Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 20 (1918)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR UNE TRANSFORMATION ÉLÉMENTAIRE ET SUR QUELQUES

INTÉGRALES DÉFINIES ET INDÉFINIES

Autor: Cailler, C.

DOI: https://doi.org/10.5169/seals-18040

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SUR UNE TRANSFORMATION ÉLÉMENTAIRE ET SUR QUELQUES INTÉGRALES DÉFINIES ET INDÉFINIES

DAR

C. Cailler (Genève).

1. — La plupart des traités d'Algèbre élémentaire consacrent au moins quelques pages à l'étude de la transformation $y = \frac{f(x)}{g(x)}$, dans laquelle f(x) et g(x) désignent deux polynômes quelconques du second degré; elle offre un exemple d'une détermination d'extremum sans l'intervention d'aucune idée de continuité. En dehors de cette application classique, la transformation précédente, qui constitue en Géométrie la base de la théorie de l'involution de 4 points, joue encore un rôle essentiel dans nombre de problèmes d'Analyse: parmi ceux-ci on peut citer l'intégration des irrationnelles du second degré, la réduction des intégrales elliptiques à la forme normale de Legendre, l'abaissement au type elliptique de certaines catégories d'intégrales abéliennes, etc.

En dépit de ces multiples applications la plupart des auteurs, en s'occupant de l'équation $y = \frac{f(x)}{g(x)}$, s'en tiennent au cas où les deux polynômes f et g sont réels de même que les variables x et y. Or le cas général n'est ni moins simple ni moins intéressant, et comme il est peu connu, on me permettra de revenir ici sur la transformation dont il s'agit envisagée dans toute son étendue. On va voir avec quelle facilité la discussion peut être poussée à bout; elle s'appuie sur la transformation circulaire de la Géométrie et permet d'établir aisément la correspondance entre le plan simple

de la variable x et le double feuillet de Riemann qui est le lieu de la variable y.

A cette question d'ordre algébrique j'adjoindrai quelquesunes des applications d'Analyse mentionnées plus haut, formant du tout une espèce d'exercice d'Algèbre et de Calcul intégral qui n'est pas peut-être dénué de tout intérêt ¹.

2. — Soient donc f et g deux polynômes quelconques du second degré; nous les supposons seulement premiers entre eux. Posons

$$f = a_0 x^2 + a_1 x + a_2 = a_0 (x - \alpha_1) (x - \alpha_2) ,$$

$$g = b_0 x^2 + b_1 x + b_2 = b_0 (x - \beta_1) (x - \beta_2) .$$
(1)

Pour la brièveté, nous ferons encore

$$f_1 = f(\beta_1)$$
 , $f_2 = f(\beta_2)$, $g_1 = g(\alpha_1)$, $g_2 = g(\alpha_2)$;

aucune de ces quantités n'est nulle.

Aux polynômes f et g est associé un autre polynôme, également du second degré,

$$h(x) = g^2 \frac{d}{dx} \left(\frac{f}{g} \right) = g(x) f'(x) - f(x) g'(x)$$
, (2)

aux racines η_1 et η_2 . On s'assure aisément que ces racines sont toujours distinctes.

Il est aisé aussi de constater le caractère invariant de la relation existant entre f, g et h, vis-à-vis des transformations linéaires $\left(x, \frac{\gamma x + \delta}{\gamma' x + \delta'}\right)$ de module $\gamma \delta' - \gamma' \delta$ égal à l'unité. Enfin h(x) est un combinant des polynômes f et g, c'est-à-dire que ce polynôme se reproduit, sauf un facteur constant, toutes les fois qu'on remplace f et g par deux nouveaux polynômes,

$$F = rf + sg$$
 , $G = r'f + s'g$,

contenus l'un et l'autre dans leur faisceau.

Désignons encore par G(y) le discriminant, relatif à x, du faisceau précédent écrit sous la forme f-yg. G(y) est

¹ Le lecteur est prié de faire lui-même les figures nécessaires à la compréhension du texte.

quadratique en y, se réduit à $f'^{2}(\alpha_{1}) = f'^{2}(\alpha_{2})$ quand y = 0; si donc ses racines sont désignées par y, et y2, nous aurons

$$G(y) = f'^{2}(\alpha_{1}) \left(1 - \frac{y}{y_{1}}\right) \left(1 - \frac{y}{y_{2}}\right) . \tag{3}$$

Dans le cas de réalité, la signification des polynômes h(x)et G(y) est évidente; les racines du premier, η_1 et η_2 , déterminent les positions des extremas du rapport $\frac{I}{\sigma}$, les racines du second définissent les valeurs mêmes de ces extremas. Il est aisé de préciser davantage les relations existant, dans le cas général, entre ces éléments h(x) et G(y).

Les définitions ci-dessus montrent en effet tout de suite que, sauf certains facteurs constants, les polynômes $f-y_4g$ et $f-y_2g$ sont égaux aux carrés $(x-\eta_1)^2$ et $(x-\eta_2)^2$: on détermine les facteurs par une hypothèse particulière, par exemple en faisant $x = \alpha_1$, ou $x = \alpha_2$ et l'on obtient ainsi immédiatement

$$f - y_1 g = -y_1 g_1 \frac{(\eta_1 - x)^2}{(\eta_1 - \alpha_1)^2} = -y_1 g_2 \frac{(\eta_1 - x)^2}{(\eta_1 - \alpha_2)^2} ,$$

$$f - y_2 g = -y_2 g_1 \frac{(\eta_2 - x)^2}{(\eta_2 - \alpha_1)^2} = -y_2 g_2 \frac{(\eta_2 - x)^2}{(\eta_2 - \alpha_2)^2} .$$
(4)

De là, des formes équivalentes, très variées, pour la transformation $y = \frac{f(x)}{g(x)}$. En voici quelques-unes:

$$1 - \frac{y}{y_1} = \frac{g_1}{g} \frac{(\eta_1 - x)^2}{(\eta_1 - \alpha_1)^2} = \frac{g_2}{g} \frac{(\eta_1 - x)^2}{(\eta_1 - \alpha_2)^2} , \qquad (5)$$

$$1 - \frac{y}{y_2} = \frac{g_1}{g} \frac{(\eta_2 - x)^2}{(\eta_2 - \alpha_1)^2} = \frac{g_2}{g} \frac{(\eta_2 - x)^2}{(\eta_2 - \alpha_2)^2} , \qquad (6)$$

puis par division 1

$$\frac{1 - \frac{y}{y_1}}{1 - \frac{y}{y_2}} = \left(\frac{\eta_1 - x}{\eta_2 - x}\right)^2 \left(\frac{\eta_2 - \alpha_1}{\eta_2 - \alpha_1}\right)^2 . \tag{7}$$

cette propriété est la source de tout ce qui suit. A remarquer également que y_1 et y_2 sont toujours distincts, c'est une conséquence de la

même formule (7).

¹ On voit par là qu'en exécutant deux transformations linéaires convenables sur les variables x et y, la transformation $y = \frac{f(x)}{g(x)}$ peut toujours se réduire à la forme simple $y = x^2$;

Cette dernière formule, la plus importante de toutes, se généralise aisément. Désignons par γ_1 et γ_2 les deux racines d'un polynôme f-cg appartenant au faisceau (f,g), nous aurons

$$\frac{1 - \frac{c}{y_2}}{1 - \frac{c}{y_1}} \frac{1 - \frac{y}{y_1}}{1 - \frac{y}{y_2}} = \left(\frac{\eta_1 - x}{\eta_2 - x}\right)^2 \left(\frac{\eta_2 - \gamma_1}{\eta_1 - \gamma_1}\right)^2 = \left(\frac{\eta_1 - x}{\eta_2 - x}\right)^2 \left(\frac{\eta_2 - \gamma_2}{\eta_1 - \gamma_2}\right)^2.$$

Récrivons les formules (5) et (6) sous la forme

$$\sqrt{1 - \frac{y}{y_1}} = \frac{\sqrt{g_1}}{\sqrt{g}} \frac{\eta_1 - x}{\eta_1 - \alpha_1} , \qquad \sqrt{1 - \frac{y}{y_2}} = \frac{\sqrt{g_1}}{\sqrt{g}} \frac{\eta_2 - x}{\eta_2 - \alpha_1} , \qquad (8)$$

d'où, par multiplication,

$$\sqrt{G(y)} = f'(\alpha_1) \frac{g_1}{g} \frac{(\eta_1 - x)(\eta_2 - x)}{(\eta_1 - \alpha_1)(\eta_2 - \alpha_1)} = \frac{g_1 f'(\alpha_1)}{h(\alpha_1)} \frac{h(x)}{g(x)} ; \qquad (9)$$

mais, d'après la définition (2) de h(x), nous avons $h(\alpha_4)$ = $g_1 f'(\alpha_4)$, par conséquent la dernière formule doit se lire simplement

$$\sqrt{G(y)} = \frac{h(x)}{g(x)} . \tag{10}$$

Comme d'autre part

$$dy = d\left(\frac{f}{g}\right) = \frac{h(x) dx}{g^2(x)} ,$$

nous avons encore l'identité

$$\frac{dy}{\sqrt{G(y)}} = \frac{dx}{g(x)} ; (11)$$

cette dernière joue le plus grand rôle dans les problèmes d'intégration dont j'ai parlé plus haut.

3. — Notre premier soin consiste naturellement à lever les ambiguïtés de signe qui subsistent dans les formules (8) et se répercutent dans (9). Il faut, par une discussion préalable, fixer la signification précise de la corrélation existant entre x et y, ou ce qui est au fond la même chose, avoir une idée claire de la correspondance géométrique entre les plans des variables complexes x et y.

Commençons par une remarque. D'après (5) et (6) nous avons

$$\left(\frac{\eta_1-\alpha_1}{\eta_1-\alpha_2}\right)^2 = \left(\frac{\eta_2-\alpha_1}{\eta_2-\alpha_2}\right)^2 = \frac{g_1}{g_2} ,$$

donc, en tenant compte du fait que n₁ est différent de n₂,

$$\frac{\eta_1 - \alpha_1}{\eta_1 - \alpha_2} = -\frac{\sqrt{g_1}}{\sqrt{g_2}} , \qquad \frac{\eta_2 - \alpha_1}{\eta_2 - \alpha_2} = \frac{\sqrt{g_1}}{\sqrt{g_2}} , \qquad (12)$$

formules où les signes de $\sqrt{g_1}$ et $\sqrt{g_2}$ sont choisis arbitrairement. On a donc, explicitement,

$$\eta_1 - \alpha_1 = \frac{(\alpha_2 - \alpha_1) \sqrt{g_1}}{\sqrt{g_1} + \sqrt{g_2}}, \qquad \eta_2 - \alpha_1 = \frac{(\alpha_2 - \alpha_1) \sqrt{g_1}}{\sqrt{g_1} - \sqrt{g_2}}, \qquad (13)$$

$$\eta_1 - \alpha_2 = \frac{(\alpha_1 - \alpha_2) \sqrt{g_2}}{\sqrt{g_1} + \sqrt{g_2}}, \qquad \eta_2 - \alpha_2 = \frac{(\alpha_2 - \alpha_1) \sqrt{g_2}}{\sqrt{g_1} - \sqrt{g_2}}.$$
(14)

Reprenons la formule (12) et rappelons quelle est la signification géométrique d'un rapport tel que $\frac{z-\alpha_1}{z-\alpha_2}$: son module est égal au quotient des distances $\overline{z\alpha_1}$, $\overline{z\alpha_2}$, quant à l'argument², il est égal à l'angle sous lequel le segment $\alpha_1\alpha_2$ se voit du point z, angle positif ou négatif selon que z est à droite ou à gauche du dit segment.

La différence des arguments des deux membres, dans la formule (12), étant évidemment égale à π , on conclut que les quatre points α_1 , α_2 et η_1 , η_2 appartiennent au même cercle, et que les deux cordes joignant les points de chaque couple se rencontrent à l'intérieur du cercle.

Mais les quantités η_1 et η_2 restent les mêmes quand on substitue au polynôme f, un autre polynôme du faisceau f-yg. Ainsi donc, d'une manière générale : si l'on considère les racines γ_1 et γ_2 d'un polynôme tel que f-cg, elles forment avec celles η_1 , η_2 du polynôme h(x) un polygone ins-

² Supposé compris entre $-\pi$ et $+\pi$.

 $^{^{1}}$ Le changement des signes des radicaux revient à permuter les racines η_{1} et η_{2} .

criptible dans un cercle et les deux cordes se croisent à l'intérieur du cercle.

Il y a plus. D'après (12), les modules des rapports $\frac{\eta_1-\alpha_1}{\eta_1-\alpha_2}$ et $\frac{\eta_2-\alpha_1}{\eta_2-\alpha_2}$ sont égaux.

Par suite, si l'on définit le rapport de section de trois points η_1 , α_1 , η_2 situés sur un même cercle comme égal au quotient des cordes $\alpha_1\eta_1$ et $\alpha_1\eta_2$, on voit que les deux racines α du polynôme f, ou même plus généralement les deux racines γ du polynôme f — cg. sont conjuguées harmoniques sur le cercle correspondant, ou divisent de la même manière le segment $\eta_1\eta_2$.

La théorie de l'involution dépend essentiellement du polynôme h(x) associé à f(x) et g(x). Ainsi quand on envisage cette théorie dans le domaine complexe à la lumière des résultats précédents, on la voit se résumer dans la proposition suivante.

Etant donnés dans un plan deux couples de points α_1 , α_2 et β_1 , β_2 , on peut toujours tracer deux cercles contenant respectivement l'un et l'autre couple, de telle manière que les points d'intersection de ces deux cercles soient réels et divisent harmoniquement les arcs $\alpha_1 \alpha_2$ et $\beta_1 \beta_2$.

4. — D'après ce qui vient d'être dit il est clair qu'ayant mené suivant η_1 et η_2 un cercle quelconque C tout couple $\gamma_1 \cdot \gamma_2$ placé sur ce cercle de part et d'autre de la corde $\eta_1 \eta_2$, s'il vérifie d'ailleurs la proportion des distances $\frac{\gamma_1 \eta_1}{\gamma_1 \eta_2} = \frac{\gamma_2 \eta_1}{\gamma_2 \eta_2}$, représente un polynôme du faisceau f - yg, ou une valeur de g. Qu'on change le cercle C en D, et la racine γ_1 en δ_1 ; si, par exemple, δ_1 est à l'intérieur de C, la racine δ_2 , conjuguée à celle-ci, et qui fournit la même valeur g, sera nécessairement à l'extérieur de C, car g doivent se trouver de part et d'autre de la corde g g.

Récapitulons. Soit C un cercle fixe mené suivant $\eta_1 \eta_2$. A toute valeur x comprise à l'intérieur de C correspond une valeur de y. Réciproquement à toute valeur y correspondent suivant l'équation quadratique $y = \frac{f(x)}{g(x)}$, deux valeurs de x,

l'une à l'intérieur du cercle C, l'autre à l'extérieur 1. Si l'une des valeurs de x est sur le cercle même, l'autre s'y trouvera pareillement; les deux seront séparées par la corde $\eta_1 \eta_2$, de telle manière que quand la variable x décrit l'arc $\eta_1 \eta_2$ situé à gauche de la corde, la variable y engendre dans son plan une ligne Γ qui ne se coupe pas elle-même et réunit les points y_1 et y_2 . Cette même ligne Γ se reproduira en sens inverse lorsque x reviendra de η_2 en η_1 en suivant l'arc de droite.

Tout l'intérieur du cercle C se transforme ainsi dans le plan simple des y, et ce plan est muni de la coupure Γ deux fois décrite entre y_1 et y_2 . La représentation est partout conforme, sauf aux points η_1 et η_2 ; les angles tracés dans x, autour de ces points, subissent dans la figure y, une duplication autour des points correspondants y_1 et y_2 .

De même, l'extérieur du cercle C engendre un second feuillet du plan y, muni de la même coupure Γ que le premier; les deux feuillets se traversent l'un l'autre le long de Γ de la même manière que l'intérieur et l'extérieur du cercle C communiquent entre eux au bord du cercle.

Il y a, comme toujours, une infinité de manières de construire la surface de Riemann. En changeant le cercle C, nous n'altérons pas les caractères généraux de la représentation; la coupure Γ , image du cercle C dans le plan y, variera naturellement avec le cercle. Voyons ce qui en est.

Soient, comme ci-dessus, f-cg le polynôme relatif au cercle C, γ_1 et γ_2 les racines correspondantes, D un nouveau cercle le long duquel se déplace le point x. Suivant que ce point est à droite ou à gauche de la corde η_1 η_2 , le quotient $\frac{\eta_1-x}{\eta_2-x}$ possède deux arguments, qui sont constants l'un et l'autre, et d'ailleurs supplémentaires. Il résulte dès lors de la formule (7) que le rapport $\frac{\gamma_1-y}{\gamma_2-y}$ possède un seul argument constant quand x se déplace sur D.

$$\frac{x_1 - a_1}{x_1 - a_2} \, \frac{x_2 - a_1}{x_2 - a_2} = \frac{g_1}{g_2} \; .$$

 $^{^1}$ Il est aisé d'obtenir, sous des formes équivalentes, la relation existant entre les deux valeurs de x fournissant le même y. Une de ces formes est

Ainsi tout cercle complet passant aux points η_1 et η_2 , tel qu'est le cercle D, se reproduit dans le plan y sous la forme d'un arc de cercle Γ limité aux points extrêmes y_1 et y_2 . On obtient de la sorte une idée très nette de la correspondance existant entre les plans x et y: en voici l'essentiel.

Considérons, dans x, la figure classique comprenant tous les cercles joignant n, et n2, ainsi que les cercles C' orthogonaux aux précédents; cette double famille de cercles se reproduira, dans le plan y, d'une manière exactement pareille et nous aurons des cercles Γ passant tous en $y_{\scriptscriptstyle 1}$ et $y_{\mathtt{2}}$, et les orthogonaux Γ' des cercles précédents. Seulement tandis que les C sont des cercles complets, les Γ seront des arcs arrêtés en $y_{\scriptscriptstyle 1}$ et $y_{\scriptscriptstyle 2}$; chacun de ces arcs peut être considéré comme une coupure d'une surface de Riemann particulière. En outre, quand x décrit une seule fois un cercle C', la variable y entoure deux fois de suite le cercle correspondant Γ' ; pour obtenir une seule description du cercle Γ' , de manière que partant d'un des bords de la coupure Γ on arrive au bord opposé sans l'avoir traversée, il faudrait limiter le cercle C' à la portion comprise, soit à l'intérieur, soit à l'extérieur d'un certain cercle C.

5. — La transformation étant écrite sous la forme $y = \frac{f}{g}$, pour appliquer ce qui précède, on prendra le plus souvent comme cercle fixe C, celui qui contient les racines α_1 . α_2 du polynôme f. Dans ce cas, l'arc Γ qui sert de coupure contiendra l'origine du plan g. Si l'on choisit pour G le cercle contenant les racines $g_1 g_2$ du polynôme g, le cercle G doit passer par les points de l'infini; il est donc devenu rectiligne et se compose des deux prolongements de la droite $g_1 g_2$. Dans l'une comme dans l'autre hypothèse la coupure est connue à priori. Adoptons la première.

Le cercle C contient ainsi à sa périphérie les racines α_1 et α_2 , de part et d'autre de la corde $\eta_1\eta_2$; en outre un des pôles β_1 du quotient $\frac{f}{g}$ se trouve à l'intérieur du cercle, l'autre étant à l'extérieur. Joignons les points α_1 et α_2 par une

ligne £ qui ne se coupe pas elle-même et ne sorte pas du cercle C.

Il résulte immédiatement de la conformation de la surface de Riemann que quand x décrit la ligne \mathcal{L} , la variable y part de l'origine pour y revenir de l'autre côté de la coupure Γ , après avoir décrit un lacet Λ . Et le point y_i qu'enveloppe le dit lacet correspond au point η_i qui, relativement à la ligne \mathcal{L} , est situé de l'autre côté que le pôle β_1 . Supposons que c'est η_1 .

Il est maintenant aisé de supprimer les ambiguïtés de

signe que contenaient les formules (8).

Désignons par $\sqrt{g_2}$ la valeur de la fonction $\sqrt{g(x)}$, prolongée suivant la ligne \mathcal{L} , à partir de la valeur initiale $\sqrt{g_1}$ dont le signe sera choisi à volonté.

Les valeurs initiales des radicaux $\sqrt{1-\frac{y}{y_1}}$ et $\sqrt{1-\frac{y}{y_2}}$ sont égales entre elles, toutes deux à l'unité. La valeur finale du premier radical, ou $\frac{\sqrt{g_1}}{\sqrt{g_2}} \frac{\eta_1-\alpha_2}{\eta_1-\alpha_1}$ doit être égale à -1, la variable y ayant circulé autour du point y_4 . Au contraire, le point y_2 est resté en dehors du circuit Λ , le radical $\sqrt{1-\frac{y}{y_2}}$ reprend donc sa valeur de départ et l'on a $\frac{\eta_2-\alpha_1}{\eta_2-\alpha_2}=\frac{1/\overline{g_1}}{1/\overline{g_2}}$.

Ces résultats qui sont d'accord formellement avec les équations (12) en précisent la signification : $si\ donc\ \sqrt{g_2}\ est$ le prolongement de $\sqrt{g_1}$ le long de la ligne \mathcal{L} , η_1 et β_1 seront placés de part et d'autre de la ligne \mathcal{L} . η_2 et β_1 seront du même côté.

La règle précédente n'est pas changée dans l'hypothèse qui peut très bien se rencontrer où les six points α . β , η appartiendraient à un seul et même cercle. Ainsi que nous savons, les points de chaque couple α_1 , α_2 et β_1 , β_2 sont de côtés différents par rapport à la corde $\eta_1 \eta_2$, et les proportions

$$\frac{lpha_1}{lpha_1} \frac{\eta_1}{\eta_2} = \frac{lpha_2}{lpha_2} \frac{\eta_1}{\eta_2} \,, \qquad \mathrm{et} \qquad \frac{eta_1}{eta_1} \frac{\eta_1}{\eta_2} = \frac{eta_2}{eta_2} \frac{\eta_1}{\eta_2} \,,$$

font voir que les cordes $\overline{\alpha_1 \alpha_2}$ et $\overline{\beta_1 \beta_2}$ ne peuvent pas se couper

à l'intérieur du cercle. D'où il suit que β_1 et β_2 seront toujours du même côté de la ligne \mathcal{L} , tous deux dans la région opposée à η_1 .

Le cas examiné à l'instant comprend en particulier celui où les six quantités α , β , η , seraient toutes réelles.

Supposons les α et β réels; il résulte de ce qui vient d'être dit que si les segments rectilignes $\overline{\alpha_1 \alpha_2}$ et $\overline{\beta_1 \beta_2}$ empiètent l'un sur l'autre les η ne peuvent être réels.

Pour la réalité de n_1 et n_2 , il faut donc, mais il suffit aussi, que les dits segments, ou n'aient aucune partie commune, ou que l'un d'eux soit inclus dans l'autre; les deux cas n'en font qu'un, car en reliant au besoin par l'infini les deux points appartenant au même couple, on peut toujours se figurer que les segments réels dont il s'agit ne possèdent aucun élément commun. Et alors l'étude des extremas du rapport réel

$$\frac{b_0}{a_0} \frac{f(x)}{g(x)} = \frac{(x - \alpha_1)(x - \alpha_2)}{(x - \beta_1)(x - \beta_2)}$$

montre à l'instant que chacun des segments $\overline{\alpha_1 \alpha_2}$. $\overline{\beta_1 \beta_2}$ décrits comme il vient d'être dit, contient une racine η_1 et η_2 du polynôme h(x).

Dans ce cas de réalité, c'est l'axe des x qui joue le rôle du cercle C; les parties, intérieure ou extérieure, du même cercle se confondent avec les demi-plans, positif ou négatif, du plan complexe. Et l'on voit immédiatement que si α_1 et α_2 sont réunis par une ligne $\mathcal L$ tracée sur un seul de ces deux demi-plans, le lacet Λ correspondant, qui joint l'origine à elle-même dans le plan y, entoure le point $y_1 = \frac{f(\eta_1)}{g(\eta_1)}$, où η_1 est la racine de h(x) appartenant au segment $\alpha_1 \alpha_2$.

6. — Pour terminer, présentons quelques applications se rattachant au calcul intégral. Considérons d'abord l'intégrale

$$\int \frac{f(x)^{m-1}}{g(x)^{m+\frac{1}{2}}} dx , \qquad (15)$$

nous avons identiquement

$$\frac{\alpha_{2} - \alpha_{1}}{a_{0}^{m-1}} \int \frac{f(x)^{m-1}}{g(x)^{m+\frac{1}{2}}} dx = \int \frac{(x - \alpha_{1})^{m} (x - \alpha_{2})^{m-1}}{g(x)^{m+\frac{1}{2}}} dx$$

$$- \int \frac{(x - \alpha_{2})^{m} (x - \alpha_{1})^{m-1}}{g(x)^{m+\frac{1}{2}}} dx . \tag{16}$$

Mais, à cause de la formule (11),

$$\frac{dx}{g\left(x\right)} = \frac{dy}{\sqrt{\mathbf{G}\left(y\right)}} = \frac{dy}{\sqrt{\left(1 - \frac{y}{y_1}\right)\left(1 - \frac{y}{y_2}\right)}} \frac{1}{f'\left(\alpha_1\right)} \; ;$$

la première des intégrales du second membre de (16) s'écrit encore

$$\int \frac{x-\alpha_1}{\sqrt{g(x)}} \left[\frac{(x-\alpha_1)(x-\alpha_2)}{g(x)} \right]^{m-1} \frac{dx}{g(x)} = \int \frac{x-\alpha_1}{\sqrt{g(x)}} \frac{y^{m-1}dy}{\sqrt{G(y)}} , \quad (17)$$

et, de même, la seconde,

$$\int \frac{x - \alpha_2}{\sqrt{g(x)}} \left[\frac{(x - \alpha_1)(x - \alpha_2)}{g(x)} \right]^{m-1} \frac{dx}{g(x)} = \int \frac{x - \alpha_2}{\sqrt{g(x)}} \frac{y^{m-1}dy}{\sqrt{G(y)}} . \quad (18)$$

D'autre part, les formules (8) nous donnent évidemment avec certains coefficients constants A_1 , B_1 , A_2 , B_2

$$\begin{split} \frac{x-\alpha_1}{\sqrt{g\left(x\right)}} &= \mathrm{A_1}\sqrt{1-\frac{y}{y_1}} + \mathrm{B_1}\sqrt{1-\frac{y}{y_2}} \;, \\ \frac{x-\alpha_2}{\sqrt{g\left(x\right)}} &= \mathrm{A_2}\sqrt{1-\frac{y}{y_1}} + \mathrm{B_2}\sqrt{1-\frac{y}{y_2}} \;. \end{split}$$

Par suite, en transportant ces valeurs dans (16), (17), (18), nous obtenons un résultat tel que le suivant

$$\int \frac{f(x)^{m-1}}{g(x)^{m+\frac{1}{2}}} dx = P \int \frac{y^{m-1} dy}{\sqrt{1 - \frac{y}{y_1}}} + Q \int \frac{y^{m-1} dy}{\sqrt{1 - \frac{y}{y_2}}}, \quad (19)$$

où P et Q désignent de nouvelles constantes.

Par exemple, si l'on fait $m = \frac{1}{4}$, on trouve immédiatement le résultat suivant qui est bien connu.

Soit X = f(x)g(x) un polynôme quelconque du 4° degré, la transformation $z^4 = \frac{f(x)}{g(x)}$ ramène l'intégrale abélienne $\int \frac{dx}{X^{3/4}}$ à deux intégrales elliptiques appartenant chacune au type de la lemniscate $\int \frac{dz}{\sqrt{1-az^4}}$.

7. — Il est aisé de généraliser, de différentes manières, la formule (19); on a, par exemple, quel que soit l'exposant k,

$$\int \frac{dx}{f(x)^{1-m} g(x)^{m-k+\frac{1}{2}} (ag+bf)^{k}} = P \int \frac{y^{m-1} dy}{\sqrt{\left(1-\frac{y}{y_{1}}\right)} (a+by)^{k}} + Q \int \frac{y^{m-1} dy}{\sqrt{1-\frac{y}{y_{2}}} (a+by)^{k}}.$$
(20)

Par suite, si $k=m=\frac{1}{2}$, on voit qu'une intégrale hyperelliptique de la forme

$$\int \frac{dx}{\sqrt{fg(ag+bf)}} , \qquad (21)$$

est réductible à deux intégrales elliptiques de la première espèce.

Revenons au type (19), et faisant

$$\alpha_1 = 0$$
 , $\alpha_2 = 1$, ou $f(x) = x(1-x)$,

proposons-nous de déterminer l'intégrale définie

$$\int_{0}^{1} \frac{x^{m} (1-x)^{m-1} dx}{g(x)^{m+\frac{1}{2}}} , \qquad (22)$$

où le chemin d'intégration est rectiligne, tandis que l'exposant m est supposé supérieur à l'unité pour la convergence. En ce qui concerne g(x), nous admettons qu'il ne possède

aucune racine réelle entre 0 et 1, et nous posons $g_0 = g(0)$ et $g_1 = g(1)$.

Faisons $y = \frac{f(x)}{g(x)}$, l'intégrale devient

$$\int \frac{y^{m-1} dy}{\sqrt{G(y)}} \frac{x}{\sqrt{g(x)}}.$$

Mais les formules (8) nous donnent ici

$$\eta_1 \sqrt{1 - \frac{y}{y_1}} = \frac{\sqrt{g_0}}{\sqrt{g}} (\eta_1 - x) ; \qquad \eta_2 \sqrt{1 - \frac{y}{y_2}} = \frac{\sqrt{g_0}}{\sqrt{g}} (\eta_2 - x) ,$$

puis

$$\frac{x}{\sqrt{g}} = \frac{\eta_1 \eta_2}{(\eta_2 - \eta_1) \sqrt{g_0}} \left(\sqrt{1 - \frac{y}{y_2}} - \sqrt{1 - \frac{y}{y_1}} \right) ,$$

soit, en vertu de (12),

$$\frac{x}{\sqrt{g}} = \frac{1}{2\sqrt{g_1}} \left(\sqrt{1 - \frac{y}{y_2}} - \sqrt{1 - \frac{y}{y_1}} \right) . \tag{23}$$

Il convient de rappeler que $\sqrt{g_1}$ est la valeur finale, obtenue par continuité, de la fonction $\sqrt{g(x)}$; le signe de la valeur initiale $\sqrt{g_0}$ est choisi à volonté. De la même façon y_1^m est la valeur finale, au point η_1 , de la fonction $\left(\frac{f(x)}{g(x)}\right)^m$, dont la valeur près de l'origine est supposée parfaitement déterminée. Et quant à η_1 , il représente celle des racines du polynôme h(x) qui est à droite du segment 01 lorsque ce segment laisse à sa gauche le seul pôle de $\frac{f(x)}{g(x)}$ contenu à l'intérieur de C et inversement.

Soit Λ la coupure qui correspond au chemin d'intégration, nous avons

$$2\sqrt{g_1} \int_{0}^{1} \frac{x^m (1-x)^{m-1} dx}{g(x)^{m+\frac{1}{2}}} = \int_{\Lambda} \frac{y^{m-1} dy}{\sqrt{1-\frac{y}{y_1}}} - \int_{\Lambda} \frac{y^{m-1} dy}{\sqrt{1-\frac{y}{y_2}}}.$$

Mais le lacet Λ entoure le seul point $y_{\scriptscriptstyle 1}$, par suite

$$\sqrt{g_1} \int_0^1 \frac{x^m (1-x)^{m-1} dx}{g(x)^{m+\frac{1}{2}}} = \int_0^{y_1} \frac{y^{m-1} dy}{\sqrt{1-\frac{y}{y_1}}},$$

et en résumé

$$\int_{0}^{1} \frac{x^{m} (1-x)^{m-1} dx}{g(x)^{m+\frac{1}{2}}} = \frac{2^{2m}}{\sqrt{g_{1}}} \frac{m! (m-1)!}{(2m)!} y_{1}^{m} . \tag{24}$$

Changeons dans l'intégrale la variable x contre la variable 1-x; il suffit de remarquer que y_1 est le même pour les deux polynômes g(x) et g(1-x) pour trouver

$$\int_{0}^{1} \frac{x^{m-1}(1-x)^{m} dx}{g(x)^{m+\frac{1}{2}}} = \frac{2^{2m}}{\sqrt{g_{0}}} \frac{m!(m-1)!}{(2m)!} y_{1}^{m} ; \qquad (25)$$

et enfin, en additionnant les deux résultats précédents,

$$\int_{0}^{1} \frac{x^{m-1}(1-x)^{m-1} dx}{g(x)^{m+\frac{1}{2}}} = 2^{2m} \left(\frac{1}{\sqrt{g_0}} + \frac{1}{\sqrt{g_1}} \right) y_1^m \frac{m!(m-1)!}{(2m)!} . \quad (26)$$

Le degré d'homogénéité de l'élément intégré est ici égal à -2. Nous avons donc affaire à une intégrale du type hypergéométrique; pour en obtenir explicitement la signification, calculons y_4 en fonction des coefficients du polynôme

$$g(x) = ax^2 + bx + c$$

On a

$$g_0 = c , \qquad g_1 = a + b + c ;$$

puis

$$y_1 = \frac{f'(\eta_1)}{g'(\eta_1)} = \frac{1 - 2\eta_1}{2a\eta_1 + b}$$
.

Mais

$$\eta_1 = rac{\sqrt{g_0}}{\sqrt{g_0} + \sqrt{g_1}}$$
 ,

-d'où

$$y_{1} = \frac{\sqrt{g_{1}} - \sqrt{g_{0}}}{(b+2a)\sqrt{g_{0}} + b\sqrt{g_{1}}} = \frac{g_{1} - g_{0}}{(a+b)(b+2c+2\sqrt{g_{0}}\sqrt{g_{1}})} \cdot$$

$$= \frac{1}{b+2c+2\sqrt{g_{0}}\sqrt{g_{1}}} = \frac{b+2c-2\sqrt{g_{0}}\sqrt{g_{1}}}{b^{2}-4ac} \cdot$$

La forme définitive de (24) est donc

$$\int_{0}^{1} \frac{z^{m} (1-z)^{m-1}}{(az^{2}+bz+c)^{m+\frac{1}{2}}} dz$$

$$= \frac{2^{2m} m! (m-1)!}{(2m)!} \frac{1}{\sqrt{g_{1}}} \left(\frac{b+2c-2\sqrt{g_{0}}\sqrt{g_{1}}}{b^{2}-4ac}\right)^{m};$$
(27)

ou encore, moyennant une généralisation évidente,

$$\int_{0}^{x} \frac{z^{m}(x-z)^{m-1}}{(az^{2}+bz+c)^{m+\frac{1}{2}}} dz$$

$$= \frac{2^{2m}m!(m-1)!}{(2m)!} \frac{1}{\sqrt{g(x)}} \left(\frac{bx+2c-2\sqrt{g_{0}}\sqrt{g}}{b^{2}-4ac}\right)^{m}.$$
(28)

Comme toutes les précédentes, cette formule est valable pour un exposant m quelconque : la seule condition qui soit imposée à ce coefficient est d'être positif.

Si, en particulier, nous le faisons entier, on peut dériver m fois, et alors en posant

$$2 \varpi = bx + 2c - 2\sqrt{c} \sqrt{g(x)} , \qquad (29)$$

nous aurons

$$\frac{d^m}{dx^m} \left(\frac{\overline{\varpi}^m}{\sqrt[4]{g}} \right) = 1.3.5 \dots (2m - 1) \left(\frac{b^2}{4} - ac \right)^m \frac{x^m}{g(x)^{m + \frac{1}{2}}} . \quad (30)$$

C'est là une identité remarquable relative à un polynôme quelconque du second degré g(x). Il est intéressant de la retrouver par une voie moins détournée, et strictement algébrique. C'est par là que je terminerai.

8. — Avec quelques auteurs représentons par le symbole (x^m) un développement ordonné suivant les puissances croissantes de x lorsque le premier terme est du degré m; le nombre m peut d'ailleurs être quelconque positif ou négatif. De la même manière $\left(\frac{1}{x^m}\right)$ désignera une série ordonnée suivant les puissancés descendantes de x lorsque le terme initial est d'ordre m par rapport à $\frac{1}{x}$.

Soit m un entier positif, f(x) une fonction du type $\left(\frac{1}{x}\right)^{-m}$, c'est-à-dire

$$f(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_0 + \frac{a_{-1}}{x} + \dots$$

Si le développement est'sans lacunes, le degré des diverses dérivées f'(x), f''(x), ... va diminuant d'une unité à chaque rang. Il y a toutefois exception pour la $(m+1)^{me}$ dérivée dont l'ordre s'abaisse brusquement de m unités. Au lieu d'être du type $\left(\frac{1}{x}\right)$, cette $(m+1)^{me}$ dérivée est évidemment du type $\left(\frac{1}{x}\right)^{m+2}$; telle est la simple remarque qui me sert de point de départ.

Soit maintenant g(x) un polynôme quadratique non carré,

$$g(x) = ax^2 + bx + c$$
, $b^2 - 4ac \neq 0$

et $p_m(x)$ un polynôme quelconque du m^{me} degré, de sorte que $\frac{p_m}{\sqrt[l]{g}}$ est du type (x^{m-1}) . Alors, comme on vient de voir, la quantité $\frac{d^m}{dx^m} \left(\frac{p_m}{\sqrt[l]{g}}\right)$ sera du type $\left(\frac{1}{x}\right)^{m+1}$. D'autre part, en opérant la différentiation, on trouve directement

$$\frac{d^m}{dx^m} \left(\frac{p_m}{\sqrt{g}} \right) = \frac{P_m}{g^{m + \frac{1}{2}}} , \qquad (31)$$

équation où figure un nouveau polynôme P_m . Au lieu d'être du degré 2m comme il le semblerait d'abord, ce polynôme P_m , suivant la remarque ci-dessus, est du degré m.

D'autre part, si p_m parcourt l'ensemble ∞^{m+1} des polynômes du m^{me} degré, P_m décrira aussi le même ensemble dans sa totalité. Dans le cas contraire, deux polynômes différents p_m et p'_m ramèneraient le même numérateur P_m , et nous aurions l'égalité absurde

$$\frac{d^m}{dx^m} \left(\frac{p_m - p'_m}{\sqrt{g}} \right) = 0 .$$

Ainsi, à tout polynôme p_m correspond selon l'égalité (31) un autre polynôme P_m et inversément. Et voici la conséquence qui se déduit de là; g(x) étant un polynôme du second degré, P un polynôme quelconque du m^{me} degré, la différentielle $\frac{P}{g^{m+\frac{1}{2}}}$ sera toujours intégrable algébriquement m fois de suite.

9. — Pour opérer l'intégration il est intéressant d'exprimer l'un par l'autre les deux polynômes p_m et P_m .

A cet effet, prenons un cas particulier, et posons, α et β étant les deux racines de g(x),

$$p(x) = (x - \alpha)^{\lambda} (x - \beta)^{\mu},$$

avec la condition $\lambda + \mu \leq m$, de sorte que p(x) ait le degré voulu. Je dis que, dans ce cas, P(x) est divisible par p(x).

En effet, puisque $g(x) = a(x - \alpha)(x - \beta)$, la quantité $\frac{p}{\sqrt{g}}$ développée selon les puissances de $(x - \alpha)$ est du type $((x - \alpha))^{\lambda - \frac{1}{2}}$, ainsi le premier membre de (31) sera de la forme $((x - \alpha))^{\lambda - \frac{1}{2} - m}$. La comparaison avec le second membre indique le degré de P, qui est λ .

Autrement dit, P est divisible par $(x-\alpha)^{\lambda}$, et pour la même raison il le sera aussi pour $(x-\beta)^{\mu}$. En particulier si la somme des indices $\lambda + \mu$ est égale à m, le polynôme P, du degré m, se confond avec $(x-\alpha)^{\lambda}(x-\beta)^{\mu}$, sauf un facteur constant A.

On obtient sans difficulté ce facteur en partant de l'identité (31) qui s'écrit maintenant

$$\frac{d^{m}}{dx^{m}}\frac{(x-\alpha)^{\lambda-\frac{1}{2}}(x-\beta)^{\mu-\frac{1}{2}}}{\sqrt{a}} = A_{\lambda}\frac{(x-\alpha)^{\lambda-m-\frac{1}{2}}(x-\beta)^{\mu-m-\frac{1}{2}}}{a^{m+\frac{1}{2}}}\;; \quad (31^{\text{bis}})$$

en comparant dans les deux membres les plus petites puissances de $(x-\alpha)$, ou de $(x-\beta)$, nous avons

$$\begin{split} \mathbf{A}_{\lambda} &= a^m (\alpha - \beta)^m \Big(\lambda - \frac{1}{2} \Big) \Big(\lambda - \frac{3}{2} \Big) \dots \Big(\lambda + \frac{1}{2} - m \Big) \\ &= a^m (\beta - \alpha)^m \Big(\mu - \frac{1}{2} \Big) \Big(\mu - \frac{3}{2} \Big) \dots \Big(\mu + \frac{1}{2} - m \Big) , \end{split}$$

valeurs égales à cause de la relation $\lambda + \mu = m$. Au reste, il est intéressant de remarquer que l'identité (31^{bis}) ci-dessus, obtenue pour des valeurs *entières* de λ et μ , demeure vraie, ainsi qu'on voit sans peine, quels que soient ces paramètres, sous réserve de la condition $\lambda + \mu = m$ relative aux indices.

La formule (31), récrite sous la forme

$$\frac{d^{m}}{dx^{m}} \frac{(x-\alpha)^{\lambda} (x-\beta)^{\mu}}{\sqrt{g(x)}} = A_{\lambda} \frac{(x-\alpha)^{\lambda} (x-\beta)^{\mu}}{g(x)^{m+\frac{1}{2}}}, \quad \lambda + \mu = m$$

comprend en réalité (m+1) cas distincts obtenus en faisant parcourir à λ la série $\lambda=0,1,\ldots m$; la combinaison de ces cas particuliers redonne le cas général. Et voici, si on veut, le résultat explicite.

Posons, pour abréger, $f_{\lambda} = (x - \alpha)^{\lambda} (x - \beta)^{\mu}$, et mettons p_m sous la forme

$$p_m = c_0 f_0 + c_1 f_1 + c_2 f_2 + \dots + c_m f_m ,$$

on a alors

$$P_m = c_0 A_0 f_0 + c_1 A_1 f_1 + c_2 A_2 f_2 + \dots + c_m A_m f_m.$$

Toute la question se réduit à développer dans la forme indiquée un polynôme quelconque, ou même le monôme x^n , avec $n \leq m$. On posera

$$r = m - n$$
, $t = \frac{x - \beta}{x - \alpha}$.

et

$$(\beta - \alpha)^m x^n = \left(\beta(x - \alpha) - \alpha(x - \beta)\right)^n \left[(x - \alpha) - (x - \beta)\right]^r,$$

$$= \beta^n (x - \alpha)^m \left(1 - \frac{\alpha}{\beta}t\right)^n (1 - t^r).$$

Si donc

$$\left(1-\frac{\alpha}{\beta}t\right)^n(1-t)^r=\sum_{(k)}d_kt^k\ ,$$

le coefficient de f_{m-k} dans le développement de x^n se trouve égal à la quantité

$$\frac{\beta^n}{(\beta-\alpha)^m}d_k.$$

Par là se trouve résolu, d'une manière complète, le problème de la correspondance existant entre les deux polynômes p_m et P_m qui figurent dans (31). Mais cette solution, assez compliquée, est susceptible de simplification dans un cas particulier.

10. — Soit x_0 une constante quelconque. Par l'extraction de la racine carrée \sqrt{g} , on peut toujours définir un polynôme du 1^{er} degré p_1 et une constante q_0 , de manière que la différence $\varpi = p_1 - q_0 \sqrt{g}$ soit d'ordre 2 par rapport à $x - x_0$, ou

$$\varpi = p_1 - q_0 \sqrt{g} = ((x - x_0))^2$$
 (32)

Elevons ϖ à la m^{me} puissance, nous obtenons

$$\overline{\omega}^m = p_m - q_{m-1} \sqrt{g} = ((x - x_0))^{2m},$$
(33)

équation où les deux polynômes p_m et q_{m-1} ont un degré égal à leur indice.

Par suite, en dérivant m fois,

$$\frac{d^m}{dx^m} \left(\frac{p_m}{\sqrt{g}} \right) = \frac{d^m}{dx^m} \left(\frac{\overline{\varpi}^m}{\sqrt{g}} \right) = \frac{P_m}{g^{m+\frac{1}{2}}} ;$$

et comme, d'après (32), ce résultat doit être de la forme $((x-x_0))^m$, le polynôme P_m , du degré m, sera égal à

 $(x-x_0)^m$ sauf un facteur constant c. On a donc

$$\frac{d^m}{dx^m} \left(\frac{p_m}{\sqrt{g}} \right) = \frac{d^m}{dx^m} \left(\frac{\boldsymbol{\varpi}^m}{\sqrt{g}} \right) = c \frac{(x - x_0)^m}{\frac{m+\frac{1}{2}}{g}} \ . \tag{33bis}$$

Il est clair que les polynômes p_m et q_{m-1} , introduits à l'instant, dépendent de la conversion en fraction continue de la fonction $\frac{1}{\sqrt{g}}$. En effet, la relation (33), écrite sous la forme,

$$\frac{1}{\sqrt{g}} - \frac{q_{m-1}}{p_m} = \left((x - x_0) \right)^{2m}, \tag{34}$$

montre que la fraction rationnelle $\frac{q_{m-1}}{p_m}$, du degré m, représente l'irrationnelle $\frac{1}{\sqrt{g}}$ aux termes près de l'ordre $(x-x_0)^{2m}$; c'est la caractéristique d'une réduite.

Si on multiplie (33) par la quantité conjuguée $p_m + q_{m-1}\sqrt{g}$, laquelle est d'ordre zéro, on voit que $p_m^2 - gq_{m-1}^2$ est aussi d'ordre 2m en $x-x_0$, et comme ce polynôme est du degré 2m, nous avons l'équation de Pell

$$p_m^2 - gq_{m-1}^2 = A(x - x_0)^{2m}$$
 (35)

La constante A, de même que c qui figure dans (33^{bis}) , dépend évidemment du paramètre laissé arbitraire dans la définition de p_1 et q_0 .

Et il importe de remarquer que l'équation ci-dessus caractérise aussi les polynômes p_m et q_{m-1} premiers entre eux. En effet, si (35) a lieu, une seule des quantités $p_m - q_{m-1}\sqrt{g}$ et $p_m + q_{m+1}\sqrt{g}$ doit être d'ordre 2m, la première, par exemple. On aura donc

$$\frac{d^{m}}{dx^{m}} \left(\frac{p_{m}}{\sqrt{g}} \right) = a \frac{(x - x_{0})^{m}}{g^{m + \frac{1}{2}}} ,$$

ce qui suffit à établir que p_m coı̈ncide avec le polynôme étudié précédemment.

Dans l'équation (32), p_1 est un polynôme arbitraire du pre-

mier degré. Dès qu'il est choisi, le binôme $x-x_0$, selon les puissances duquel on effectue les développements, est déterminé, car on a

 $\frac{d}{dx}\left(\frac{p_1}{\sqrt{g}}\right) = \left((x - x_0)\right).$

Ce binôme ne diffère donc que par un coefficient constant du suivant

$$f = p_1' g - \frac{1}{2} g' p_1 .$$

Pour trouver le coefficient c de la formule (33^{bis}) , il suffit de faire x voisin de l'une des racines de g(x), en comparant entre elles les parties principales des deux membres. On obtient immédiatement de la sorte

$$\frac{d^m}{dx^m}\left(\frac{p_m}{\sqrt{g}}\right) = \frac{d^m}{dx^m}\left(\frac{\overline{\omega}^m}{\sqrt{g}}\right) = 1.3.5 \dots (2m-1)\frac{f^m}{g^{m+\frac{1}{2}}}.$$

C'est, sous une forme légèrement plus générale, l'équation (30) qu'il s'agissait de vérifier. Pour obtenir cette dernière, on fera

$$g(x) = ax^2 + bx + c$$
; $\sqrt{g(x)} = \sqrt{c} \left(1 + \frac{b}{2c}x + \frac{4ac - b^2}{8c^2}x^2 + \dots \right)$
 $p_1(x) = c + \frac{bx}{2}$, $x_0 = 0$.

De là

$$q_0 = \sqrt{g_0} = \sqrt{c}$$
, $\varpi = \frac{b^2 - 4ac}{8c}x^2 + \dots = p_1 - \sqrt{c}\sqrt{g}$,

et

$$f = \left(\frac{b^2}{4} - ac\right)x .$$