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SUR LA REPRÉSENTATION PROPORTIONNELLE

EN MATIÈRE ÉLECTORALE

PAR

G. Polya (Zurich).

Dans plusieurs périodiques non mathématiques1, j'ai
essayé de meltre en contact l'analyse mathématique avec

l'énorme diversité des opinions émises sur la question de la

représentation proportionnelle en matière électorale. La

partie la plus intéressante de la recherche est, me semble-t-
il : trouver, dans une littérature de controverse qui s'éloigne
beaucoup de l'exposition et des sujets mathématiques
habituels, des principes tangibles, des faits susceptibles d'une

explication exacte et les « mettre en équation ». Dans les

travaux cités j'ai énoncé plusieurs résultats mathématiques.
Je les ai vérifiés expérimentalement par des exemples, j'ai
tâché de les rapprocher du bon sens sans l'aide des formules,
mais j'ai dû omettre les démonstrations. Dans les lignes
suivantes je donnerai l'analyse exacte, une analyse très
élémentaire d'ailleurs, mais qui ne sera peut-être pas dépourvue
d'un certain intérêt pour quelques lecteurs.

1. — Notations. Soient A, B, G,... L les nombres de

suffrages obtenus par les listes en présence. Soit S la somme
totale des suffrages exprimés

A + B -f C -f- + L n S (1)

Soit s le nombre des sièges à répartir. En partageant s unités

1 Schweiz. Zentralblatt für Staats- und Gemeindeverwaltung-, 1919, N° 1 ; Journal de statis-.
tique suisse, 1918, N° 4; Wissen und Leben, N0s de janvier et février 1919. Zeitschrift für
die gesamte Staatswissenschaft (sous presse).
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arbitrairement divisibles proportionnellement aux nombres
A, B, G,... L, on obtient les « parts exactes »

»=£. »=&,...
On a

a -f b -f- c -f -f / — ,ç |2)

Les parts exactes a, b, c, I ne sont pas en général des
nombres entiers. Donc si l'on décerne aux diverses listes
respectivement oc, ß, y, I sièges, 011 commet inévitablement

des erreurs. Les erreurs commises sont respectivement
ce a. ß b, I — l pour les différentes listes et

* — g ß — 1 — l
A ' b ' î7~ Pour les électeurs des différentes listes.

S il y a des erreurs, il y en a toujours des positives et des
négatives, la somme de toutes les erreurs étant

a — a -f ß — b + -f X — /

A + + L ~0
!S1

On a proposé un très grand nombre et appliqué effectivement

un nombre considérable de systèmes différents poureffectuer la répartition des sièges, c'est-à-dire pour déterminer

les nombres entiers «, ß, y, X en connaissant
A, B, G, L. On peut poser, à priori, certaines conditions
très plausibles, que tout système doit remplir pour être
admissible. Premièrement, si l'on a

A à B ^ ^ L

chaque système raisonnable doit donner
Ot — ß — y rûï: ^ X

Remarquons, en second lieu, que chaque règle doit devenir
indéterminée en certains cas particuliers, par exemple si le
nombre est impair et s'il n'y a que deux listes en présence,
les deux ayant obtenu le même nombre de suffrages. Pour
qu'un système de répartition soit admissible, il faut que ces
cas d'indétermination soient exceptionnels. Cette condition
sera précisée plus loin. Enfin les entiers «. ß, y, ...X
doivent « s'approcher » autant que possible des parts exactes
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a, b, c, I ou plutôt les erreurs commises doivent être

« les plus petites possible ». Cette condition peut être
précisée de manières très diverses.

2. — Traitement égal des partis, Considérons d'abord les

erreurs commises pour chaque parti. Quelle est la répartition

les rendant les plus petites possible Le problème est

indéterminé. En effet, si des erreurs d'observation étaient

en question, nous aurions, après tant de recherches
théoriques et expérimentales, sinon des arguments absolument
décisifs, du moins quelques bonnes raisons d'appliquer la

méthode des moindres carrés. Il s'agit, dans notre cas,
d'erreurs d'ordre juridique, et à ma connaissance on n'a

proposé jusqu'ici que des raisons de sentiment qui parlent
plutôt en faveur de la méthode des moindres carrés qu'en
celle d'une autre méthode quelconque. Nous allons essayer
plusieurs méthodes à la fois.

Problème. — Soit <p(x) une fonction ftgurée par une courbe

convexe, ©(0) 0, <p(x) > 0 pour x ^ 0. Etant donné les

nombres positifs a. b, c, 1, satisfaisant à (2), trouver des

entiers non-négatifs oc, ß, y, a satisfaisant à (3) tels que
la somme <p(oc — a) + <p(ß — b) + + <p(X — 1) soit la plus
petite possible.

En posant, par exemple, cp (x) j x |a, a > 1, on cherche la

solution de notre problème de répartition d'après la méthode
« des moindres puissances a~rnes ». On écrit la somme en
question comme suit :

©(a — a) + ®(ß — &)-{-... -f- cp (X — /)

— <p(— a) + ©(— b) + <p( - l)

+ ((<? (A — a) — <?(— a)) + (2 — a) — ©(1 — «))

+ + (©(a — a) — <p(a — 1 — 0))

+ (.©(1 — b) — cp(— bfj + (©(2 — b) — ©(1 — b)J (4)

+ • • • + (?(ß — b) — 9 (ß — 1 — 6))

~i~ (?(^ — h — ?(— ô) "b — l) — ?(t — ô)

+ + (<p (X — l) - ®(X — 1 — /))
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Désignons le nombre des partis concurrents par p. Le
Se^mIÎC* mem'3re l'égalité (4) comprend 1 lignes. La
0 ligne se compose de p termes, indépendants du choix
de «, ß,y,X, c'est la longueur des p lignes suivantes qui
en dépend. La première ligne1 correspondant au premier
parti, comprend « termes, la seconde ligne termes et ainsi
de suite chaque ligne comprend autant de termes qu'il y a
de sièges attribués au parti correspondant.

Quelle est la grandeur relative de ces termes dans les
p dernières lignes L'hypothèse que la courbe y est
convexe (vue d'en bas) entraîne2 que la fonction f-1) — m(x)
augmente constamment avec x. Donc la réponse à la question

: quel est le plus grand des deux termes donnés? est
(1 hypothèse en question remplie) indépendante de <p et ne
dépend que des arguments. On voit facilement que le
problème, rendre minimum le premier membre (ou le second)de (4) revient à ceci: choisir dans le tableau suivant, à /? lignes
et à une infinité de colonnes,

1 — " ' 2 — « 3 — a, — [a] + 1 _ «.

1 — b\ 2 —/, .3— b
(5)

1 — L 2 — l, 3 — 1,

a nombres de la première ligne, ß de la seconde,... A de la
pm\ de manière que les « + 0 + y + + x nombres choisis
soient les v plus petits nombres de tout le tableau.

Dans la première ligne il y a [a] (c'est-à-dire partie entière
de a) nombres négatifs, voir 1 — a, 2 — a, [a] le
suivant [à]+ 1 — aest ^ 1 et les suivants sont >1. On
constate que dans tout le tableau (5) il y a

[a]+ [b]+ [c]+ + [/] ^ s

1 Cette ligne, comme les suivantes, a été partagée en deux à cause des difficultés d'im-pression,
2175-U193leS n0tl°nS anal.yti<Iues utilisées, voir Jensen, Acta Mathematica, t. 30 (1906),
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nombres non-positifs et p nombres compris entre 0 et 1.

C'est entre ces [a] + [b] + [c] 4 ••• + M + P nombres que
nous devons chercher les s plus petits du tableau (5), parce
que, évidemment,

« < [«| + i a. [/,]+ i +... + [/] + 1

En résumé, pour rendre minimum la somme

ç (a — à) + <p (ß — />) + ...+ 9 (X — /)

on a la règle suivante : attribuer d'abord aux partis
respectivement [a], [b], [c], [1] sièges; s'il reste encore des sièges
disponibles (ce qui sera généralement le cas), attribuer le

complément aux plus grandes des fractions a — [a], b — [b],
c — [c], 1 — [1]. C'est la règle des plus grands restes,
comme on dit couramment. La règle des plus grands restes
ne peut être indéterminée que dans le cas où deux des
nombres a — [a], b — [ô], I — [/] deviennent égaux.

Le résultat est qu'une infinité des méthodes, par exemple
celle des moindres carrés, celle des moindres bicarrés, etc.,
appliquées aux erreurs relatives aux listes préconisent la
même répartition des sièges. Ce résultat peut être généralisé
encore, en élargissant les conditions auxquelles la fonction
tf(x) est assujettie.

Je ne veux pas formuler les conditions les plus générales ;

on voit par exemple que la démonstration s'applique presque
sans changements à la fonction y{x) \x\, ce qui n'est pas
sans intérêt.

Le problème de répartir les sièges de telle manière que
le maximum des écarts |* — a\, \ß—b |A — 11 soit
aussi petit que possible, conduit aussi à la règle des plus
grands restes. J'omets la démonstration, parce qu'elle est
facile et bien connue.

3. — Traitement égal des électeurs. D'après la nature de
la question, ce ne sont pas les erreurs relatives aux partis,
mais celles relatives aux électeurs qui importent. En
essayant d'appliquer à ces erreurs-là les différentes mé-
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thodes imaginables, on est amené à rendre minimum
l'expression

par le choix convenable des entiers X de la somme
donnée s. En remplaçant S y par y{x), on peut aussi
envisager l'expression suivante

C est cette dernière que je rendrai minimum en admettant quela fonction yremplisse les conditions énoncées auparavant.
On a l'identité analogue à (4)

— «cp(— 1) _|_ /,ç(_

+ _ ç(_ + ,^2 _ ^

+ +
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La Ome ligne du membre droit donne s<p(— 1). Les lignes
suivantes1 sont puisées du tableau

1 ' 1

/ /

1

7

où on posera n 1, 2, 3, La courbe y cp(.x) étant
convexe, on a, par de simples considérations géométriques,

oit + h) - Çoit) ^ <p(T -h /i) - <p(T, ^ o(T + H) — <p(T)
A ^ h < H (8)

pourvu qu'on ait t < T, 0 < h < H. La première des inégalités

(8) montre que dans chaque ligne du tableau (7) les quantités

sont rangées par ordre de leur valeur algébrique croissante.

On rend donc minimum l'expression (6) en choisissant
dans le tableau (7) les s quantités les plus petites en valeur

1 Sont partagées à cause de l'impression.
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algébrique, et en attribuant à chaque parti autant de
qu'il y a de quantités parmi ces s dans la ligne
correspondante du tableau (7).

En appliquant cette règle à la fonction à

laquelle la démonstration s'applique aussi, avec de légers
changements, on retrouve la règle des plus grands restes.
Ce qui est évident d'ailleurs d'après l'identité

a — a
+ h

ß — b X — l+ + /
a b l

+ | t — /I

Le lecteur est prié d'appliquer aussi la règle à la fonction
<p(.c) x2.11 retrouvera ainsi la règle des moindres carrés

donnée par M. Sainte-Laguë dans un travail1 qui constitue
un réel progrès de la théorie de la représentation
proportionnelle, autant que cette théorie est mathématique. C'est
la méthode de M. Sainte-Laguë que nous avons généralisée
dans l'analyse précédente. En appliquant la règle à d'autres
fonctions, par exemple à y(x)— .r4, |.r|5, l'on trouvera

toujours d'autres méthodes de répartition de sièges3.
On peut faire voir que les méthodes ainsi trouvées sont

réellement différentes en recherchant leurs cas d'indétermination.

Si notre règle ne peut pas décider à qui attribuer
un siège, au premier parti ou au second, une relation de la
forme

•(»(£ •)) »('(!- - - «)) «
doit avoir lieu. Considérons les entiers a, comme donnés
et les quantités a,b comme variables. D'après (8) -le membre

gauche est une fonction croissante de,^-, donc une fonction
décroissante de a. Une remarque analogue a lieu concernant
le membre droit. Il s'en suit que la courbe représentative

1 Voir Annales de l'Ecole Normale, 3^ série, tome 27 (1910), p. 529-542.
2 Ces différentes méthodes pour mesurer la petitesse des erreurs peuvent être envisagées

aussi à propos d'autres questions. Par exemple le polynôme qui s'écarte le moins possible
du zéro a une signification qui varie avec la notion de l'écart. On obtient différents
polynômes d'un degré donné. '
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de la relation (9) dans le plan a, b ne peut rencontrer qu'une
fois une droite parallèle à l'axe des a ou à Taxe des b. Cette
courbe sera différente quand on remplace <p(x) par les fonctions

différentes |.x|, x2, |<x|3, .x4, etc.
Voici encore une remarque qui me paraît importante.

Supposons qu'on ait
A ^ ß ^ G ^ > L

ou ce qui revient au même,

Il suit de ces inégalités, en vertu de (8), qu'en parcourant
de haut en bas une colonne quelconque du tableau (7), on
rencontre des quantités toujours plus grandes. Si donc, sur
les s quantités plus petites contenues dans le tableau (7) il
y a a appartenant à la lre, /3 appartenant à la 2me, 1 appartenant

à'/?me ligne, on a nécessairement

Donc toutes les méthodes de répartition considérées
remplissent une condition évidente, qu'on a posée à priori.

On peut évidemment choisir entre une infinité de méthodes
pour mesurer la petitesse des erreurs et l'on peut se poser
une infinité de problèmes de minimum. Mais le choix n'est
pas tout à fait arbitraire. Les problèmes doivent être
résolubles et les solutions doivent remplir certaines conditions.
C'est ce que nous avons montré pour les problèmes traités.
On verra plus loin que d'autres problèmes de minimum,
mentionnés toutefois par plusieurs auteurs, ne remplissent
pas les conditions posées ci-dessus. Il est intéressant de
constater que différentes méthodes, donnant des résultats
divergents quand on les applique aux erreurs relatives aux
électeurs, convergent au même point quand on les applique
à celles relatives aux partis.

4. RcLppj ochement des deux points de vue. Nous avons vu
que contrairement à certaines assertions un peu hâtivement
émises, la règle des plus grands restes traite également
tout aussi bien les électeurs que les partis, en mesurant la
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petitesse des erreurs par une mesure simple : la somme de
eur valeur absolue. Est-ce que ce système est le seul quirapproche ces deux points de vue? Nous allons démontrer

qu il en est ainsi, sous des conditions très larges. Nous
supposerons seulement que la petitesse des erreurs relatives
aux partis soit mesurée par une expression de la forme

?(«-«) +?(ß — 7,} + + ?(x__ q (10)

ou désigne une fonction continue. <p(0) 0, > 0 pour•r^O. Soit r un nombre rationnel, différent de zéro et
un entier positif. On choisira successivement deux entiers
positifs, « et ßsatisfaisant aux inégalités

na. — r > 0 na — r < na -f ß

puis deux entiers positifs, A et B satisfaisant à l'égalité

na + ß B (11)

C'est seulement le quotient B : A qui est déterminé par (11).G est avantageux de se figurer A et B grands par rapport à
a e iß.

Supposons deux élections. A la première, il y a -f 1
partis concurrents qui ont obtenu respectivement

A, A, A, A, B

suffrages et auxquels une loi quelconque attribue respecti-
vement

a, a, a, a, ß

sièges. A la seconde il y a deux partis obtenant respectivement
«A et B suffrages et «« et ß sièges. Les erreurs

commises au détriment ou au profit des électeurs sont absolument
les mêmes dans les deux cas. En calculant à l'aide de (11) les
erreurs commises pour chaque parti, on voit que l'expres-
sion (10) se réduit à
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dans le premier cas et à

*(') + -+t4b)
dans le second cas. Si l'évaluation des erreurs doit être la

même en envisageant les erreurs relatives aux partis et
celles relatives aux électeurs, les deux dernières expressions
doivent être égales, ce qui donne

(12)il 0

En vertu de ce qui a été dit, le nombre rationnel /• et
l'entier positif n peuvent être quelconques. L'équation (12)

valable dans cette étendue entraîne, suivant des raisonnements

classiques, que 9(x) est égal à une fonction,linéaire et
homogène pour les valeurs positives de x. Une conséquence
analogue a lieu pour x < 0. On a donc

0 (x) =rr c1 | x pour x + 0

<p(,r) — c2 x | pour x 0

ci et c2 étant deux constantes positives. On peut réunir les
deux formules en une seule en écrivant

/ \ 6'i + ci i — c9
(x) - 1*1+ 2

X

La somme (10) se réduit à

-J—;- - | a a | + + | X — /1 + ^
~ (a — a + • • • + A — l)

c + e (13)
— ~ I a — a \ + + |X — Z|)

en vertu de (3). Gomme nous avons vu, c'est la règle des
plus grands restes qui rend minimum le membre droit de (13)
c. q. f. d.

5. — Aspect géométrique de la question. Je suppose qu'il
y a trois listes en présence, dont les parties exactes sont
x, y, 2 et qu'il y a s sièges à distribuer. On a

« + r + z s X > 0, y > 0 0 > 0 (14)

Si l'on abaisse d'un point intérieur d'un triangle équila-

L'Enseignement mathém., 20e année; 1919. 24
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téral de hauteur s trois perpendiculaires sur les trois côtés
de longueur x, y, z respectivement, les nombres x1 y, z
satisfont aux relations (14). (Pour démontrer on joint le point
en question aux trois sommets du triangle et on considère
1 aire totale des trois triangles partiels obtenus.) On peut
donc représenter toutes les répartitions de suffrage
essentiellement différentes entre 3 partis par l'ensemble des points
à coordonnées rationnelles x, y, z à l'intérieur d'un triangle
de référence équilatéral. Les nombres des suffrages obtenus
sont les coordonnées homogènes du point représentatif.
Les répartitions des suffrages entre deux partis concurrents
peuvent être représentées sur un segment de droite, celles
entre 4 partis par les points à l'intérieur d'un tétraèdre
régulier, celles entre p partis dans l'espace à p — 1 dimensions.

J'envisagerai ici de préférence le cas p 3.
Les différentes répartitions de sièges sont représentées

par des points, dont toutes les trois coordonnées xy y, z sont
des nombres entiers. Ils sont les sommets d'un réseau de
triangles équilatéraux. Par exemple un sommet du triangle
de référence correspond à l'attribution de tous les s sièges
en question à un des partis.

Comment interpréter géométriquement les diverses règles
de répartition Une règle quelconque fait correspondre à

chaque point, représentant une répartition déterminée des
^suffrages, un point, différent en général du premier,

représentant la distribution coordonnée des sièges. Il y a une
infinité de répartitions de suffrages qui mènent à la même
distribution de sièges. Leurs points représentatifs remplissent

une aire, entourant le point représentatif de la
distribution correspondante de sièges.

Prenons par exemple la règle des plus grands restes qui
est la plus simple. Soient x, y, z les coordonnées d'un point.
Ce point représente le résultat d'un scrutin, où les forces
numériques des électeurs de 3 listes en présence étaient
dans le rapport x : y : z. Si les partis obtiennent <*, /3, y sièges,,
ces trois entiers non-négatifs doivent rendre minimum
l'expression

(a x)2 -f (ß — j)2 -I- (y —s)2 (15)
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d'après un théorème général précédemment démontré. (Le

cas particulier qui nous intéresse momentanément fut déjà

donné par M. Sainte-Laguë, 1. c.). Or le carré de la distance des

deux points x, y, z et a, /3, y est précisément les deux tiers
de la somme (15), comme on le démontre facilement. Par

conséquent, la règle des plus grands restes fait correspondre
à un résultat de scrutin x, y, z le sommet le plus rapproché
du réseau considéré ci-dessus. Les différents résultats de

scrutin qui amènent la même distribution de sièges, sont

représentés par des points plus rapprochés d'un certain sommet

a, jS, y du réseau qu'ils ne sont à aucun autre et remplissent

l'aire d'un hexagone régulier, dont le centre est a, /3, y-
Les cas où la règle des plus grands restes devient illusoire
sont situés sur les périphéries des hexagones et forment des

lignes d'indétermination séparant les cellules qui entourent
les points du réseau (voir fig. 1).

La règle des plus grands restes est la plus simple et la

plus naturelle au point de vue géométrique comme elle l'est
aussi au point de vue arithmétique. Les autres règles engendrent

d'autres divisions du triangle de référence. Je ne peux
ici que mentionner certaines propriétés. La règle bien
connue d'HoxDT est figurée par un amas de cellules qui ont
toutes la même étendue. Entre les règles de répartition
considérées jusqu'ici, il n'y en a que trois qui donnent
naissance à des cellules à limites rectilignes : ce sont celles des
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plus grands restes, de d'HoNDT et de Sainte-Laguë. Les
cellules hexagonales de ces deux dernières méthodes ne sont
pas régulières. Les différentes méthodes que nous avonsmises en relation avec le traitement égal des électeurs ontdes lignes courbes d'indétermination (voir formule (9) et les
explications qui s'y rattachent). La plupart des méthodes en
usage pratique ne peuvent invoquer aucune raison théorique
en leur faveur, mais elles dépendent toutes des opérationsinéaires et les cellules de leur représentation graphique
sont, par conséquent, limitées par des segments de
droites.

M. Macquart — dont les mérites pratiques pour la cause
e la R. P. ne peuvent nullement être diminués par cette

remarque — adresse à la règle des plus grands restes le
reproche suivant1 : en adoptant cette règle de répartition,il peut arriver qu'un parti A luttant deux fois de suite contre
des adversaires B et G obtienne à la seconde élection une
plus faible partie de sièges, quoique ayant une plus forte
partie de suffrages. Il aurait pu adresser ce reproche à tous
les systèmes imaginables de répartition proportionnelle.Gest impossible que toutes les lignes d'indétermination
soient parallèles à un des côtés du triangle. On peut donc
bien dépasser quelques-unes de ces lignes en se mouvant
parallèlement à un des côtés du triangle ou même passerd'une cellule à une cellule voisine, appartenant à un sommet
moins élevé du réseau en suivant une direction légèrement
ascendante.

Notre représentation graphique peut élucider une quantitéde paradoxes et réduire à leur juste valeur une foule d'objections
semblables. Arrivons à des services plus importants

qu'elle peut rendre.

Casd'indétermination exceptionnels et non-exceptionnels.
Quand les points d'indétermination sont situés sur

un nombre fini d'arcs simples (c'est-à-dire qui ne rencontrent
qu'une fois une droite parallèle à un des côtés du trianHe)Ö 1

1 Voir Revue scientifique (1905), II.
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on pourra dire à bon droit que les cas d'indétermination

sont exceptionnels. C'est dans ce sens qu on peut affirmer

que les méthodes de répartition examinées jusqu'ici ne donnent

lieu qu'exceptionnellement à des indécisions. Tandis

que si tous les points (rationnels) remplissant une surface

sont des points d'indétermination, l'indécision n'est plus

exceptionnelle et la règle doit être rejetée.
En admettant ce postulat, on doit rejeter la règle suivante :

distribuer les sièges de manière que 1 erreur relative à un

électeur, la plus grande en valeur absolue soit la plus petite

possible. Je dis, en effet, que cette règle sera indéterminée

toutes les fois que s sièges étant à répartir, s ^ 6, les parts

exactes des trois partis en concurrence satisfont aux inégalités

*<*•' r>i- *>L(16)
c'est-à-dire quand les points représentatifs se trouvent à

l'intérieur d'un certain quadrilatère. Au lieu des erreurs
commises pour chaque électeur, je considérerai comme

auparavant les grandeurs ———
s

elu* ^eur son^

proportionnelles et je les nommerai simplement « les

erreurs ». La première des inégalités (16) entraîne

- — -— — — 1 1 pour a. — 1, 2, 3, s.

En attribuant au parti ayant la part exacte x 0 sièges, on

est sûr d'avoir atteint la limite inférieure de l'erreur maximale

0 — x

Le nombre des sièges étant assez grand, on pourra trouver
de plusieurs manières deux entiers ß, y satisfaisant aux
relations

ß + T *. YâÇ- (17>

En attribuant ß sièges au parti à part exacte ?/, l'erreur
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commise pour chaque électeur est en vertu de (16) (17)

2 s s

On trouvera de même

C est donc de plusieurs manières que l'erreur la plus
grande en valeur absolue peut atteindre sa limite inférieure
c. q. f. d. '

M. Equer1 a proposé de réduire à un minimum la
différence entre l'électeur le plus et le moins favorisé. Cette
difference est d'ailleurs égale à la somme des valeurs abso-
iies de l'erreur positive et de l'erreur négative extrêmes.

Malheureusement cette règle si plausible ne remplit pas nonplus le postulat relatif aux exceptions, au moins quand il
s agit de quatre listes ou davantage. Représentons les différents

rapports possibles entre les forces numériques de
quatre partis par les points à l'intérieur d'un tétraèdre régulier.S'il y a 20 sièges à distribuer, la hauteur du tétraèdre
sera de 20 unités de longueur. Considérons le point dont les
distances aux 4 faces du tétraèdre sont respectivement

*=1,8 y —2,2Z7,6 8,4.
Ce point représente un scrutin où les forces des partissont dans le rapport 18 : 22 : 76 : 84. On peut s'assurer parune discussion numérique que j'omets, qu'en donnant auxlistes

2 2 7 9

ou bien
2 2 8 8

sièges respectivement, la différence dont M. Equer parle
sera la plus petite possible. En poursuivant la discussion
on pourra montrer que la règle de M. Equer sera en défaut

1 Voir Sainte-Laguë, 1. c., p. 535.
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non seulement pour le point considéré, mais aussi pour tous

les points à l'intérieur d'une sphère de rayon assez petit,

décrite autour du point en question. D après le sens du

postulat énoncé, les points formant un ensemble de même

dimension que la totalité des cas possibles, ne peuvent plus

être considérés comme non-exceptionnels.
On pourrait aussi considérer le principe : rendre minimum

l'erreur négative extrême relative à un électeur. Cette règle

est impuissante de choisir entre les répartitions différentes

tant qu'on a s < p et engendre la méthode dite des « plus

fortes fractions » quand s^p (s le nombre de sièges, p le

nombre des partis comme auparavant)1.
Il n'y a qu'une règle de cette sorte qui pour chaque combinaison

des et de p ne devient indéterminé qu'exceptionnellement.

C'est la règle d'HoNDT, qui tend à rendre minimum

l'erreur positive extrême2. Ce que nous avons dit sert à

justifier dans une certaine mesure le système d'Hondt et

montre que bien qu'il y ait une infinité de principes de

minimum possibles, on ne saurait en choisir un tout à fait

au hasard.

7. Le rôle des probabilités. Les élections sont un jeu de

hasard, comme on l'a dit souvent. Est-ce que les chances du

jeu sont égales pour tous les partis
Je montrerai par un exemple simple comment on peut

trouver ces chances. Envisageons le problème suivant :

Dans une circonscription il y a cinq sièges à distribuer,
3 partis qui se les disputent et la répartition se fait d'après
les plus grands restes. Quelle ést l'espérance mathématique
d'une erreur en faveur du parti le plus fort, du parti moyen
et du plus faible

Soient les parts exactes des partis en question x? y, z

x > j > » • (18)

Les inégalités (18) délimitent la sixième partie du triangle
de référence, un triangle rectangle aux angles de 90°, 60° et
30° (voir fig. 1). Il y a autant de cas possibles que de points

1 Voir Saintiï-Laguë, 1. c., p. 535
a Voir Saintiï-Laguë, 1. c., p. 534.
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rationnels dans le dit triangle rectangle. Je suppose que la
probabilité de l'événement qu'un point choisi au hasard
tombe dans un certain domaine est proportionnel à l'aire de
celui-ci. Cette supposition est la plus simple, je Tai justifiée
en comparant ses conséquences à des données statistiques et
elle peut en outre être fondée théoriquement h Calculons
par exemple la probabilité pour que le parti le plus fort et
le parti moyen obtiennent chacun 2 sièges et que le plus
faible en obtienne 1. C'est la probabilité pour qu'un point
du triangle délimité par les inégalités (18) tombe dans la
moitié supérieure de la cellule entourant le point Q (voir
fig. 1). Elle est égale au quotient des aires de ces deux
domaines, c'est-à-dire à ~ comme on vérifie facilement.
Des probabilités analogues sont réunies dans le tableau
suivant :

Nombre de sièges obtenus par le parti
le plus fort moyen le plus faible Probabilité

TT

» i
1 -i

Les trois partis obtiendront donc en moyenne respectivement

1.5 + 6.4-1-6.3 + 6.3 + 6.2 77

25
" — ~25~

1.0 + 61+6.2 + 6.1 + 6.2 36
25 : — "25"

1.0 + 6.0 + 6.0 + 6.1 + 6 1 _ 12
25 ~ "25"

1 Voir Poincarb, Calcul de probabilités, 2* édition, p. 123-126. La supposition adoptée par
Sainte-Laguë, 1. c., p. 541-512, est, à mon avis, incorrecte et en tous cas difïérente de celle
adoptée ici. En admettant que les parties d'égale longueur du segment de droite qui représente

les différents rapports de la force numérique des deux partis sont d'égale probabilité,
le problème traité 1. c. donne le résultat ~ Voir pour une interprétation de l'hypothèse faite
ici, mon travail cité de Zentralblatt.
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sièges. La proportion moyenne des suffrages qu ils obtiendront

est donnée par les coordonnées du centre de gravite

tlu triangle rectangle (18), c'est-à-dire par les nombres

'1 /5 5 5\ 55 1/5 5 \ 25 j_/5 Q\ IP

7 ï + ¥ + T =18 ¥ 3 + 2 + °J-18 3 \3 ^ 18
3 \3 2 1 / 18

les trois sommets du triangle (18) ayant respectivement les

coordonnées
5 n 5 5 5 5

3 ' 3 ' 3 ' -, - 0 ;
2 2 T. o,o

L'espérance mathématique d'une erreur en faveur d'un des

partis est la différence de sa part moyenne en sièges et en

suffrages. Les espérances mathématiques cherchées sont

donc respectivement

ZZ
__

ZZ + 0,024 p _ + 0,051 y - I! - 0,075
25 18

1 2D 18

C'est-à-dire la règle des plus grands restes avantage, au

moins quand il s'agit de 5 sièges, les deux partis les plus

forts au détriment du troisième, mais l'avantage est assez

médiocre. Sur 100 élections ayant lieu dans des conditions

analogues, la perte moyenne du parti le plus faible serait de

7 à 8 sièges. Les élections ordinaires ne sauraient déceler

un effet si faible.
Ce n'est pas inutile de mentionner une interprétation

géométrique des trois nombres calculés. Chacun d eux est la

moyenne d'autant de distances que le triangle (18) est partagé

en parties différentes parles lignes d'indétermination.
Considérons dans chaque cellule ou portion de cellule comprise
dans le triangle (18) le centre de gravité de 1 aire et un axe

parallèle à la base du triangle de référence, passant par le

sommet du réseau auquel la cellule ou la portion de cellule

en question est rattachée. Nous compterons la distance du

centre de gravité à cet axe positivement, si le centre de gravité

est au-dessous et négativement s'il est au-dessus de

l'axe. C'est de ces distances que l'espérance mathématique
du plus grand parti est la moyenne, mais pas une moyenne
arithmétique simple, parce que chaque distance a un «poids»
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proportionnel à 1 aire correspondante. Les espérances
mathématiques des deux autres partis sont les moyennes des
distances analogues, les axes en question devant être tracés
parallèlement à un des deux autres côtés du triangle de
reference. Dans le cas représenté par la fig. 1 (s 5) le
triangle rectangle (18) ne comprend que des portions de
cellules. Au contraire, quand le nombre des sièges est grand
ce sont les cellules entières qui sont en grande majorité.Mais le centre de gravité d'un hexagone régulier est
précisément le sommet du réseau auquel l'hexagone est rattaché
et la distance en question est par conséquent zéro. Ainsi
pour soo 1 espérance mathématique d'une erreur, commise
en faveur de qui que ce soit, tend vers zéro. C'est-à-dire
quand les circonscriptions sont assez grandes, le système
des plus grands restes n'avantage aucun des partis concurrents

d'une manière systématique. Voilà une conclusion
d'une certaine valeur pratique et qui peut être soumise au'
contrôle de l'expérience électorale.

Voici encore un problème de celte nature :

Dans une circonscription il y avait originalement 3 partis
qui se disputaient les s sièges à pourvoir; 2 de ces partis se
décident de présenter une liste commune. Quelle est l'espérance

mathématique d'un gain ensuite de cette réunion si le
système des plus grands restes est en vigueur?

La situation originale des partis peut être figurée par un
point (rationnel) quelconque ® du triangle de référence.
Soient «y» et « z»les deux partis qui se réunissent. La
force numérique du troisième parti restant invariable,
menons par le point Ö une parallèle à la base du triangle de
référence. Celte parallèle rencontrera un des deux autres
côtés, par exemple celui de droite, en un point S". Envisageons

les sommets du réseau Q et Q' qui sont les plus
rapprochés des points V et C respectivement. Q' se trouve
nécessairement sur le pourtour du triangle de référence. Je
distingue 3 cas.

1. Q et Q' sont à la même distance de la base, Il n'y a ni
gain ni perte occasionnés par la réunion.

2. Q' est plus rapproché de la base que Q. La différence
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des distances ne peut être que d'une unité. Le parti « x » a

perdu un siège ensuite de la réunion de ses deux

adversaires.

3 q' est plus éloigné de la base que Q. L'éloignement

est d'une unité et signifie un siège perdu pour les deux

alliés.
Les régions remplies par les points pour lesquelles le

cas (2) se présente, sont désignées par le signe + dans la

fio-ure 2 (où s 3), les régions correspondantes au cas (3)

par le signe —. Désignons l'aire totale des premières par
dv_l_, celle des secondes par dv_, l'aire du triangle de

référence par 4s2A. En considérant les aires qui jouent un rôle

analogue par rapport à y et z que les aires Öl+ et <?L_ par

rapport à on trouve facilement

L'espérance mathématique d'un gain par l'alliance est

1 + 0 (4s2A - <3l+ - tft_) _
1

4 .s2 A 12.s

C'est-à-dire le système des plus grands restes, contrairement

à certaines affirmations légèrement émises, favorise
les alliances, mais dans une mesure si faible qui ne compte

pas dans la pratique. Je remarque en passant que le résultat
serait identique pour le système Sainte-Laguë.

Je renvoie pour de plus amples résultats numériques et

pour des vérifications expérimentales à mon article paru
dans le Journal de statistique suisse. C'est, à mon avis,
l'étude des chances des différents systèmes qui constitue
une véritable théorie mathématique de la représentation
proportionnelle, une théorie qui peut rendre compte de
certains faits observés et en prévoir d'autres. Je crois avoir
suffisamment élucidé les principes de cette théorie par les
calculs précédents. Sapientisat. Le lecteur désireux d'approfondir

cette théorie pourra envisager des distributions non-
uniformes de probabilité ou des problèmes ou interviennent
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4 on plusieurs partis. Il sera amené à généraliser pour des
domaines « tétraédriques » à plusieurs dimensions la formule
des trapèzes qui sert au calcul approché des intégrales et
à étudier certaines divisions « semirégulières » de ces
domaines. Il rencontrera une foule de jolis problèmes que
je n ai pas le loisir d exposer ici. J'ai hâte d'arriver à un
résultat qui me semble d'intérêt principal.

8. Influence minimale de la division du pays en
criptionselectoi aiessur le résultat total. Je me permets

d'extraire le passage suivant du travail plusieurs fois cité de
M. Sainte-Laguë : « La répartition des sièges dans chaque
circonscription peut sembler d'autant meilleure que les
résultats globaux auxquels elle conduit sont plus voisins de
eux qu aurait donnés la répartition directe des sièges faite

aux listes globales obtenues en prenant les totaux des
suffrages pour tout le pays.

Le ciitérium semble difficile à appliquer, comme le montre
l'exemple suivant :

Supposons qu on ait seulement deux listes en présence
A et B et que les deux listes réunissent à peu près le même
nombre de suffrages dans tout le pays; la règle la meilleure
sera alors celle qui partagera par moitié dans chaque
circonscription les sièges entre les deux listes A et B et cela
pour aussi disproportionnés que soient les nombres des
suffrages recueillis dans la circonscription considérée. »

Contrairement à ce que semble en penser M. Sainte-Laguë,
je trouve que le dit critérium est, bien interprété, parfaitement

clair, qu'il touche le point essentiel de la question et
qu il mène à un résultat déterminé. Pour le bien interpréter
il ne faut pas oublier que c'est d'une question de probabilité
qu'il s'agit. Voici d'ailleurs mon analyse qui est un peu
abstraite mais très simple au fond.

Admettons qu'il s'agit de la répartition de s sièges
entre p partis, dont les parts exactes sont désignées par

• .r4, :x:3 xp.Ona

'G + + + « (19)
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Considérons une règle quelconque de répartition. Cette

règle fera correspondre au résultat du scrutin, exprimé par
le rapport des nombres aq, x.2,,r3,xp un certain entier ^,
fonction de ces nombres,

ZZ f[%2 ' XS:' ^ 4 ' ' * - 'T'
en désignant par ^ le nombre des sièges attribués par la

règle en question au parti dont la part exacte est

x — s x<î x3 — — *p• La fonction f est une fonction

symétrique de ses p — 1 variables et elle caractérise

parfaitement la règle considérée, en tant qu'il ne s agit que de

p partis et de s sièges. En elfet on attribuera respectivement

Ç2 f(*l - "r3 - -r4 • • • • XP]

\p — f(,rt, oc2, x3, xp__\)

sièges aux autres partis en présence. On a par conséquent

Ei + Es + % + • • • + E, 5 • (20)

La fonction f n'a que des valeurs entières non-négatives.
Si la règle satisfait à un desideratum expliqué plus haut, les

points de discontinuité de la fonction f seront situés sur
certaines variétés p — 2-dimensionales.

Admettons que les parts exactes œi9 #3, xw% xp varient
conformément à une loi de probabilité quelconque qui n est

assujettie qu'à cette unique condition : elle doit être la même

pour tous les partis en question. Nous avons considéré

précédemment la loi la plus simple de cette nature. Je

désignerai par (£(<p) l'espérance mathématique d'une fonction

quelconque des variables x{, x2, xp liées par la relation

(19). Si la loi de probabilité envisagée est continue,
<£(<p) s'exprime par une intégrale définie p — 2-tuple. On a

par raison de symétrie

(EfÇ, - xx) <g(Ç2 - x2) (E(^ -
-^<2(?1 — + Ea — ^2 + + ip — xpY= 0
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en vertu de (19) et (20). On a de même

<E((Ç, - *,)') <E(,ç, - x,)') <g((^ _
— ® (Ol a'i)2 + (?2 -r2)2 + .)_ (jj^ — xp)iS)

en désignant par bune constante positive, dépendant du
système de répartition et de la loi de probabilité qu'on
envisage.

Envisageons un grand nombre de circonscriptions, dans
chacune desquelles il y a le même nombre de votants et le
même nombre .s de sièges à répartir. Le scrutin donne
pour le premier des partis concurrents les parts exactes

'' i• • • dans les différentes circonscriptions et la
règle en question lui attribue £(»> sièges. Le
critérium, formulé et contesté par M. Sainte-Laguë, exige
évidemment que la différence

-f ?,+... + Çj"> — x[ — x[ — — *J">(21)
soit la plus petite possible en général. D'après un théorème
de Laplace >, la probabilité pour que l'écart (21) dépasse en
valeur absolue une certaine limite h est

=h
h

\J~2bti

Cette probabilité décroît évidemment avec b. Le principe
en question exige donc que b soit le plus petit possible.
Mais puisque

b-((?! - x,Y + (Çs - x2Y -t-... + xpy)

c'est la quantité (^ — xtf + + + (^ _ Xpy
dépendant de la règle de répartition adoptée qui doit devenir
minimum. Ainsi le postulat que le système de répartition
appliqué dans les diverses circonscriptions doit donner des
résultats concordant autant que possible à la force numérique

des partis dans tout le pays, préfère un certain pro-
1 Voir Théorie analytique des probabilités, Livre II, N° 39.
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blême de minimum aux autres, considérés auparavant. C'est
lé problème : rendre minimum la somme des carrés des

erreurs relatives aux partis dont la solution est donnée par
la règle des plus grands restes. C'est, à ce qu'il me paraît, la

meilleure justification théorique de cette règle si simple et

naturelle.
Zurich, avril 1919.

MÉLANGES ET CORRESPONDANCE

A propos d'un problème inédit de E. Torricelli.

Au sujet de la publication de mon article sur Les origines d'un
problème inédit de E. Torricelli {LJEnseignement mathématique,
XXe année,4918 et 1919, p. 245-268), je dois signaler que M. Michèle
Cipolla, professeur à l'Université de Catane, vient de faire paraître
une importante étude sur le même problème.

Michèle Cipolla. — I triangoli di Fermât e un problema di
Torricelli, Atti delV Accademia Gioenia di scienze naturali in
Catania, serie 5a, vol. XI, memoria XI.

Je n'ai eu connaissance de l'existence de ce mémoire qu'après
la correction des épreuves de mise en pages de mon propre travail.

2 août 1919. Emile Turrière.

A propos d'une note de M. Paschoud.

Sur les équations transcendantes qui se présentent dans la
théorie des tiges élastiques. (UEnseignement mathématique, 20,
N° 4, 286, 1919).

J'ai lu avec intérêt la note de M. Paschoud qui fait remarquer
que les racines de l'équation tgx cth^r —.— 1 se déduisent
immédiatement de celles de l'équation cos x ch x — 1. Ce fait, il est
vrai, avait échappé à M. Emde et à moi. Mais, déjà en 1909, nous
avons saisi l'occasion de signaler l'équivalence de l'équation

OC OC

cos x ch x 1 à l'équation tg cth y + 1. dans YArchiv der
Mathematik und Physik (3), 15, 372, à la suite d'une communication

de M. Greenhill.
Berlin, 24 juillet 1919. E. Jahnke.
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