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hx

SUR L'INTÉGRALE n\f0
PAR

Félix Vaney et Maurice Paschoud (Lausanne).

I. — Dans un mémoire inséré au Bulletin de la Société
mathématique de France, Laguerre (Œuvres, t. I, p. 415)
considère l'intégrale

J z'le ï+zxdz
0

et il en déduit les propriétés fondamentales des polynômes
U(X') d'HERMITE.

En partant de l'intégrale

1 —

hx

dh

on peut, par un calcul analogue à celui de Laguerre, établir
les propriétés essentielles des polynômes Pn qu'il a obtenus
dans un autre mémoire du même Bulletin (Œuvres, t. I,
p. 434), et qu'il définit (Œuvres, t. I, p. 436) par la relation :

hx
e^h h h2 h11

Y—h — Po + Pifi + P2 2l + • • • + + • • • f1)

où Pn a comme expression générale :

P. W * + " '"'^721^ + ] m
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Laguerke indique les propriétés suivantes des poly-

nomes P„.
0

JexVm(x)Vn(x)dx 0 pour m ^ n

00

0

j*exV2n(x)dx [ni]2
00

ainsi que les relations

P„+1 (* + 2« + 1)P„ - «2 P„_,

*P'„=np„-'B'P»-i •

«Pl + (« + l)P'„-"Pn=0 •

On voit de plus que

p„ •

dx

hx

II. — Posons pour abreger 1 •

On a

^r[A?( 1— A)2T] — (x + 2/> + 1]hpT + (p + 1)AP+1T

En multipliant les 2 membres par et intégrant de 0 à

il vient :

h

(p + l) fhP+lTdh=:hP(l — Ä)aT + (* + 2p + l)j hp Tdh — pJ hP~lrïdh

o o o

Si Ton pose
h

JLfh"Tdh
ni-J

o

il vient entre 3 intégrales définies consécutives la formule
de récurrence

\p+lP\hp(i -hyr + (x + 2P +: (3)

On voit de suite que

1, ='(1 - A)»T + l* + l)I„ —1 '
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et, en tenant compte de cette dernière relation, (3) donne
successivement :

pour P 1 : r2 (A + x-|-3) (1 — A)2T + (x2 + 4a? +- 2)I0— + 3)

pour p 2 : I3 — [2 h2+ (x+ 5) A + x2 + + 11] (1 — A)2T

+ (x3 -f- 9x2+ 18^ + 6) I0 — H- 8x + 11)

D une (açon générale

ln [0„(A, X)}(\ — h)2T + P„I0 — \Jx) (4)

où 9n{h, x)est un polynôme de degré — 1) en h et en x,
Vn[x)est un polynôme de degré n en x et V„ un polynôme

de degré [n — 1) en x.
On a en outre V„(x) 9n(0D'après les calculs précédents :

0,(A,a-) l; 62(A A + + 3 ;

03 (A x) =.2A2-)- (x-f- 5) A + + 11

\2(X)=zx + 3; *2 + + 11

P.U"! .»• + I : P2(^) X2+ 4* + 2 ; P3 + -+- + 6

De plus
Po 1

•

En dérivant chaque membre de l'identité
h

_hx_/'= \- 7+11?+>
0

par rapport à x, on trouve

dl»4-l d ln
p+'~sr + (5)

Cette relation donne pour p0

1
1 dx dx

et, en tenant compte de I4 (1 — h)2T + (x + 1)I0 - 1,
on obtient

^ i«t_A)T + i#_it. (6)

expression qui sera utilisée dans la suite.
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III. — Il existe des relations de récurrence pour les

polynômes 9, V, P. Partons de la relation (3) en y remplaçant

I„ par son expression (4), il vient :

[e„+1 ,i — 4)2ï + P„+i i0—v«+il ~' (« +2" +1) [VI1 — r + p„ L—vJ

+ n3[0„_1 (1 — h)2T+ P(J_iIo — V„_il

d'où les relations cherchées

— [X + 2 il+ 1) 8„ + "20/i_ 1 n \ h CO

V(1+1 - (* + 2" + 1IV.+ 0 (8)

P„+i — (x+ 2n + t)P„+ «3P„_i 0 • (9)

La formule (9) montre que les P„ sont bien les polynômes

de Laguerre, car P, x+ 1 et P2 + 4.r + 2.

La formule (8) se déduit de (7) en y faisant h 0; elle est

identique à (9), mais les polynômes Y„ sont différents des

polynômes P„, car V4 1 et Vs a? + 3.

IV. — Dérivons les deux membres de (4) par rapport à x ;

il vient, en remplaçant ^ par sa valeur (6) et en tenant

compte de (5) :

I' - "[«.+• " T? + <" + 11ï] + - + ,|,J

Pn+1 — (,l + a)Pn
(10)

r H+l

V ^ gj±l- [„ + + P-f ~ + "P"
{'<)

7i+l db? «x>

^„+i
dx :''i + 1>(^ + p») • (12)

La relation (11) s'obtiendrait de (10) en y faisant h 0.

De (12) on déduit le développement suivant de ?'n :

P), 'iP„_! + n[n — 1)P„_2 + Po • 03).
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LAGUERREet
(12) °n tire SanS peine Ia relation indiquée par

<^ (14)

et l'équation différentielle

< + k + i)p;-«p„ o. (15)

X
V. — Posons 0„ e1^. H„.
En utilisant la relation (14) et en substituant cette valeurde 9n dans la relation (10), on obtient :

(* +1)(h„ —P«+l\ dx dx 1 — h n 4- 1 '

La relation de récurrence entre les H„ est

H»+i — (x+ 2« + 1)H;J -f — (17)

De (16) et (17) on déduit finalement l'équation différentielle :

0,2 H„ rfH

r=nTLAP„ - an - Ä)P; _ „*«+»], (18]

qui ne diffère de celle des polynômes de Laguerre que parla présence du second membre.
Pour ^ 'M'L ,r) eV,et (18) donne l'équation

différentielle à laquelle satisfont les polynômes V„
rf2V„ d\n

~(« + 1)V„ -2P;i (19)

hx

VI. — La fonction considérée par Abel 1

t. II, p. 284), donne naissance à des polynômes Q„ si on la
développe suivant les puissances croissantes de h

hx
e 1—h h ^2 hn
1 — I —Q° + Qif] + Q22I + ••• + Q» + ••• <2°)

Voir aussi Nijland, Over een besonderesoort van geheele Utrecht, 1896. (Thèse).
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où Q„ a comme expression générale :

f. n(n—1)2 n[n — !)(» — 2) "1

Qn(a:) — n ^1 — nxH ^ 22 x12.22.32"j '

Abel indique en outre les propriétés suivantes de ces

polynômes
oo *

fe~~~X Q„ (x) Qm(-X) dx 0 pour m ^ n

o

00

/'e-*Q\{x)dx= M2 •

0

En partant de la fonction génératrice, il est facile d'obtenir
la relation de récurrence des polynômes Q„

Q„+i — (2n + 1 — + Q„_i 0

ainsi que l'équation différentielle

-q: + — «) Q'„ + «Q« ° •

Q„ s'exprime encore sous forme de dérivée nme

VII. — Le développement des Qn en fonction des P„ peut
s'obtenir au moyen de l'équation différentielle :

n -Tr "2 nvi1)2"2p
Q„ (— i)"yVn — 1 LVn-1 H Ï72 —2

1)rrc2(» — P2 ••• (" — ' + ^l)"„!2np l1 ' 1.2.3...r1 °J

Gomme les polynômes Q„ se déduisent des P„ en y
remplaçant xpar — x et réciproquement, il est possible d'écrire

p. (- il" [o. - fW, + "Q~.

<- V*2'. 8'.". ~ f +
' - • I- <>"" *"Q.] •
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Ces développements sont, à l'alternance des signes prèset aux puissances de 2 près dans les coefficients, analogues

à l'expression générale (21.) de Q„ ou à celle (2) de P„,
Remplaçons maintenant dans le développement (20) h

par et multiplions chaque membre par e~x on obtient
hx

1 — h (22)

«-«ro. + Q.l +Q,1+ Q»-. i Q. i ^ 1
IJi 1 ä2 2!h3(«— 1) ; A" «! /i"+1 + "'J '

Ce second membre représente le développement suivant
les puissances décroissantes de de la fonction génératricedes polynômes de Laguerre.

De la même manière, on tire de (1) le développement sui-
hx

vant les puissances décroissantes de h de la fonction e

1 — h *

hx
e 1—A

~~
1 — h

I
T° + - + -2 - + + P"-1 1

J.
P" 1

^ 1

Multiplions chaque membre de cette dernière relation paru hndh et intégrons de 0 à A, il vient :

h

f* hx

-J„ - / e~ï—hdh—n\ex [~fo + Pi h"~l p2

%
h L n 1 /a — 1 2! n — 2 3!

-4 ^5— i ,P»-1 h -I (23)
n 3 4 +•••+ .[ + • J

VIII. En utilisant une méthode indiquée par Hermite

à propos de l'intégrale Jp==§= t. IV, p. 169),
0

on voit que les polynômes 9lt et V„ peuvent s'exprimer au
moyen des P„ et des Q„.
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Si l'on écrit (4) de la manière suivante :

hx hx

e\^h el—h^ T
e'x~h ,r

ÏZZk 1,1 ' X)+ " 0 _ 1 — h. *"

on remarque que 0„ h,lorme la partie entière du produit

hx\ufjiir.-ëkdk.
1 — A J 1 — /*

o

développé suivant les puissances décroissantes de h.
Si l'on remplace les deux facteurs par leur développement

respectif (22) et (23) et si l'on multiplie membre à membre,

on obtient le développement de 9u(h, x) suivant les

puissances décroissantes de h

P„Q2 PlQl P2Qo/ roVj riVi I )h+^ + +
(24)

P0Q3 P.Qs P2 Qi PaQo \h*~*
7!. 3! (« — 1) 1 2 In — 2). 2 1 T pi —3).3!/

/P0Q(- P1 Qt-i
\ /I. i' ' « — 11.1 1

_i
psQt—l> PiQ0—\ p'—i—i +..."]^ (« — 2) .2 (i — 2(

" ' ' ^ (7? — J

Le développement de V„ est formé de tons les termes ne

contenant pas h

v„ P0 Q,,^ + f, P7 Q77-2 + P2 Q„_3
(25)

I

nia 1)
I

n p nH" ••• "T ~r ^ r,i-iVo •

Un autre développement de Vn, ayanl la forme:

Y» «iP„-l + • * • + ar?n-r + • • • + Po »

s'obtient au moyen de l'équation différentielle (19) et du

développement (13)

Vn P,,^ + 2(/i - ljP,^ +. (n - 2)(3n - 4)P/z_3

+ 2V - 2Y(n - 3)P„_4 + (n - 3)(n - 4)(5az2 - 25n + 32) P^ +
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chaque coefficient s'obtenant au moyen du précédent par la
formule de récurrence

(l'' ~2"~r + l[<" _ r +" 1,2a'-i + („ ^1'r] •

Prenant h—1, comme limite supérieure dans
1 intégrale I„ et son expression (4), il vient :

rn\h"y_^e '-»Ä -V„fP J
0

ou encore
*

n \hn x 1 X
/* n ' hn — X ~

JT=r-h e dh -+ p
1—h

dh
• h

Posons s — - ~ -; on a, après substitution,

Jn\(z — x)"~ dz — e~x\n -f PnJ
~Z

Z

6
dz (26)

Le premier membre peut se mettre sous forme d'intégrale
multiple d'ordre n de la fonction ces intégrales
multiples donnent donc naissance aux polynômes P„.

La formule (26) est celle obtenue par Laguerre [Œuvres,
t. I, p. 432), qui en déduit que P„ est le dénominateur de la
réduite d ordre n du développement en fraction continue de

GO

—^-dx, le polynôme Vn étant le numérateur
X

de cette réduite.

_

Enfin on remarque que l'intégrale I„ se transforme par le
changement de xen — x,enune nouvelle intégrale J„ qui
donne naissance aux polynômes Q„ d'AßEL

h hx hx

Jn =fr~h el hdh=: [Q»(A *)](*- + Q»Jo - W»
0

où
Qn(h x) OJh - X)

Q,» - p»(- *)

V„(- x)
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