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SUR UNE TRANSFORMATION ÉLÉMENTAIRE

ET SUR QUELQUES INTÉGRALES DÉFINIES

ET INDÉFINIES

PAR

G. Cailler (Genève).

1. — La plupart des traités d'Algèbre élémentaire consacrent

au moins quelques pages à l'étude de la transformation

y — dans laquelle f(,r) et g(x) désignent deux polynômes

quelconques du second degré; elle offre un exemple d'une
détermination d'extremum sans l'intervention d'aucune idée
de continuité. En dehors de cette application classique, la

transformation précédente, qui constitue en Géométrie la

base de la théorie de l'involution de 4 points, joue encore
un rôle essentiel dans nombre de problèmes d'Analyse :

parmi ceux-ci on peut citer l'intégration des irrationnelles
du second degré, la réduction des intégrales elliptiques à

la forme normale de Legendre, l'abaissement au type elliptique

de certaines catégories d'intégrales abéliennes, etc.
En dépit de ces multiples applications la plupart des

/*( OC ^ •

auteurs, en s'occupant de l'équation y s'en tiennent
g[X)

au cas où les deux polynômes f et g sont réels de même que
les variables x et y. Or le cas général n'est ni moins simple
ni moins intéressant, et comme il est peu connu, on me
permettra de revenir ici sur la transformation dont il s'agit
envisagée dans toute son étendue. On va voir avec quelle
facilité la discussion peut être poussée à bout; elle s'appuie
sur la transformation circulaire de la Géométrie et permet
d'établir aisément la correspondance entre le plan simple
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313 C.CAILLER
de la variable xet le double feuillet de Riemann qui est le
lieu de la variable y.

A cette question d'ordre algébrique j'adjoindrai quelques-
unes des applications d'Analyse mentionnées plus haut,
formant du tout une espèce d'exercice d'Algèbre et de Calcul
intégral qui n'est pas peut-être dénué de tout intérêt h

2- — Soient donc f et gdeux polynômes quelconques du
second degré; nous les supposons seulement premiers entre
eux. Posons

f—o0x2-f-alx-f- a2—a,)(x—a2)
g b0x2+ btx+ b2 b0(x ß,) — ß2)

Pour la brièveté, nous ferons encore

/l /*(ßl) ' /2 / ß2 > gi g(*l) » g2 ^ f a2 ;

aucune de ces quantités n'est nulle.
Aux polynômes f et g est associé un autre polynôme,

également du second degré,

hw ?£(£) *Wf'W-f(r)8'(*) > (2)

aux racines Yit et On s'assure aisément que ces racines
sont toujours distinctes.

Il est aisé aussi de constater le caractère invariant de la
relation existant entre f, get h, vis-à-vis des transformations
linéaires [x,de module yà' — y'à égal à l'unité. Enfin
h(x) est un combinant des polynômes /et g-, c'est-à-dire que
ce polynôme se reproduit, sauf un facteur constant, toutes
les fois qu'on remplace f et g par deux nouveaux polynômes,,

F rf + sg G r'f + s'g

contenus l'un et l'autre dans leur faisceau.
Désignons encore par G {y) le discriminant, relatif à x,,

du faisceau précédent écrit sous la forme f—yg. G (y) est

1 Le lecteur est prié de faire lui-même les figures nécessaires à la compréhension du texte.
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quadratique enî/, se réduit à 'z(«2) quand 0;
si donc ses racines sont désignées par et nous aurons

G(r,=rw(<-t)('-â- «

Dans le cas de réalité, la signification des polynômes h(x)
et G (y) est évidente; les racines du premier, v)i et vj2,

déterminent les positions des extremas du rapport ^ les
o

racines du second définissent les valeurs mêmes de ces

extremas. Il est aisé de préciser davantage les relations existant,

dans le cas général, entre ces éléments h(x) et G(y).
Les définitions ci-dessus montrent en effet tout de suite

que, sauf certains facteurs constants, les polynômes f—yxg
et f— y^g sont égaux aux carrés (x — t^)2 et (x — v?2)2 : on
détermine les facteurs par une hypothèse particulière, par
exemple en faisant x a,, ou x a2 et l'on obtient ainsi
immédiatement

(% — x)2
__ „ (*ii — «S2

t _ (ta — )2 _ (ta — •ï')2

f JiS — Jaft ^_ ^,2 — JaSa
(ï|2 _

(T

De là, des formes équivalentes, très variées, pour la trans-
fix)formation y ^-7. En voici quelques-unes :
§\x)

1 y_gi K — xY _g2 (t, —
(5)JigK — «J2 gK — «2)2

1 y.—SiK — T2 _ & (ta — *)2
(6)

y% g (ta — ai)2 g(ta — a2>2
'

puis par division 1

l--r
Ji _ Oh— *\7ta — «1

J \t2 — \ta - ai
To

(7)

1 ôn voit par là qu'en exécutant deux transformations linéaires convenables sur les va-
f (x)riables x et t/, la transformation y peut toujours se réduire à la forme simple y x2 ;g\x)

cette propriété est la source de tout ce qui suit.
A remarquer également que y± et y2 sont toujours distincts, c'est une conséquence de la

même formule (7).
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Cette dernière formule, la plus importante de toutes, se

généralise aisément. Désignons par et les deux racines
d un polynôme f—cg appartenant au faisceau (/', g), nous
aurons

1 -£i _ r
r2 y± _ —

U-Ly i y s:Y fa -r.V-. A, - x\Vri, - Täy
7 Vit — Ti / Vis — */ \li — Ts/

(«)

(9)

Récrivons les formules (5) et (6) sous la forme

\/i-£ 7^ yyi?l2_g
V ti y» 1, — «, V r2 y 12 — a,

'

d'où, par multiplication,

yG r) — f(œ ElCl (is ^ Ol F (<*t)

"g (r), - a,) (ï|2 _ a,) ~ g(x) '

mais, d après la définition (2) de h Vr:. nous avons h(at)
gif(<xt)i Par conséquent la dernière formule doit se lire

simplement

V^) Jg. (10,

Gomme d'autre part

dy d(£)=kix)d*
g)M

nous avons encore l'identité

drdx

yG (y) ~ gix) ' i11)

cette dernière joue le plus grand rôle dans les problèmes
d'intégration dont j'ai parlé plus haut.

3. — Notre premier soin consiste naturellement à lever
les ambiguïtés de signe qui subsistent dans les formules (8)
et se répercutent dans (9). Il faut, par une discussion
préalable, fixer la signification précise de la corrélation existant
entre xety,ou ce qui est au fond la même chose, avoir une
idée claire de la correspondance géométrique entre les plans
des variables complexes xet y
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Commençons par une remarque. D après (5) et (6) nous

avons
K - A)2 — «iV= £i

t

— «2/ \^2 — a2/ 02

donc, en tenant compte du fait que vj1 est différent de yj2,

^2 ai Vgl (12)
^2 a2 VS

'

formules où les signes de \/g\ et \/g^ sont choisis
arbitrairement1. On a donc, explicitement,

(«»-«ilVft „ (v- ai) Vgi

T,1"ai""Vft + Vft
' 12 '"Vâ-V*

_ K - q2) Vft _ a K-- *i) Vj
2

Vf! + Vft '' 2 2

Vffl - Vö2

Reprenons la formule (12) et rappelons quelle est la signi-
1 — aification géométrique d un rapport tel que z __ a

'• son

module est égal au quotient des distances zcxi, za2, quant à 1 ar-

gument2, il est égal à Tangle sous lequel le segment se

voit du point z, angle positif ou négatif selon que z est à

droite ou à gauche du dit segment.
La différence des arguments des deux membres, dans la

formule (12), étant évidemment égale à 7r, on conclut que
les quatre points a2 et y?,, appartiennent au même

cercle, et que les deux cordes joignant les points de chaque
couple se rencontrent à Vintérieur du cercle.

Mais les quantités yj4 et yj2 restent les mêmes quand on
substitue au polynôme f\ un autre polynôme du faisceau

f— US- Ainsi donc, d'une manière générale : si Von considère

les racines y4 et y2 d'un polynôme tel que f— cg, elles

forment avec celles 75 d, y?2 du polynôme h(x) un polygone ins-

*ii — ai __ __
V&

11 ~ a2 V72
'

(13)

(14)

1 Le changement des signes des radicaux revient à permuter les racines Yjj et r)2
2 Supposé compris entre — tz et + 7T.
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criptibledansun cercle et les deux cordes se croisent à

Vintérieur du cercle.

Il y a plus. D'après (12), les modules des rapports
rj2 — « Ii — <*2

et sont égaux.
Par suite, si l'on définit le rapport de section de trois points

«i ' situés sur un même cercle comme égal au quotientdes cordes et «,yj2, on voit que les deux racines « du
polynôme f, ou même plus généralement les deux racines du
polynôme f — cg, sont conjuguées harmoniques sur le cercle
correspondant, ou divisent de la même manière le segment ytY)2.La théorie de l'involution dépend essentiellement du
polynôme h(x)associé à fix) et g(x)Ainsiquand on envisage
cette theone dans le domaine complexe à la lumière des
résultats précédents, on la voit se résumer dans la propo-sition suivante.

Etant donnés dans un plan deux couples de points «2 et
ßy ßt, on peut toujours tracer deux cercles contenant
respectivement l'unet l'autre couple, de telle manière que les pointsd intersection de ces deux cercles soient réels et divisent
harmoniquement les arcs «, et

4. — D'après ce qui vient d'être dit il est clair qu'ayantmené suivant et un cercle quelconque C tout couple
y,, y, placé sur ce cercle de part et d'autre de la corde rh y,s,
s'il vérifie d'ailleurs la proportion des distances xlb
représente un polynôme du faisceau f-yg, ou une valeur
de y. Qu'on change le cercle C en D, et la racine Yi en <L ;
si, par exemple, â, est à l'intérieur de G, la racine <î2,'

conjuguée à celle-ci, et qui fournit la même valeur seranécessairement à l'extérieur de G, car et doivent setrouver de part et d autre de la corde n, yj2.
Récapitulons. Soit G un cercle fixe mené suivant yj, r,.2. A

toute valeur x comprise à l'intérieur de C correspond unevaleur de y.Réciproquement à toute valeur y correspondent
suivant l'équation quadratique M deux valeurs de

O [JL)
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l'une à l'intérieur du cercle C, l'autre à 1 extérieur1. Si 1 une

des valeurs de xestsur le cercle même, l'autre s y trouvera

pareillement; les deux seront séparées par la corde yîj vj2,

de telle manière que quand la variable x décrit 1 aie yj, vj2

situé à gauche de la corde, la variable engendre dans son

plan une ligne T qui ne se coupe pas elle-même et réunit les

points i/j et y,. Cette même ligne T se reproduira en sens

inverse lorsque x reviendra de yj2 en y), en suivant l'arc de

droite.
Tout l'intérieur du cercle C se transforme ainsi dans le

plan simple des ?/, et ce plan est muni de la coupure T deux

fois décrite entre y, et y± La représentation est partout
conforme, sauf aux points yj, et yî2; les angles tracés dans

autour de ces points, subissent dans la figure une duplication

autour des points correspondants y, et y/2.

De même, l'extérieur du cercle C engendre un second

feuillet du plan y,muni de la même coupure T que le

premier; les deux feuillets se traversent l'un l'autre le long de

r de la même manière que l'intérieur et l'extérieur du cercle

C communiquent entre eux au bord du cercle.

Il y a, comme toujours, une infinité de manières de

construire la surface de Riemann. En changeant le cercle G, nous

n'altérons pas les caractères généraux de la représentation;
la coupure T, image du cercle C dans le plan variera

naturellement avec le cercle. Voyons ce qui en est.

Soient, comme ci-dessus, f le polynôme relatif au

cercle C, y, et y2 les racines correspondantes, D un nouveau
cercle le long duquel se déplace le point Suivant que ce

point est à droite ou à gauche de la corde yj, yj2, le quotient
üi ~ x possède deux arguments, qui sont constants l'un et
YJg OC

l'autre, et d'ailleurs supplémentaires. Il résulte dès lors de

la formule (7) que le rapport1' ~ possède un seul argument
J 2 d

constant quand x se déplace sur D.

1 II est aisé d'obtenir, sous des formes équivalentes, la relation existant entre les deux
valeurs de x fournissant le même y. Une de ces formes est
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Ainsi tout cercle complet passant aux points et y,.,, tel

qu est le cercle D, se reproduit dans le plan y sous la forme
d un arc de cercle T limité aux points extrêmes et ?/2. Onobtient de la sorte une idée très nette de la correspondance
existant entre les plans x ety.envoici l'essentiel.

Considérons, dans x,lafigure classique comprenant tousles cercles joignant », et y,2, ainsi que les cercles C'
orthogonaux aux précédents; cette double famille de cercles se
reproduira, dans le plan y, d'une manière exactement
pareille et nous aurons des cercles T passant tous en et
yt, et les orthogonaux T' des cercles précédents. Seulement
tandis que les C sont des cercles complets, les T seront des
arcs arrêtés en yt et y.2; chacun de ces arcs peut être considéré

comme une coupure d'une surface de Riemann particulière.
En outre, quand x décrit une seule fois un cercle C', la

variable yentoure deux fois de suite le cercle correspondant
T ; pour obtenir une seule description du cercle T', de
manière que partant d'un des bords de la coupure T onarrive au bord opposé sans l'avoir traversée, il faudrait
limiter le cercle C' à la portion comprise, soit à l'intérieur,soit à 1 extérieur d'un certain cercle C.

5. — La transformation étant écrite sous la forme L

pour appliquer ce qui précède, on prendra le plus souvent
comme cercle fixe G, celui qui contient les racines « du
polynôme f.Dansce cas, l'arc T qui sert de coupurecontiendra l'origine du plan y. Si l'on choisit pour C le
cercle contenant les racines ß, ß2 du polynôme g, le cercle
T doit passer par les points de l'infini; il est donc devenu
rectiligne et se compose des deux prolongements de la
droite y,y2.Dans l'une comme dans l'autre hypothèse la
coupure est connue à priori. Adoptons la première.

Le cercle G contient ainsi à sa périphérie les racines «, et
de part et d'autre de la corde en outre un des

pôles ß, du quotient | se trouve à l'intérieur du cercle, l'autre
étant à l'extérieur. Joignons les points a, et par une
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ligne J? qui ne se coupe pas elle-même et ne sorte pas du

cercle G.

Il résulte immédiatement de la conformation de la surface

de Riemann que quand * décrit la ligne J?, la variable

part de l'origine pour y revenir de l'autre côté de la coupure

T, après avoir décrit un lacet A- Et le point qu'enveloppe

le dit lacet correspond au point qui, relativement a a

ligne £, est situé de l'autre côté que le pôle /3,. Supposons

que c'est nx.
Il est maintenant aisé de supprimer les ambiguïtés, de

signe que contenaient les formules (8).

Désignons par \Zg3 la valeur de la fonction •*.<;),

prolongée suivant la ligne £, à partir de la valeur initiale Vg,
dont le signe sera choisi à volonté.

Les valeurs initiales des radicaux y/'L — ^ et y/l — ^ sont

égales entre elles, toutes deux à l'unité. La valeur finale du

premier radical, ou doit être égale à — 1, la
1 K& 7ii — ai

variable yayant circulé autour du point y{ Au contraire, le

point y2est resté en dehors du circuit A, le radical y^^1

t —ai LAi
reprend donc sa valeur de depart et 1 on a _ ^

Ces résultats qui sont d'accord formellement avec^ les

équations (12) en précisent la signification : si donc. V s
est

le prolongement de V^g, lelong de la ligne £, et seront

placés de part et d'autrede la ligne L. et /3, seront du

même côté.
La règle précédente n'est pas changée dans l'hypothèse

qui peut très bien se rencontrer où les six points a. ß, vi

appartiendraient à un seul et même cercle. Ainsi que nous

savons, les points de chaque couple a.2 et ßt, ß.2 sont de

côtés différents par rapport à la corde v),v?.2, et les proportions

«1 11 _ <h*)iet h 7,1

ai %
~~*2^2' Pl ^2 n2

font voir que les cordes «, a3etß3 ne peuvent pas se couper
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à l'intérieur du cercle. D'où il soit que /S, et & seront tou-
jouis u même côté de la ligne £. tous deux dans la région
opposée à yj,. °

Le cas examine à l'instant comprend en particulier celui
ou les six quantités a, ß, seraient toutes réelles.

Supposons les « et ß réels; il résulte de ce qui vient
d etre dit que si les segments rectilignes ^ et/3^32 empiètent

un sur 1 autre les nne peuvent être réels.
Pour la réalité de », et il faut donc, mais il suffit aussi,

que es dits segments, ou n aient aucune partie commune,ou que l'un d'eux soit inclus dans l'autre; les deux cas n'en
ont qu un, car en reliant au besoin par l'infini les deux

points appartenant au même couple, on peut toujours se
iguier que les segments réels dont il s'agit ne possèdent

aucun élément commun. Et alors l'étude des extremas du
rapport réel

le /V) _ P- — «))(•*• — «a)

"oé'i-T>(X — ßj) — ß2)

montre a l'instant que chacun des segments a, «4, ß1ßi, décrits
comme il vient d'être dit, contient une racine •/), et rj2 du
polynôme h[x).

Dans ce cas de réalité, c'est l'axe des .r qui joue le rôle du
cercle G, les parties, intérieure ou extérieure, du même
cercle se confondent avec les demi-plans, positif ou négatif,du plan complexe. Et l'on voit immédiatement que si a, et
a2 sont réunis par une ligne £ tracée sur un seul de ces
deux demi-plans, le lacet A correspondant, qui joint l'origine

à elle-même dans le plan yentourele point v,
8̂ (*) '

où /]i est la racine de h(x)appartenantau segment a,a.2.

Pour terminer, présentons quelques applications se
rattachant au calcul intégral. Considérons d'abord l'intégrale

rn-r)""1
/ 71 dx > (15)

g(.xf" 2
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nous avons identiquement

<*2 — «i rf(x)'" _
<7(*r' r(x-a,r(x-a2r-1^

g(x)"^ 5 - *(*)m+ï
(16)

^ (x

m+7

Mais, à cause de la formule (11),

dx dy dy

w"yo^V(-fX-0rw'
la première des intégrales du second membre de (16) s'écrit
encore

/x — ax T{x — cl1 [x— a2)l
1

dx f*x — «x ym~l dy
^

vfp L zw J ~ J ~vW) VGÏJ) '.
et, de même, la seconde,

rx — a2 r (x — q^ix — a2)1m dx
__ Çx — a2 ym~l dy

J ij(x) L gw) J .g{*) J yjW) V517)

D'autre part, les formules (8) nous donnent évidemment
avec certains coefficients constants Ad, B4, A2, B2

iVi-.s+bVi-.I'
_=J A,y/l-i + B,y/l-L

Par suite, en transportant ces valeurs dans (16), (17), (18),
nous obtenons un résultat tel que le suivant

I»,J J \Z'-y,
où P et Q désignent de nouvelles constantes.

yg (oc)
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Par exemple, si l'on fait m — — on trouve immédiatement
le résultat suivant qui est bien connu.

Soit X f{x)g(x) un polynôme quelconque du 4e degréT
la transformation z4 ^ ramène l'intégrale abélienne

g{x)

dz

J"^ deux intégrales elliptiques appartenant chacune au

type de la lemniscate j*-
7. — Il est aisé de généraliser, de différentes manières,

la formule (19) ; on a, par exemple, quel que soit l'exposant

V.i

r =p r
f(x)1 g(x)m~k+i (ag+ bf)k*y/( I -yj l « + Inf

d+ Q

(20)

y/'-£'« + *>'
y2

î1Par suite, si k m — — on voit qu'une intégrale hyper-
elliptique de la forme

r dx
J Vfg(ag + !>

'

(21)
hf)

;

est réductible à deux intégrales elliptiques de la première
espèce.

Revenons au type (19), et faisant

0Cj — 0 a2 ~ 1 OU f(x) x(l — x)

proposons-nous de déterminer l'intégrale définie

ifV"(l — x)m~ldx
~r— (22)

1YI-4—

g(x)2

où le chemin d'intégration est rectiligne, tandis que l'exposant

m est supposé supérieur à l'unité pour la convergence.
En ce qui concerne g(x), nous admettons qu'il ne possède
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aucune racine réelle entre 0 et 1, et nous posons g0

et g, g(l).
Faisons y l'intégrale devient

A'"-1 dy x
J Vg<j)

Mais les formules (8) nous donnent ici

puis

(\fi— -— v/1 — —^
•

Vi (la — ti) Véb V * -T2 * ^

soit, en vertu de (12),

_<_:=
1 Yt/i-\/i---v) •

<23>

V# 2V&W 32 V ii/

Il convient de rappeler que est la valeur finale, obtenue

par continuité, de la fonction Vg {x) ; le âigne de la valeur

initiale \Zg0 est choisi à volonté. De la même façon y"^ est

—, dont la

valeur près de l'origine est supposée parfaitement
déterminée. Et quant à yjt, il représente celle des racines du

polynôme h{x) qui est à droite du segment 01 lorsque ce seg-
fix)

ment laisse à sa gauche le seul pôle de contenu à Tinté-
Ö\XI

rieur de G et inversement.
Soit À la coupure qui correspond au chemin d'intégration,

nous avons

329
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Mais le lacet A entoure le seul point yt, par suite

1 Vl
'

Vft ff ym~ldy

o g(oc)m+ï 0 \A — -V r,
et en résumé

(1 — ar)-1 rf* 22 — 11!

T^T~ ^ • ,24)
0 o-(x) 2 V °1

Changeons dans l'intégrale la variable contre la variable1— x;il suffit de remarquer que yt est le même pour les.
deux polynômes g(x) et ^(1 — x) pour trouver

1

Çx x)mdx 22"* m\ {m — 1)

J gu-r+l~^-""r; <25)

et enfin, en additionnant les deux résultats précédents,
1

f (1 ~ _ 2,m/J_+ -J_\y "'•'<«-!)!J \ i/o \/~ 1 (2m) l ' I '
0 g x) 2 \ K OO Foi/ * /

Le degré d'homogénéité de l'élément intégré est ici égal
à 2. Nous avons donc affaire à une intégrale du type hyper-
géométrique ; pour en obtenir explicitement la signification^
calculons yx en fonction des coefficients du polynôme

On a

puis

Mais

g(x) — ax2 -f- bx + c

r — Ch.i) —
1 — 2y)i

.ö (^li) 2^r]1 -j- b

"U —/»o + i/o
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d'où

/ft -/ft _ ft - ft _•n
(b+ '2a)\/g0 + g/gl I« + + 2c + 2/ft/ft)

i b + 2c — 2 /üyi7
6 + 2c 4- 2 (/g-0 (/& è2 — 4nc

La forme définitive de (24) est donc

1

/: 1(1 — s)"'-'
dz

m+-
0 (az2 + bz + c) 2 (27)

^2m,n (m — 1) ' _L A + 2c-2j/g0|/^Y" ;

(2m) [/gt \ />2_4ä6. /
ou encore, moyennant une généralisation évidente,

X

S-
m, \m—1

2 (X — Z)
dz

0 (az2 + bz + c)/n+2 (28)

22/nm (m — 1) 1 + 2c — 2(/>0 (/*J_ /^' + 2c — 2t/^oi/*V
#(.r) \ b2 — 4ac(2m) |/,

Comme toutes les précédentes, cette formule est valable

pour un exposant m quelconque : la seule condition qui soit

imposée à ce coefficient est d'être positif.
Si, en particulier, nous le faisons entier, on peut dériver

m fois, et alors en posant

2üÖ Z= bx -f 2c — 2\/~[/g{x) (29)

nous aurons

dm /&m\ /b2 \m Xm

-7= I 1.3.5 (2m w- 1 - — ac r (30
dx"\\/gj V'i ,«+irM

C'est là une identité remarquable relative à un polynôme
quelconque du second degré g(ûo). Il est intéressant de la

retrouver par une** voie moins détournée, et strictement
algébrique. C'est par là que je terminerai.
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8. — Avec quelques auteurs représentons par le symbole

(xm) un développement ordonné suivant les puissances
croissantes de x lorsque le premier terme est du degré m\ le
nombre m peut d'ailleurs être quelconque positif ou négatif.
De la même manière désignera une série ordonnée
suivant les puissances descendantes de x lorsque le terme
initial est d'ordre m par rapport à ~

Soit m un entier positif, f{x) une fonction du type
1

c'est-à-dire

f{x) — amxm + am_vxm~l -f -f «0 + —^ + •• •

Si le développement est sans lacunes, le degré des diverses
dérivées f\x)9 f"{xva diminuant d'une unité à chaque
rang. Il y a toutefois exception pour la (m -f- l)rae dérivée
dont l'ordre s'abaisse brusquement de m unités. Au lieu
d'être du type f—\ cette (m -f- l)me dérivée est évidemment

/ 1 \ m-\-2
du type l—J ; telle est la simple remarque qui me sert de

point de départ.
Soit maintenant g{x) un polynôme quadratique non carré,

g(x) ax2 + t)X + c b2 — \ac 0

et pm(.v) un polynôme quelconque du ?nme degré, de sorte

que^L est du type (x"1—1). Alors, comme on vient de voir,
y g

dm / Pm\la quantité —n\y=-) sera tyPe y~J • D'autre part, en

opérant la différentiation, on trouve directement

dm P,

dxm \[/g at„^l
(31)

équation où figure un nouveau polynôme Pw. Au lieu d'être
du degré 2m comme il le semblerait d'abord, ce polynôme
P,„, suivant la remarque ci-dessus, est du degré m.
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D'autre part, si pm parcourt l'ensemble co ,rt+1 des

polynômes du 7ïime degré, Pm décrira aussi le même ensemble

dans sa totalité. Dans le cas contraire, deux polynômes différents

pm et p'm ramèneraient le même numérateur Pm, et

nous aurions l'égalité absurde

dm f Pm — Pm \ _ Q

dxm V l/g

Ainsi, à tout polynôme pm correspond selon l'égalité (31)

un autre polynôme Pm et inversément. Et voici la

conséquence qui se déduit de là ; g(x) étant un polynôme du second

degré, P un polynôme quelconque du mme degré, la différentielle

—1?—
sera toujours intégrable algébriquement m fois

gm+â
de suite.

9, — Pour opérer l'intégration il est intéressant d'exprimer
l'un par l'autre les deux, polynômes pm et Pm.

A cet effet, prenons un cas particulier, et posons, a et ß

étant les deux racines de g(x),

p(x) (x — ol)^(x — ß)^* '

avec la condition l + de sorte que p(x) ait le degré
voulu. Je dis que, dans ce cas, P(x) est divisible parp{x).

En effet, puisque g(x| — a[x — a)[x — /3), la quantité -7==

développée selon les puissances de (x — oc) est du type
X—

Ifx — a)) 2, ainsi le premier membre de (31) sera de la forme

((.r —- «)) 2
m

• La comparaison avec le second membre

indique le degré de P, qui est X.

Autrement dit, P est divisible par (x — a)\ et pour la

même raison il le sera aussi pour (x— /3)^. En particulier
si la somme des indices X + y est égale à m, le polynôme P,
du degré m, se confond avec [x — off(x — ßf, sauf un
facteur constant A.

L'Enseignement mathém., 20e année; 1919. 22
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On obtient sans difficulté ce facteur en partant de l'identité

(31) qui s'écrit maintenant

dm(x —q)X 2 2 (x —«)X 2

Vf =AX —ï ï (31-)
a"'+ 2

en comparant dans les deux membres les plus petites
puissances de (x—or),ou de (x—ß),nous avons

AX a'"(a — P)m^x — 2) (x — • • • (X + ^ ~

a"'(p - a)'"^ - îj ^ ^ i

valeurs égales à cause de la relation X -(- Au reste,
il est intéressant de remarquer que l'identité (31Ws) ci-dessus,
obtenue pour des valeurs entières de X et demeure vraie,
ainsi qu on voit sans peine, quels que soient ces paramètres,
sous réserve de la condition X + p. relative aux indices.

La formule (31), récrite sous la forme

_

(x —«)X(x —p)^ _ A (x — q)X(x — p)i*

g(x)m+\
— a 1 ^~pr 1

dxm y/g{x)I m+i
• +r-m

comprend en réalité (m + 1) cas distincts obtenus en faisant
parcourir à X la série A 0, 1, m ; la combinaison de ces
cas particuliers redonne le cas général. Et voici, si on veutr
le résultat explicite.

Posons, pour abréger, fx — (x — a)x(x — ßf, et mettons
pm sous la forme

Pm Co/o + if\ 4~ c2 /2 + ••• 4~ cmfm >

on a alors
co\fo + C1^1 f\ + 62-^2^2 4" ••• '

Toute la question se réduit à développer dans la forme
indiquée un polynôme quelconque, ou même le monôme x'\
avec n ^ m. On posera
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et
(ß — a)mxn (ß(«i — a) — a (x — ß))'? [(^ — a) (x ß)J

_«<)>-O
Si donc

(i-^Yd-*)"=2^* •VP/
le coefficient de fm-.k dans le développement de se trouve

égal à la quantité
ßra

(ß _ a)'" 4 "

Par là se trouve résolu, d'une manière complète, le
problème de la correspondance existant entre les deux
polynômes pm et P„t qui figurent dans (31). Mais cette solution,

assez compliquée, est susceptible de simplification dans un

cas particulier.

10. — Soit x0une constante quelconque. Par l'extraction
de la racine carrée \/g,on peut toujours définir un polynôme
du 1er degré />, et une constante de manière que la

différence vs — pi — qnV~g soit d'ordre 2 par rapport à — ïr0, ou

m Pi —%V g(f* — ^o))2 • (32)

Elevons usà la mme puissance, nous obtenons

ûSm =Pm-- 1m-M((* - xSf"1 (33)

équation où les deux polynômes pm et i ont un degré
égal à leur indice.

Par suite, en dérivant m fois,

dm / Pm\_ / us"1 \ _
Pm

dxm\\/ g
dx'n y\/ g J 1

et comme, d'après (32), ce résultat doit être de la forme

((.» — s,))"',lepolynôme Pm, du degré m, sera égal à
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(x — x0)m saufun facteur constant On a donc

d'"( pm \dmWm \' > — ' > — c (33Ws
ttlA

.«• 2
d*m \y g J docm \\/

II est clair que les polynômes pm et qnl_a, introduits à l'instant,

dépendent de la conversion en fraction continue de la
1fonctionEn effet, la relation (33), écrite sous la forme,V g

flm—1 /, \ 'im-— ((*- *„)) (34)

montre que la fraction rationnelle^^, du degré repré-
Pm

1
sente l'irrationnelle - aux termes près de l'ordre

\s g

{x— m\ c'est la caractéristique d'une réduite.
Si on multiplie (33) par la quantité conjuguée pm -f- qm-\\/^g,

laquelle est d'ordre zéro, on voit que p*m — gq2fn l est aussi
d'ordre 2m en x — x0, et comme ce polynôme est du degré
2m, nous avons l'équation de Pell

Pm SHm — \ — A (x XQ) (3o)

La constante A, de même que c qui figure dans (33bis), dépend
évidemment du paramètre laissé arbitraire dans la définition
de Pi et q0.

Et il importe de remarquer que l'équation ci-dessus caractérise

aussi les polynômes pm et qm_x premiers entre eux. En
effet, si (35) a lieu, une seule des quantités pm — qm_x\/~g
et pm -f- qm+xX/g doit être d'ordre 2m, la première, par
exemple. On aura donc

dxn \y/ g J m+l
2

ce qui suffit à établir que pm coïncide avec le polynôme étudié

précédemment.
Dans l'équation (32), pi est un polynôme arbitraire du pre-



SUR QUELQUES INTÉGRALES 337

mier degré. Dès qu'il est choisi, le binôme x -1- x0, selon les

puissances duquel on effectue les développements, est déterminé,

car on a

Ce binôme ne diffère donc que par un coefficient constant
du suivant

lf— Px§ — 2"£ Pi •

Pour trouver le coefficient c de la formule (33b,s), il suffit
de faire x voisin de l'une des racines de g{x), en comparant
entre elles les parties principales des deux membres. On

obtient immédiatement de la sorte

^L/J^V= — 1.3.5 (2m_ 1)^1-
dxm \\/ g dxm \^/ a 0,n+2

Ö

C'est, sous une forme légèrement plus générale, l'équation

(30) qu'il s'agissait de vérifier. Pour obtenir cette
dernière, on fera

g(x) ax2 + bx + c ; )/g(x) z=\/c ^1 -f x + + •••)

bx
Pl(x) c + —,xo— 0.

De là

q0 \/g0 \/c, US-8e4gC^2+ •••

et
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