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SUR UNE TRANSFORMATION ELEMENTAIRE
ET SUR QUELQUES INTEGRALES DEFINIES
ET INDEFINIES

PAR

CG. CAILLER (Gen eve).

1. — La plupart des traités d’Algebre élémentaire consa-
crent au moins quelques pages & ’étude de la transformation

f(x)

Y=o dans laquelte f(x) et g(v) désignent deux polynomes

quelconques du second degré; elle offre un exemple d’une

détermination d'extremum sans l'intervention d’aucune idée
de continuité. En dehors de cette application classique, la
transformation précédente, qui constitue en Géométrie la
base de la théorie de l'involution de 4 points, joue encore
un role essentiel dans nombre de probléemes d’Analyse :
parmi ceux-ci on peut citer I'intégration des irrationnelles
du second degré, la réduction des intégrales elliptiques a
la forme normale de Legendre, ’abaissement au type ellip-
tique de certaines catégories d’'intégrales ahéliennes, etc.
En dépit de ces multiples applications la plupart des
auteurs, en s’occupant de I’équation y — %) $en tiennent
; g ()
au cas ou les deux polyndmes /et g sont réels de méme que
les variables & et y. Or le cas général n’est ni moins simple
ni moins intéressant, et comme il est peu connu, on me
permelira de revenir ici sur la transformation dont il s’agit
envisagée dans toule son étendue. On va voir avec quelle
facilité la discussion peut étre poussée a bout; elle s’appuie
sur la transformation circulaire de la Géométrie et permet
d’établir aisément la correspondance entre le plan simple

L’Enseignement mathém., 20 année; 1918. ' 2




318 C. CAILLER

de la variable x et le double feuillet de Riemann qui est le
lieu de la variable . |

A cette question d’ordre algébrique j’adjoindrai quelques-
unes des applications d’Analyse mentionnées plus haut,
formant du tout une espéce d’exercice d’Algebre et de Calcul
intégral qui n’est pas peut-&tre dénué de tout intérét 1,

2. — Soient donc f et g deux polynémes quelconques du
second degré; nous les supposons seulement premiers entre
eux. Posons

f= 00x2'+ G X+ ay = ay (x — a;) (€ — ay) ,

g§=byx® + b x + by = by (x — B;) (x —B,) .

(1)

Pour la briéveté, nous ferons encore

=18 =R si=gley) . g =gl ;

aucune de ces quantités n’est nulle.
Aux polynémes /et g est associé un autre polynome, éga-
lement du second degré,
2 d /f ’ ’
hiz)=g* 7 (5 ) =8g@) '(x) — f(x) g/ (x) , (2)
dx \ g
aux racines n, et »,. On s’assure aisément que ces racines
sont toujours distinctes. |
[l est aisé aussi de constater le caractére invariant de la
relation existant entre f, g et %, vis-a-vis des transformations
w49
le+8/
() est un combinant des polynémes fet g, c’est-a-dire que

ce polynome se reproduit, sauf un facteur constant, toutes
les fois qu’on remplace fet g par deux nouveaux polynémes,

linéaires (x,. ) de module »9'— +'d égal al’unité. Enfin

F=rf+sg, G=rf+sg,

contenus l'un et 'autre dans leur faisceau.
Désignons encore par G(y) le discriminant, relatif a x,
du faisceau précédent écrit sous la forme f— yg. G(y) est

1 Le lecteur est prié de faire lui-méme les figures nécessaires a la compréhension du texte.
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quadratique en y, se réduit a /"2(a,) = /"%(a,) quand y—=0;
si donc ses racines sont désignées par y, et y,. nous aurons

so=re(1=0)(i-2) . m

Dans le cas de réalité, la signification des polynomes / (x)
et G(y) est évidente; les racines du premier, », et =,

‘déterminent les positions des extremas du rapport é , les

racines du second définissent les valeurs mémes de ces ;
extremas. Il est aisé de préciser davantage les relations exis-
tant, dans le cas général, entre ces éléments A(x) et G(y). ;

Les définitions ci-dessus montrent en effet tout de suite |
que, sauf certains facteurs constants, les polynomes f— vy, g
et f— y,g sont égaux aux carrés (xr— n,)% et (£ — n,)? : on
détermine les facteurs par une hypothése particuliére, par
~exemple en faisant x =a,, ou x —a, et 'on obtient ainsi
immédiatement

(y, — > (ny— ) ,
f—ng=—n% (n, — )2-"'—-71?’2 ('”11_“2)2 ’ .
2 2 “ ;
o — o Mg — X)) e g — X
f—yzé = — )51 (g — a2 Jo 89 (Mg — 0g)?

De la, des formes équivalentes, trés variées, pour la trans-

formation y = -7:%)) En voici quelques-unes :
o \4 ) A
P Y s =g by — 5) *
Yoo gm— ) gy — ) |
_._7;:5_1(1]2——1:)2:&(712——.70)2 (6) 1
X .1 (712 — O(1)2 5 '(712 a2)2 , }
puis par division !
,y~ ' .
J1__ (711 —_ x>2<712 _ O‘1>2 (7)
Y Ny — &) \My — o ' :
Yo

1 On voit par la qu'en exécutant deux transformations linéaires convenables sur les va-
[@
g(x)
cette propriété est la source de tout ce qui suit.

A remarquer également que y, et y, sont toujours distincts, c’est une conséquence de la
méme formule (7).

riables x et y, la transformation y = peut toujours se réduire a la forme simple y = x?;
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Cette derniére formule. la plus im ortante de toutes, se
) P P
‘énéralise aisément. Désionons par v, et les deux racines
8 8 I 71 72
d'un polyndme f— co appartenant au faisceau (£, @), nous
y S app 8,
aurons

1— 217 |
Y Y ("h — x)2<n2 — Y1>2: (”h - x>2-<712 - Y2>2 _
1 - S92 Mg — X/ \\y — Y Mo — X/ \MNy — Yo
) X

Récrivons les formules (5) et (6) sous la forme

\/1_3;:_%"__111_—*, \/1~£:~_§;1”2—‘i, 8)
N1 gh — % Yo Vg 2 ™ %

d'ot, par multiplication,

VGTT = ' (a) &2 [T

Gl oo _grebe,
5 "My ) (Mg

) (g — o) hia,) g(x)
mais. d’aprés la définition (2) de Z%(x), nous avons h(a,)
= &i/'(«,), par conséquent la derniére formule doit se lire
simplement

VG =1 (10)
Comme d’autre part

L I\ _ hix)dx

o

nous avons encore 'identité

dy  _ dx
VG &)

(11)

cette derniére joue le plus grand role dans les problémes
d’intégration dont j'ai parlé plus haut.

3. — Notre premier soin consiste naturellement a lever
les ambiguités de signe qui subsistent dans les formules (8)
et se repercutent dans (9). Il faut, par une discussion préa-
lable, fixer la signification précise de la corrélation existant
entre x et y, ou ce qui est au fond la méme chose, avoir une
idée claire de la correspondance géométrique entre les plans
des variables complexes x et y.
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Commencons par une remarque. D’apres (5) et (6) nous

avons
2
(11.___%1)2—— (ﬁ:ﬁ) =
W % Mg — %

donc, en tenant compte du fait que =z, est différent de n,,

go |35

Ny — % Vg1 Mg — % V?'Ll (/12)
T % Vs, g T % Ve
formules ou les signes de Vg, et \/g2 sont choisis arbitrai-
rement?. On a donc, explicitement, ’

(o —ay) Vé—’; (o — ) Vs . 18)

N — o, = 2 ——L 2 gy — oy == ——2———2
\/g1 + ng Vg1 — Vé’é

0, — (al - az) Vtg . (az - 0‘1) ng ) (’1[1)

o, = — — g — Oy — — —
T Ve + Ve Ve, — Vs

Reprenons la formule (12) et rappelons quelle est la signi-

v , v @ y ) Z — 0y
y p : son mo-
ﬂ( ation géométrique d’un rapport tel que 1 80

Z — dy

dule est égal au quotient des distances za,, Zotg, quant fl_l_l&r-
gument?, il est égal a 'angle sous lequel le segment «, o, se
voit du point z, angle positif ou négatif selon que z est a
droite ou a4 gauche du dit segment.

La différence des arguments des deux membres, dans la
formule (12), étant évidemment égale a m, on conclut que
les quatre poinls a,, x, €t u, . n, appartiennent au méme
cercle, et que les deux cordes joignant les points de chaque
couple se rencontrent a l'intérieur du cercle.

Mais les quantités », et u, restent les mémes quand on
substitue au polynéme f, un autre polynéme du faisceau
f— yg. Ainsi donc, d’'une maniére générale : si lon consi-
dére les racines y, et y, d’'un polynénze tel que f— cg, elles

forment avec celles 0, , ny du polynéme h(x) un polygone ins--

! Le changement des signes des radicaux revient a permuter les racines 7, et 7, .
2 Supposé compris entre — © et + 7.
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criptible dans un cercle et les deux cordes se croisent ¢ I'in-
térieur du cercle.

Ily a plus. D’aprés (12), les modules des rapports ::1 ——:—1
1 7 %
et 2" gopt égaux.
7]2 - 0(2

Par suite, si 'on définit e rapport de section de trois points
My @y, M, SItU€s sur un méme cercle comme égal au quotient
des cordes ayny et aym,y, on voit que les deux racines « du
polyndme f, ou méme plus généralement les deux racines y du
polynoéme { — cg, sont conjuguées harmoniques sur le cercle
correspondant, ou divisent de la méme maniére le segment v, v,.

La théorie de I'involation dépend essentiellement du poly-
nome % (x) associé a flx) et g(x). Ainsi quand on envisage
cette théorie dans le domaine complexe a la lumiére des
resultats précédents, on la voit se résumer dans la propo-
sition suivante.

Etant donnés dans un plan deux couples de points o, , a, et
Bis By, on peut toujours tracer deux cercles conlenant respec-
tivement Uun et U'autre couple, de telle maniére que les points
d’tntersection de ces deux cercles soient réels et divisent
harmoniquement les arcs oy oty et',B, BB, .

4. — D’aprés ce qui vient d'atre dit il est clair qu’ayant
mené suivant y, et », un cercle quelconque C tout couple
71+ 72 Placé sur ce cercle de part et d’autre de la corde 7, n,.
s'll vérifie d'ailleurs la proportion des distances 117 — Yo'l

Y1 i T2 "
représente un polynéme du faisceau /— yg, ou une valeur

de y. Qu’'on change le cercle C en D, et la racine 5, en ¢, ;
si, par exemple, J, est a l'intérieur de C, la racine 9,,
conjuguée a celle-ci, et qui fournit la méme valeur Y, sera
nécessairement a Pextérieur de G, car d; et 9, doivent se
trouver de part et d’autre de la corde n, Ny

Récapitulons. Soit C un cercle fixe mené suivant y», n,. A
toute valeur x comprise a Uintérieur de C correspond une
valeurde y . Réciproquement a toute valeur y correspondent
/()

glx)

suilvant I’équation quadratique Y = , deux valeurs de «x,
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I'une a intérieur du cercle C, 'autre a I’extérieur?!. Si l'une
des valeurs de x est sur le cercle méme, l'autre s'y trouvera
pareillement; les deux seront séparées par la corde nyn,,
de telle maniére que quand la variable x décrit 'arc 0, n,
situé a gauche de la corde, la variable y engendre dans son
plan une ligne T' qui ne se coupe pas elle-méme et réunit les
points y, et y,. Cette méme ligne I' se reproduira en sens
inverse lorsque x reviendra de n, en », en suivant I’arc de
droite.

Tout lintérieur du cercle C se transforme ainsi dans le
plan simple des y, et ce plan est muni de la coupure I' deux
fois décrite entre y, et y,. La représentation est partout
conforme, sauf aux points 0, et »s,; les angles tracés dans x,
autour de ces points, subissent dans la figure y, une dupli-
calion autour des points correspondants y, et y,.

De méme, l'extérieur du cercle G engendre un second
feuillet du plan y, muni de la méme coupure I' que le pre-
mier: les deux feuillets se traversent 'un l'autre le long de
T de la méme maniére que Pintérieur et I'extérieur du cercle
C communiquent entre eux au bord du cercle. -

Il y a, comme toujours, une infinité de manieres de cons-
truire la surface de Riemann. En changeant le cercle G, nous
n’altérons pas les caractéres généraux de la représentation;
la coupureI', image du cercle C dans le plan y, variera
naturellement avec le cercle. Voyons ce qui en est.

Soient, comme ci-dessus, f— cg le polyndme relatif au
cercle C, v, et y, les racines correspondantes, D un nouveau
cercle le long duquel se déplace le point x. Suivant que ce

point est & droite ou a gauche de la corde 0, u,, le quotient
— by .

Z—l——x posséde deux arguments, qui sont constants l'un et

L — |

Pautre, et d’ailleurs supplémentaires. Il résulte deés lors de

la formule (7) que le rapport ;—l—}—:« possede un seul argument
' 2

constanl quand x se déplace sur D.

1 11 est aisé d’obtenir, sous des formes équivalentes, la relation existant entre les deux
valeurs de x fournissant le méme y. Une de ces formes ‘est

By — Gy Lg— &y By

Xy -mOg Ty — %y 8
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Ainsi tout cercle complet passant aux points y, et u,, tel
qu’est le cercle D, se reproduit dans le plan y sous la forme
d’un arc de cercle T' limité aux points extrémes y, et y,. On
obtient de la sorte une idée trés nette de la correspondance
existanl entre les plans x et Y : en voici ’essentiel.

Considérons, dans x, la figure classique comprenant tous
les cercles joignant ny el x,, ainsi que les cercles C’' ortho-
gonaux aux précédents; cette double famille de cercles se
reproduira, dans le plan Y, d'une maniére exactement
pareille et nous aurons des cercles T passant tous en Y, et
Y». et les orthogonaux I' des cercles précédents. Seulement
tandis que les C sont des cercles complets, les I' seront des
arcs arrétés en y, et y,; chacun de ces arcs peut étre consi-
déré comme une coupure d’une surface de Riemann particu-
liere. En outre, quand & décrit une seule fois un cercle C', la
variable y entoure deux fois de suite le cercle correspondant
I'"; pour obtenir une seule description du cercle I”, de
maniére que partant d'un des hords de la coupure T on
arrive au bord opposé sans I'avoir traversée, il faudrait
limiter le cercle C’ a la portion cOmprise, soit a 'intérieur,
soit a 'extérieur d’un cerlain cercle C.

5. — La transformation élant écrite sous la forme Y=,

Uo [~

pour appliquer ce qui précéde, on prendra le plus souvent
comme cercle fixe C, celui qui contient les racines 2. a, du
polynéme f. Dans ce cas, I'arc T qui sert de coupure con-
tiendra l'origine du plan y. Si Pon choisit pour C le
cercle contenant les racines 8,8, du polynéme g, le cercle
I' doit passer par les points de Uinfini; il est donc devenu
rectiligne et se compose des deux prolongements de la
droite y,7,. Dans l'une comme dans l'autre hypothése la
coupure est connue a priori. Adoplons la premiére.

Le cercle C contient ainsi a sa périphérie les racines «, et
a,, de part et d'autre de la corde n11.7 €n outre un des

poles 8, du quotient —]; se trouve a Pintérieur du cercle, I'autre

o]
etant a l'extérieur. Joignons les points «, et «, par une
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ligne £ qui ne se coupe pas elle-méme et ne sorte pas du
cercle C. .

Il résulte immédiatement de la conformation de la surface
de Riemann que quand x décrit la ligne £, la variable ¥
part de l'origine pour'y revenir de autre coté de la coupure
T, aprés avoir décrit un lacet A. Etle point y, qu'enveloppe
le dit lacet correspond au point n, qui, relativement 2 la
'~ ligne £2, est situé de l'aulre coté que le pole B,. Supposons
. que c’est ny. ‘

1l est maintenant aisé de supprimer les ambiguites. de -
signe que contenaient les formules (8).

Désignons par Vg, la valeur de la fonction Vg (), pro-.
longée suivant la ligne £, & parlir de la valeur initiale Vg,
dont le signe sera choisi & volonté.

Les valeurs initiales des radicaux \/'l — g— ety/1— 3— sont
J1 U2
égales entre elles, toutes deux a l'unité. La valeur finale du
: : g n, — . , .
premier radical, ou —‘é’?_—l T % Joit étre égale a — 1, la
» Vs — %

variable 7 ayant circulé autour du point y,. Au contraire, le
point v, est resté en dehors du circuit A, le radical \/1 ——%
. ) 2’

Mo — % V' 81
Ng — % ‘/g2
Ces résultats qui sont d’accord formellement avec les

reprend donc sa valeur de départ et l'on a

équations (12) en précisent la signification : st donc \/572 est
le prolongement de g, le long de la ligne £2, 0, et f2, seront
placés de part et d’autre de la ligne £. 7, et (3, seront du
méme COLé. |
La régle précédente n’est pas changée dans I’hypotheése
qui peut trés bien se rencontrer ou les six points a. 3, 7
appartiendraient a un seul et méme cercle. Ainsi que; nous
savons, les points-de chaque couple «,, a, et §8,, 5, sont de
cotés différents par rapportalacorde »,7,, etles proportions

Ay Ny __ %My

. et ——ﬁl M ———BZ i
%y Mg %o Mg B1 Mo By My ’

font voir que les cordes «,a, et 8,3, ne peuvent pas se couper
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a l'intérieur du cercle. Dot il suit que 3, et f3, seront tou-
jours du méme cHté de la ligne £2, tous deux dans la région
opposée a v, .

Le cas examiné a I'instant comprend en particulier celui
ou les six quantités ¢, B. n, seraient toutes réelles.

Supposons les 4 et f réels; il résulte de ce qui vient
d’étre dit que si les segments rectilignes o, a, et 3,3, empié-
tent 'un sur I'autre les 5 ne peuvent étre réels.

Pour la réalité de ny et z,. 1l faut done, mais il suffit aussi,
que les dits segments, ou n'aient aucune partie commune,
ou que I'un d’eux soit inclus dans 'autre; les deux cas n’en
font qu’un, car en reliant au besoin par l'infini les deux
points appartenant au méme couple, on peut toujours se
figurer que les segments réels dont il s’agit ne possédent

aucun élément commun. Et alors 'étude des extremas du
rapport réel

by f(x) _ (r — o) (r — a,)

a_o glx) (x — @)1 — By)

montre & I'instant que chacun des segments «,a,. 3, 3,. décrits
~comme il vient d’étre dit, contient une racine 7z, et n, du
polynéme 7% (x). |

Dans ce cas de réalité, c’est I'axe des = qui joue le role du
cercle C: les parties, intérieure ou extérieure, du méme
cercle se confondent avec les demi-plans, positif ou négatif,
du plan complexe. Et I'on voit immédjatement que si o, et
2, sont réunis par une ligne £ tracée sur un seul de ces
deux demi-plans, le lacet A correspondant, qui joint l'ori-

. 3 A . {T

gine a elle-méme dans le plan y, entoure le point v, = 7;(11]1)) ,
o\'h

ou 7, est la racine de Alx) appartenant au segment o, a,.

6. — Pour terminer, présentons quelques applications se
rattachant au calcul intégral. Considérons d’abord I'intégrale

. m—1 -
m—l—§

g (x)
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nous avons idenliquement

1 it
) — OL; /.(x)m P /. o )m(x ___ az) n—1 dx
a m—1 -m-{—- 1n+— o

g (x) g () 16)
. /r P a2 m x _ ocl)m——l in
o m+-
Mais, a cause de la formule (11),
de’  dy Cody | 1

gx)  YG(y) _\/<1__><1__7_-> fla)
¥ ¥

la premiére des intégrales du second membre de (16) s’écrit
encore

m—1

x — a, [(x — oy | | — a2\:| de  [x—a, =1 gy 17)
Vs(a) §() gl ) Vsla) VG

et, de méme, la seconde,
x — oy [(x — o) (x — a2)]m—\1 de  [("x — oy " dy m
Vglx) glx) - ogle) \/g VG '

D’autre part, les formules (8) nous donnent évidemment

avec certains coeflicients constants A,, B,, A,, B,

x.—_.

1= A, e e e S, X
V"() \/ 71+ \/ 32
x:ﬁ%:A\/i-—— B\/1_;
Vg (=) i y1+ Ja

Par suite, en transportant ces valeurs dans (16), (17), (18),
nous obtenons un résultat tel que le suivant

m—l m—-—l m— l

// dx:Pj d" +Q‘/
‘m-{—-— \/

ou P et Q désignent de nouvelles constantes.

(19)




.

328 C. CAILLER

. : 1 : .
Par exemple, sil'on fait m — 7> ontrouve immédiatement

le résultat suivant qui est bien connu.
Soit X = f(x)g(x) un polynéme quelconque du 4° degré,
la transformation z* :C(TZ}) ramene l'intégrale abélienne
dx - i . A
f@ a deux intégrales elliptiques appartenant chacune au
dz
VI —azt |
1. — Il est aisé de généraliser, de différentes manieres,
la formule (19); on a, par exemple, quel que soit 'exposant %,

type de la lemniscate/

m—1 ]
/ dx : _ Pf © ) dy
—mn m— - . k
“ f(x)1 8 (x) 3 (ag + /)f)/c \/(l ——';_)(a -+ by)

| 1 (20)

. . 1 . «
Par suite, si £ = m == 5, on voit qu’une intégrale hyper-

elliptique de la forme

i - /’ dx - (21)
Viglag + 0f) |

est réductible & deux inlégrales elliptiques de la premiére
espece.

Revenons au type (19), et faisant
a, =0, a — 1 : ou flo) =21 — x) ,

proposons-nous de déterminer 'intégrale définie

1

xm(l _ ‘%)"’l—-l (].’r
L o (22)
m—_-

0 glx) 2

ou le chemin d’intégration est rectiligne, tandis que I'expo-
sant m est supposé supérieur a ['unité pour la convergence.
En ce qui concerne g(x), nous admettons qu’il ne posséde
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aucune racine réelle entre 0 et 1, el nous posons g, = g(0)

et g, = g(1).

Faisons y = ?(% , lintégrale devient
yrtdy o x
VG(y) Vgix

Mais les formules (8) nous donnent ici

-

y Vs, r _ V&
W \/1—= =2 —x); n\/l—-—_—— — (1, — %)
1'\/ no Vg o 2 »o Vg o

puis ‘ |
v — M My __(\/1——1—— 1-——!—),
Vg —m) Vs LI 7

soit, en vertu de (12),

G VD

Il convient de rappeler que Vg, estla valeur finale, obte-
nue par continuité, de la fonction Vg () ; le 8igne de la valeur
initiale Vg, est choisi a volonté. De la méme fagon y; est

. m
]a valeur finale, au point n,, de la fonction <%> , dont la
. o
valeur prés de lorigine est supposée parfaitement déter-
minée. Et quant a »,, il représente celle des racines du poly-

néme A(x) qui est & droite du segment 01 lorsque ce seg-

. Y A x Y . ’,
ment laisse a sa gauche le seul pole de (7:(('7;\; contenu a l'inté-
el
rieur de C et inversement.
Soit A la coupure qui correspond au chemin d’intégration,
nous avons | ¥

1

. m _ m—1 m—1 g m—1 7.
QVglf.L (1 — x) dx»___./lg dy 5 dy. .

. iy y

§lx) : :

o
B
w_?-.a
>

=~
|

=2
S °

=~
I

w |
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Mais le lacet A entoure le seul point y,, par suile

1 Y4
. xm(l _ x)m—’l dx h ym—l dy
ey ey
0 glx) "2 0 \/1 — =
N1
et en résumé
1
/1,7;'”(1 _ x)m—'l dax . 227nf m! (m e 1) !ym (24)
J T Vz  (2m)! 1
T I C R

Changeons dans I'intégrale la variable & contre la variable
1 —x; il suffit de remarquer que y, est le méme pour les
deux polynémes g(x) et g(1 — x) pour trouver

1

fxlll—l(l S x)”ld.’l) . 22”1 'm ! (m — l-“ ! ym, . (25)
m+_1; B l/g (Qm)' L

0 glx)
et enfin, en additionnant les deux résultats précédents,

1

m—1 m—1
: 1 — X ! —1)!
fx ( x)l dx 22,”( 1 1 ))’,m m (1;1 ‘1) . (26)
mts V8, Vs (2m) !

0 g (x)

Le degré d’homogénéité de I'élément intégré est ici égal
a — 2. Nous avons donc affaire a une intégrale du type hyper-
géométrique ; pour en obtenir explicitement la signification,
calculons y, en fonction des coefficients du polynome

g(x) = ax® + bx + ¢ .

On a
\ g = ¢, &i—a-+b+4 ¢
DUIS
P , .
y f("h) 1 — "4
T T 2am, + b
Mais




SUR QUELQUES INTEGRALES 331

~d’ou
N = ‘/51 :‘/;0:) E— 81 — 8o I
T+ 21 g + Ve e+ b b+ 2¢ + 2V 4V 8)
. 1 _ /)—1—20—-2‘/?0—‘/5‘:.
T b2 +2V 8,V 8 b — hac

La forme définitive de (24) est donc

1
’ z"l(’l . z)m—l

dz
S S '
0 (az® + bz + C)n+2 (27)
_ QQmm! (m _ /l) 11 ([) + 2¢ — 2 ‘/g;‘/g)fn ‘
- (2m) ! t/(,:; b? — bac |

ou encore, moyennant une généralisation évidente,

x
)m—l

2 — z
7 dz
m-—
O (az?4bz+c) 2 : (28)
22'” H{m—1)! 1 b.x—[——Zc——Z‘/DO‘/ )
o (2m) ! Vg (x) - b?—lac

~

Comme toutes les précédentes, cette formule est valable
“pour un exposant m quelconque : la seule condition qui soit
imposée & ce coefficient est d’étre positif.

Si, en particulier, nous le faisons entier, on peut dériver
m fois, et alors en posant

2w = bx 4+ 2¢c — 2¢/c Y/ glx) , (29)
nous aurons

" ( D" . b m 2™ ’
- — 5 2m — 1 — — ac _— . (30
da"\V'g ) a ) (4 ) et |
o'(x

g ()

C'est la une identité remarquable relative a un polynéme
quelconque du second degré g(x). Il est intéressant de la
retrouver par une- voie moins détournée, et strlctement
algébrique. C’est par la que je termineral.
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8. — Avec quelques auteurs représentons par le symbole
(™) un développement ordonné suivant les puissances crois-
santes de x lorsque le premier terme est du degré m; le

nombre m peut d’ailleurs étre quelconque positif ou négatif.

A Y /1 ’ e , s ’ .
De la méme maniére (—,;) désignera une série ordonnée sui-
X

vant les puissances descendantes de x lorsque le terme

s 5.4 1
initial est d’ordr ¥ A — .
al est d’ordre m par rapport a %"

. . . p ; . 1\ -m
Soit m un entier positif, f{x) une fonction du type <?> ,

c’est-a-dire
f(T) a, xm . %1)1.—1 @ _4
A} T —I— I)l-—-1 + cos + (lo "I" 7 | ‘e

Si le développement est’sans lacunes, le degré des diverses
~dérivées f'(x), ["(x),-.. va diminuant d’une unité a chaque
rang. Il y a toutefois exception pour la (m 4 1)™¢ dérivée
dont l'ordre s’abaisse brusquement de m unités. Au lieu

" L £o5 , .
d’étre du type <7> . celte (m 4 1)™° dérivée est évidemment

1\ m+4-2 . .
du type <—>’ 1 lelle est la simple remarque qui me sert de
\ x
point de départ.
Soit maintenant g{x) un polynéme quadratique non carré,

glx) = ax® + bx + ¢ , b? — hac # 0

et pn(xr) un polynome quelconque du m™® degré, de sorte

Pm

que l/— est du type (z=1). Alors, comme on vient de voir,

Pm 1\ ’
A7 sera du type (_> . D'autre part, en
o X

opérant la dlfferentlation, on trouve directement

d,n ' plll - Pm , ‘ (31)
dxm ‘/0“ "m—}—% '

équalion ou figure un nouveau polynéme P,. Au lieu d’étre
du degré 2m comme il le semblerait d’abord, ce polyndme
P,.. suivanl la remarque ci-dessus, est du degré m.
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D’autre part, si p. parcourt 'ensemble oo "+ des poly-
ndémes du m™® degré, P, décrira aussi le méme ensemble
dans sa totalité. Dans le cas contraire, deux polynomes diffé-
rents p, et p,, rameneralen.tr le méme numérateur P, , et
nous aurions 'égalité absurde

(]m pm - p/’n — 0
dxm ‘/E ’

Ainsi, a tout polynéme p,, correspond selon l’égalité (31)
un autre polynome P, et inversément. Et voici la consé-
quence qui se déduitde la; g(x) étant un polynéme du second
degré, P un polynome quelconque du m™® degré, la dzﬁ"e/en-

: P . .y - .
tielle - sera toujours intégrable algébriquement m fois

g111+§
de sutte.
-9, — Pour opererl mtegratlon il est intéressant d’exprimer

I'un par l'autre les deux polynémes p,, et P,,.

A cet effet, prenons un cas particulier, et posons, « et
étant les deux racines de g(r),

pla) = (@ — @)« — g

avec la condition X 4+ u = m, de sorte que p(x) ait le degré
voulu. Je dis que, dans ce cas, P(x) est divisible par p(x).

En effet, puisque g(x) = a(x — «)(x — @), la quantité ‘/p_‘

développée selon les puissances de (r — «) est du type
1

(@ —a))” 2, ainsi le premier membre de (31) sera de la forme

((.7(:——05)))‘—5_’". La comparaison avec le second membre
indique le degré de P, qui est 2. o
Autrement dit, P est divisible par (x — «)*, et pour la
méme raison il le sera aussi pour (x — ()*. En particulier
si la somme des-indices X 4 p est égale a m, le polyndéme P,

du degré m, se confond avec (x — a)*ax — B)*, sauf un
facteur constant A.

L’Enseignement mathém., 20c année; 1919. 22
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On obtient sans difficulté ce facteur en partant de I'iden-
tité (31) qui s’écrit maintenant
-
d” (x —a)” 2 (x —p"
dx™ , ‘/Z

1
I e 1

1 - (Slbis)
am—l—--z-

en comparant dans les deux membres les plus petites puis-
sances de (x —a), ou de (x — f8), nous avons

A)\:a"’(a——ﬁ)m<)\——%>()\—g> (l—}—%—m)
—=a"( — a)’”( _ %) <‘u.;—— g) <p,—i— Ql — m) ,

valeurs égales a cause de la relation A -+ p = m. Au reste,

il estintéressant de remarquer que 'identité (31”*) ci-dessus,

obtenue pour des valeurs entiéres de A et i, demeure vraie,

alnsi qu’on voit sans peine, quels que soient ces paramétres,

sous réserve de la condition X + y = m relative aux indices.
La formule (31), récrite sous la forme

" w— o) x— g _ | r— o e —

da™  \/g(a) k myy
8(x)

Adp=m

comprend en réalité (m + 1) cas distincts obtenus en faisant
pareourir a A la série A =20, 1, ... m; la combinaison de ces
cas particuliers redonne le cas général. Et voici, si on veut,
le résultat explicite.
a b = i - )\ Y o ‘P. t
Posons, pour abréger, f; = (x — «)"(x — B)*, et mettons
P sous la forme ’

pm — Coﬁ) + lel + 627"2 + + Cmfm ’

on a alors
Pm = COAOfo + clAlfl + 62A2f2 + cmAmfm *

Toute la question se réduit a4 développer dans la forme
indiquée un polyndme quelconque, ou méme le mondéme 2,
avec n = m. On posera

r—m—n, t ==
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et

B — ama” = (Bl — a) — a(z — §))" [(@ — ) — (& — 8],
=P — oc)m<1 _ %t)"(i —).

Si donc
(1 s i‘it>n(1 — ' = Edktk :
-B ‘ (k)

le coefficient de f,-.x dans le développement de x" se trouve
égal a la quantité '
) o
——aq,.
(B . a)m
Par la se trouve résolu, d’une maniére compléte, le pro-
bleme de la correspondance existant entre les deux poly-
noémes p,, et P, qui figurent dans (31). Mais cette solution,

assez compliquée, est susceptible de simplification dans un
cas particulier.

10. — Soit x, une constante quelconque. Par Pextraction
de la racine carrée Vg, on peut toujours définir un polynoéme
du 1°* degré p, et une constante ¢,, de maniére que la diffé-
rence @ = p, — q(,\/g soit d’ordre 2 par rapport a £ — ,, ou

W = p, — 4, 5 — ((x - xo)>2 . (32)

Elevons w a la m™¢ puissance, nous obtenons

27
O =Py~ G 5 = (x - x0)> " ! (33)

équation ou les deux polyndémes p,, et ¢n—1 ont un degré
égal a leur indice.
Par suite, en dérivant m fois,

am P am o™ Pm
. dxm \/’; - d.%’m \/—;’: — gm+% ’

et comme, d’aprés (32), ce résultat doit étre de la forme

((x — xy))", le polyndme Pn, du degré m, sera égal a
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(x — xo)™ saufun facteur constant c. On a donc

am (pm B dm P _ c(x __ xor)m (33bi5)
d.%‘m \\/—g_ dJ'm \/; gm+;_.

Il est clair que les polyndémes p,, et ¢, , introduits a 'ins-
tant, dépendent de la conversion en fraction continue de la

) 1 . P s
fonction ——=. En effet, la relation (33), écrite sous la forme,
&

1 — Im— — <(x — xo)>2m>, (34)

‘/_5; Pm

Qm-—l

montre que la fraction rationnelle , du degré m, repré-

m

L (R :
sente l'irrationnelle —— aux termes prés de Dordre

" ted :
(x — x,)™"; clest la caractéristique d’une réduite.

Sion multiplie (33) par la quantité conjuguée p,, + gmaV g,
laquelle est d’ordre zéro, on voit que P, — 8¢, est aussi

d’ordre 2m en x — Z,, €t comme ce polynome est du degré
2m, nous avons I'équation de Pell o

2 2 -
Pm — 89— = A(x - xO)Ql’l " ‘ (3'))

La constante A, de méme que ¢ qui figure dans (33*), dépend
évidemment du parameétre laissé arbitraire dans la définition
de p, et ¢,. |

Etil importe de remarquer que 'équation ci-dessus carac-
térise aussi les polynomes p,, et ¢,_, premiers entre eux. En
effet, si (35) a liev, une seule des quantités p,, — vy
et pm + Gy \/gr_ doit étre d’ordre 2m, la premiere, par
exemple. On aura donc

d"l p”l . (.’L' . 1.0 ) m
— - b
d; m 1_
" \V g e

- o

ce qui suffit & établir que p,, coincide avec le polynéme étu-
dié précédemment.

Dans I'équation (32), p, est un polynéme arbitraire du pre-
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mier degré. Dés qu'il est choisi, le binome x = x,, selon les
puissances duquel on effectue les développements, est déter-

miné, car on a
d [/ pyg \
— —_— - X — X .
dx <\/_;'/ (( 0))
o
Ce bindme ne différe donc que pa’r un coeflicient constant
du suivant ‘

7’

. , 1
f=p8§— ‘2—3 P
Pour trouver le coefficient ¢ de la formule (33"), il suffit
de faire x voisin de I'une des racines de g(r), en comparant
entre elles les parties principales des deux membres. On
obtient immédiatement de la sorte

d"l. v m w”l ) m 7 A
d—m< PT__>=dd”l< _>:135.. (2m—1)—f—T.
C’est, sous une forme légérement plus générale, 'équa-

tion (30) qu’il s’agissait de vérifier. Pour obtenir cette der-
niére, on fera

glo)=ax? +bx +c; Viglx)=V'e <'1 A+ 'gb—c’” -t ﬂs—g—bzx? k. )

bax
pl(x):c—i——Qi, x, =0 .
De la

_— _ h b2 — 4 ) _ _
qo = goz\/c, 0 = SCLMx2+...=p1—Vch ;

1= (4= w)e

et
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