus fort moyen le plus faible Probabilité
1
) 0 0 -5
6
4 1 0 -
6
3 A 0 -
6
3 1 1 -
6
2 2 1 >

Les trois partis obtiendront donc en moyenne respecti-

vement
1.5 4+6.4+6.34+6.3 6.2 77

25 25
1.0 461 +6.246.14+6.2 36
| 25 . — 25
1.04+6.04+6.046.1+6.1_ 12
25 — 25

1 Voir PoINcARE, Calcul de probabilités, 2mé édition, p. 123-126. La supposition adoptée par
SAINTE-LAGUE, L. c., p. 541-542, est, & mon avis, incorrecte et en tous cas différente de celle
adoptée ici. En admettant que les parties d’égale longueur du segment de droite qui repré-
sente les différents rapports de la force numérique des deux partis sont d’égale probabilité,

: 5 . , 1 . . e , C
le probléme traité 1. ¢. donne le résultat 4+ Voir pour une interprétation de 'hypothése faite

ici, mon travail cité de Zentralblatt.
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sieges. La proportion moyenne des suffrages qu’i]s obtien-
dront est donnée par les coordonnées du centre de grav1té
du triangle rectangle (18), ¢’est-a-dire par les nombres

N

L/5 5 5\ 55 4/5 5 95 1 /5 )fflo
L5 202\ (24 = 2 (24 040)=
3<3+2+1>_18 3<3+2+0> 1% 3<3+ . 18
les trois sommets du triangle (18) ayant respectivement les
coordonnées

L’espérance mathématique d’'une erreur en faveur d'un des
partis est la différence de sa part moyenne en sieges el en
suffrages. Les espérances mathématiques cherchées sont
donc respectivement
95 36 25 12 10

5
— == 2 — — — == 0,051 , - — = —0,075.
= t002%,  o— =100 95 18

[
25
C’est-a-dire la régle des plus grands restes avantage, au
moins quand il s’agit de 5 sieges, les deux partis les plus
forts au détriment du troisiéme, mais l'avantage est assez
médiocre. Sur 100 élections ayant lieu dans des conditions
analogues, la perte moyenne du parti le plus faible serait de
7 a 8 sieges. Les élections ordinaires ne sauraient déceler

un effet si faible.

Ce n'est pas inutile de mentionner une interprétation géo-
métrique des trois nombres calculés. Chacun d’eux est la
moyenne d’autant de distances que le triangle (18) est partageé
en parties différentes par les lignes d’indétermination. Consi-
dérons dans chaque cellule ou portion de cellule comprise
dans le triangle (18) le centre de gravité de l'aire et un axe.
paralléle a la base du triangle de référence, passant par le
sommet du réseau auquel la cellule ou la portion de cellule
en question est rattachée. Nous compterons la distance du
centre de gravité a cet axe positivement, si le centre de gra-
vité est au-dessous et négativement s'il est au-dessus de
I'axe. Clest de ces distances que l'espérance mathémalique
du plus grand parti est la moyenne, mais pas une moyenne
arithmétique simple, parce que chaque distance a un «poids»
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proportionnel aI'aire correspondante. Les espérances mathé-
matiques des deux autres partis sont les moyennes des
distances analogues, les axes en question devant étre tracés
parallélement a un des deux autres cotés du triangle de
référence. Dans le cas représenté par la fig. 1 (s =5) le
triangle rectangle (18) ne comprend que des portions de
cellules. Au contraire, quand le nombre des siéges est grand
ce sont les cellules entiéres qui sont en grande majorité.
~ Mais le centre de gravité d’un hexagone régulier est préci-
sément le sommet du résean auquel 'hexagone est rattaché
et la distance en question est par conséquent zéro. Ainsi
pour s = w I’espérance mathématique d’une erreur, commise
en faveur de qui que ce soit, tend vers zéro. Clest-a-dire
quand les circonscriptions sont assez grandes, le systéme
des plus grands restes n’avantage aucun des partis concur-
rents d’une maniére systématique. Voila une conclusion
d’une certaine valeur pratique et qui peut étre soumise au’
controle de 'expérience électorale.

- Voici encore un probléme de cette nature :

Dans une circonscription il y avait originalement 3 partis
qui se disputaient les s sieges a pourvoir; 2 de ces partis se
décident de présenler une liste commune. Quelle est I'espé-
rance mathématique d’un gain ensuite de cette réunion si le
systeme des plus grands restes est en vigueur?

La situation originale des parlis peut étre figurée par un
point (rationnel) quelconque € du triangle de référence.
Soient « ¥y » ‘et «z» les deux partis qui se réunissent. La
force numérique du troisieme parti restant invariable,
menons par le point % une paralléle a la base du triangle de
référence. Cetle paralléle rencontrera un des deux autres
cotés, par exemple celui de droite, en un point €', Envisa-
geons les sommets du réseau Q et Q' qui sont les plus rap-
prochés des points & et ¢’ respectivement. Q' se trouve
nécessairement sur le pourtour du triangle de référence. Je
distingue 3 cas. ‘

1. Q et Q" sont & la méme distance de la base. Il n’y a ni
gain ni perte occasionnés par la réunion.

2. Q" est plus rapproché de la base que Q. La différence




REPRESENTATION PROPORTIONNELLE 375

des distances ne peut étre que d’une unité. Le parti « £ » a
perdu un siége ensuite de la réunion de ses deux adver-
saires.

3. Q' est plus éloigné de la base que Q. L’éloignement
est d’'une unité et signifie un siége perdu pour les deux
alliés.

. Les régions remplies par les points & pour lesquelles le
cas (2) se présente, sont désignées par le signe + dans la
figure 2 (ou s = 3), les régions correspondantes au cas (3)
par le signe —. Désignons I’aire totale des premieres par
R4, celle des secondes par R_, l'aire du triangle de réfé-
rence par 4s?A. En considérant les aires qui jouent un role
analogue par rapport a y et z que les aires Ry et R_ par
rapport & 2, on trouve facilement

s(s — 1)

__sls + 1) _
SR, =" A, 3R_=—5 A

L’espérance mathématique d'un gain par l'alliance est

f1.J’L+—1.6{m+0.(452A—J{+—J{_) 1

hs? A o E .

Clest-a-dire le systéme des plus grands restes, contraire-
‘ment a certaines affirmations légérement émises, favorise
les alliances, mais dans une mesure si faible qui ne compte
pas dans la pratique. Je remarque en passant que le résultat
serait identique pour le sysieme Sainie-Lagué..

Je renvoie pour de plus amples résultats numériques et
pour des vérifications expérimentales & mon article paru
dans le Journal de statistique suisse. C'est, & mon avis,
Iétude des chances des différents systémes qui constitue
une véritable théorie mathématique de la représentatioh
proportionnelle, une théorie qui peut rendre compte de cer-
tains faits observés et en prévoir d'autres. Je crois avoir
suffisamment élucidé les principes de cette théorie par les
calculs précédents. Sapienti sat. Le lecteur désireux d’appro-
fondir cette théorie pourra envisager des distributions non-
uniformes de probabilité ou des problémes ou interviennent
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4 ou plusieurs partis. Il sera amené a généraliser pour des
domaines « tétraédriques » a plusieurs dimensions la formule
des trapézes qui sert au calcul approché des intégrales et
a étudier certaines divisions « semiréguliéres » de ces
domaines. Il rencontrera une foule de jolis problémes que
je m’ai pas le loisir d’exposer ici. J’ai hate d’arriver i un
résultat qui me semble d’intérét principal.

8. Influence minimale de la division du pays en circons-
criptions électorales sur le résultat total. Je me permets
d’extraire le passage suivant du travail plusieurs fois cité de
- M. SaiNtE-LAGUE : « La répartition des sieges dans chaque
circonscription peut sembler d’autant meilleure que les
résultats globaux auxquels elle conduit sont plus voisins de
ceux qu’aurait donnés la répartition directe des sieges faite
aux listes globales obtenues en prenant les totaux des suf-
frages pour tout le pays.

Ce critérium semble difficile a appliquer, comme le montre
'exemple suivant :

Supposons qu’on ait seulement deux listes en présence
A et B et que les deux listes réunissent a peu pres le méme
nombre de suffrages dans tout le pays; la regle la meilleure
sera alors celle qui partagera par moitié¢ dans chaque cir-
conscription les siéges entre les deux listes A et B et cela
pour aussi disproportionnés que soient les nombres des
suffrages recueillis dans la circonscription considérée. »

Contrairement a ce que semble en penser M. Sainte-Lagué,
je trouve que le dit critérium est, bien interprété, parfaite-
ment clair, qu’il touche le point essentiel de la question et
quil méne a un résultat déterminé. Pour le bien interpréter
il ne faut pas oublier que c’est d'une guestion de probabilité
quil s’agit. Voici d’ailleurs mon analyse qui est un peu
abstraite mais trées simple au fond.

Admettons qu’il s’agit de la répartition de s siéges
entre p partis, dont les parts exacles sont désignées par
ZLys Loy Xy, ... Xp. On a

.1'1+;('2+.1'3+...+.x'p:s. (19)
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Considérons une regle quelconque de répartition. Cette
regle fera correspondre au résultat du scrutin, exprime par
le rapport des nombres x,, 1y, X3, ... Lp Ul certain entier &,
fonction de ces nombres, ' |

E = [l @y g T

en désignant par £ le nombre des sieges attribués par la
regle en question au parti dont la part exacte est
2, = § — &, — X, — ... — . La fonction f est une fonction
symétrique de ses p — 1 variables et elle caractérise parfai-
tement la régle considérée, en tant qu’il ne s'agit que de
p partis et de s sieges. En effet on attribuera respectivement

By = flary, a5, @40 ... 2,

€, = 1y, X9, Xy, .- xp_l)

sitges aux autres partis en présence. On a par conséquent
E+ELE+FE+ . FE = . (20)

La fonction f n’a que des valeurs entiéres non-négatives.
Si la régle satisfait 4 un desideratum expliqué plus haut, les
points de discontinuité de la fonction / seront situés sur
certaines variétés p — 2-dimensionales.

Admettons que les parts exactes x,, Xy, T3\ «-+ Lp varient
conformément 4 une loi de probabilité quelconque qui n’est
assujettie qu’a cette unique condition : elle doit étre la méme
pour tous les partis en question. Nous avons considéré
précédemment la loi la plus simple de cette nature. Je dési-
gnerai par € () I'espérance mathématique d’une fonction
quelconque ¢ des variables x,, %,, ... % liées par la rela-
tion (19). Si la loi de probabilité envisagée est continue,
€ (9) s’exprime par une intégrale définie p — 2-tuple. On a
par raison de symétrie

)

Q(El - .’T‘l) = Q(E2 - 1‘2) s : Q(EP - ;rp

1
:;(Z(El ——xl—|—E2——x2+...—+—’;‘p-——xp)’:0
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en vertu de (19) et (20). On a de méme

(Z((El - xl>2) — <E<'62 — x2j2> Swaas =S (E<(Ep — xp)z)

1
= ;@((El —a) G ) L, —x)?) =

en désignant par 5 une constante positive, dépendant du
systeme de répartition et de la loi de probabilité qu’on
envisage.

Envisageons un grand nombre n de circonscriptions, dans
chacune desquelles il y a le méme nombre de votants et le
méme nombre s de siéges & répartir. Le scrutin donne
pour le premier des partis concurrents les parts exactes

-

@, &l .. 2 dans les différentes circonscriptions et, la
\ P . . P e ()« .
regle en question lui attribue RN AT £ sieges. Le cri

térium, formulé et contesté par M. Sainte-Lagué, exige
évidemment que la différence

’ 14 (’1) ? 14 ()
E1+€1'_I_"'+§1 —r—x — .. —a (21)

soit la plus petite possible en général. D’aprés un théoréme
de Larrace?!, la probabilité pour que ’écart (21) dépasse en
valeur absolue une certaine limite % est

V2bn

Cette probabilité décroit évidemment avec b. Le principe
en question exige donc que b soit le plus petit possible.
Mais puisque

b= %oz(@ —E) =)t — )

c'est la quantité (£, — )2+ By — w)? ... &p — x,)?
dépendant de la régle de répartition adoptée qui doit devenir
minimum. Ainsi le postulat que le systéme de répartition
appliqué dans les diverses circonscriptions doit donner des
résultats concordant autant que possible a la force numeé-
rique des partis dans tout le pays, préféere un certain pro-

1 Voir Théorie analytique des probabilités, Livre II, Ne 39.




REPRESENTATION PROPORTIONNELLE' - 379

bléme de minimum aux autres, considérés auparavant. Cest
lé probléeme : rendre minimum la somme des carrés des
erreurs relatives aux partis dont la solution est donnée par
la régle des plus grands restes. C'est, a ce qu'il me parait, la
meilleure justification théorique de cette régle si simple et
naturelle.

Zurich, avril 1919."

MELANGES ET CORRESPONDANCE

A propos d'un probléme inédit de E. Torricelli.

Au sujet de la publication de mon article sur Les origines d’un
probleme inédit de E. Torricelli (L’Enseignement mathématique,
XX¢ année,1918 et 1919, p. 245-268), je dois signaler que M. Michele
Crporra, professeur a 'Université de Catane, vient de faire paraitre
une importante étude sur le méme probleme

Michele CrporLa. — I triangoli di Fermat e un problema di
Torricelli, A¢ti dell’ Accademia Gioenia di scienze naturali in -
Catania, serie 52, vol. XI, memoria XI.

Je n’ai eu connaissance de l’existence de ce mémoire qu’apres
la correction des épreuves de mise en pages de mon propre travail.

2 aout 1919. Emile TurRrIiERE.

A iJropos d'une note de M. Paschoud.

Sur les équations transcendantes qui se présentent dans la
théorie des tiges élastiques. (L'Enseignement mathématigue, 20,
Ne 4, 286, 1919). ’

J’ai lu avec intérét la note de M. Paschoud qui fait remarquer
que les racines de 'équation tg cth x = — 1 se déduisent immé-
diatement de celles de 'équation cos x ch x = — 1. Ce fait, il est
vrai, avait échappé a M. Emde et & moi. Mais, déja en 1909, nous
avons saisi l'occasion de signaler ’équivalence de l'équation

‘ S R4 : x &x ’ .
cosz chx = 1 a I'équation tg 5 cth 5 = == 1, dans VArchiv der

Mathematik und Physik (3), 15, 372, a la suite d’'une communica-
tion de M. GREENHILL. | |
Berlin, 24 juillet 1919. K. JaunkE.
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