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FONCTIONS D'UNE VARIABILE REELLE 17

la représentation indéfiniment dérivable. Dans cette hypo-
thése, l'approximation de chaque dérivée est indéfiniment

) . . 5 1 -
petite d’ordre supérieur & toute puissance de —. Récipro-

quement, I'existence d’un tel degré d’approximation assure
celle de toutes les dérivées. Nous en reparlerons plus loin.

5. — Approximation minimum.

Soit f(x) une fonction continue dans un intervalle (a, 0).
Parmi les polynomes de degré donné n, il en existe un, P,,
qui donne la meilleure approximation, tel donc que I'appro-
Ximation soit minimum. Nous appellerons cette meilleure
approximation approximation minimum, et le polynéme qui
la donne est le polyndme d’approximation (ou d’approxima-
tion minimum).

La considération de ce polynome remonte a une époque
déja ancienne, elle est due a Tchebycheff (7) (1859). Le grand
géomelre russe a consacré une partie importante de son
ceuvre a I’étude de I'approximation par des fonctions ration-
nelles (entieres ou fractionnaires). Mais 'importance des
découvertes de Tchebycheff pour notre objet actuel n’est
apparue qu’aprés le Mémoire de M. S. Bernstein (1912). Tant
pour la valeur des matériaux réunis que par le mérite de
'invention, la place qui revient a Tchebycheff dans la théorie
(ui nous occupe est encore la premiére.

Tchebycheff, comme cela était naturel de son temps, ad-
meltait sans démonstration l'existence du polynéme d’appro-
ximation minimum. Cette démonstration a été donnée par
M. Borel dans ses Lecons sur les fonctions de variables
réelles el les séries de polyndmes (1905) (13). M. Borel a
montré que le polynome d’approximation minimum dans un
intervalle (a, ) est unique et qu’il est cavactérisé par la pro-
priété suivante: la différence f(x) — P, acquiert sa valeur
absolue minimum avec des signes alternés en n + 2 points
consécutifs de l'intervalle (@, 4). Ce maximum absolu est
Papproximation minimum p . 1l suit de cette propriété que
le polynéme d’approximation est un polyndme de Lagrange
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18 C. DE 1.A VALLEE POUSSIN

qui coincide avec f(z) en n 4 1 points (au moins) de l'inter-
valle (a, b). J’ai donné en 1910 (14) a ces points de coinci-
dence le nom de neeuds et le polynéme de Lagrange est
défini par ses neeuds.

Le calcul exact du polynéme d’approximation minimum
n’est possible que dans des cas trés exceptionnels. Mais il
existe divers procédés de calcul qui permettent d'en appro-
cher autant qu'on veut. Ces procédés sont dus a M. Borel (13),
a moi-méme (14) et a M. Bernstein (6). Ces procédés reviennent
tous a former successivement des polynomes de Lagrange
de plus en plus avantageux en améliorant progressivement
le choix des neeuds.

Dans I'état actuel de la théorie, c’est I'approximation mini-
mun qu’il importe surtout de connaitre plutét que le polynome
d’approximation lui-méme. Faute d’un calcul exact, il convient
donc d’avoir des régles précises pour enfermer I'approxima-
tion minimum entre des limites suffisamment resserrées. Ce
sont ces regles qui méritent de fixer maintenant notre
altention.

La détermination d'une borne supérieure est chose immé-
diate. Tout polynome donné Q, de degré n en fournit une, a
savoir le maximum de |/ — Q,].

La détermination d’une borne inférieure demande un peu
plus de réflexion. Mais jai donné dans mon Mémoire
de 1910 (14) une regle, qul m’'a paru intéressante, en vertu
de laquelle un polynéme de Lagrange de degré n fournit
généralement une telle borne.

Voici d’abord cette regle :

Soit Qu un polynéme de degré n; si la différence f(x) — OQn
prend, en n + 2 points consécutifs et avec des signes alternés,
des valeurs absolues Z p, alors o est une borne inférieure de
LCapproximation minimum.

En particulier, si Q, est un polynéme de Lagrange & n + 1
neeuds, ces n 4 1 neeuds partagent («, b) en n + 2 intervalles,
ou f'— Q, est (sauf exception) de signe alterné. Dans chaque
intervalle, /— Q, passe par un maximum absolu et le plus
petit p de ces maxima absolus est une borne inférieure de
Papproximation minimum.
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La démonstration de notre regle est presque immédiate.
Soit P, le polynéme d’approximation et p, 'approximation
minimum ; si Uon avait g, < o. le polyndme de degré 1,

Pn. - Qn = (f—— Qn\ - (/_ PIL) J

(e, D) et aurait, par conséquent, n 4 1 racines au moins, ce
qui est impossible. :
M. Bernsteina généralisé notre théoréme dansson Mémoire
couronné de 1912 (6). Il I'a étendu au cas ou les polynomes
sont formés avec des puissances de x dont les exposants
font partie d’une suite de nombres positifs (entiers ou non)
qui sont assignés d’avance. Il s’est servi de ce théoréme
généralisé pour trouver une borne inférieure de la meilleure
approximation de |x/|.
La régle précédente présente le grand avantage d’avoir
une efficacité illimitée. En effet, en essayant de nouveaux
polynémes Q,, on peut, théoriquement du moins, approcher
autant qu’on .veut de la _valeur exacte de I’approximation.
Il existe d’autres régles qui ont un caractére plus particulier
et qui épuisent leur efficacité dés la premiére application,
mais qui n’en sont pas moins trés utiles, parce qu'elles sont
dans bien des cas d’une application plus facile que la précé-
dente. Je vais en signaler deux, qui s’appliquent directement
a l'approximation trigonométrique et indirectement aux
polyndmes, grice a la substitution de Bernstein. Il est a
peine besoin de dire que les considérations précédentes sur
la meilleure approximation par polynomes s’étendent mutatis
mutandis 4 la meilleure approximation trigonométrique.
Considérons, avec M. Bernstein (1912), le développement
de f(x) en série de polyndomes trigonométriques ou, ce qui
est exactement la méme chose, le développement de f(cos ¢)
en série de Fourier ‘

ficos 9) = a, + a, cos o -+ a,cos 29 4 ...

Soit S, la somme des n 4+ 1 premiers termes, on sait que

changerait de signe n 4 2 fois au moins dans l'intervalle
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les valeurs «,, @,, ... @, des conslantes de Fourier sont celles
qui miniment 'intégrale

— [ [fleoso) — S 2ds .

e
0

Soit done T, la suite trigonométrique d’ordre n qui donne
I'approximation minimum, on aura

2%
v =2 <
/ [fleos o) — S, Pds = —if(/'— T,)*de Z 2,

en vertu du théoréme de la moyenne (, étant la valeur maxi-

mum absolue de f'—T,). Mais la premiére intégrale a pour
valeur

S
1 &
— | lapgycosin 4+ 1o + a,,,cos(n 4 2)o + ... J2ds

/

L8
4]

2 2
— an—{r—l' -+ an—f—'l R

De la, la régle de M. Bernstein :
St l'on désigne par a,, a,, a,, ... les constantes de Fourier
de f(cos g) la meilleure approximation o_de {(x) dans Uinter-

valle (— 1, + 1) salisfait a la condition*
P > \/—;(“w T gy )

Il est clair d’ailleurs que I'on a, d’autre part,
Pn 2 l(’n—}—k‘ = la”.{_z, == v ue

puisque celle approximation est donnée par la série de poly-
nomes trigonométriques.

La seconde régle, qui est plus importante et qui est anté-
rieure (1910), a été donnée par M. Lebesgue dans son Mé-
moire Sur les intégrales singuliéres (15). Voici la regle de
M. Lebesgue:

! Nous avons ajouté sous le radieal le facteur ,~ qui manque dans le texte de M. Bernstein.
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Si la somme d’ordre n de la série de Fourier de la fonction
périodique f(x) donne une approximation g(n), Uapproxima-
tion trigonométrique minimum p, satisfait a la condilion

o(n)

oy >k logn '’

ot k est une constante numérique assignable a priort.

La démonstration repose sur les propriétés de l'intégrale
de Dirichlet, mais, si simple qu’elle soit, elle ne peut trouver
place ici.

Si on applique, par exemple, les deux regles précédentes
a la fonction |x|, la régle de M Bernstein prouve que p,

n’est pas d'ordre supérieur a et celle de M. Lebesgue

n V/L

que p, n'est pas d'ordre supérieur a Dans ce cas,

nlogn’
¢’est la régle de Lebesgue qui I'emporte. mais il n'en est pas
loujours ainsi.

~

6. — Relations entre l'ordre de grandeur de la meilleure
- approximation et les propriétés différentielles.

La meilleure approximation p d'une fonction continue
/{x) par un polynome de degré n tend vers zéro quand »n tend
vers linfini. C'est le théoréeme méme de Weierstrass. J'ai
posé en 1908 (12) la question de déterminer 'ordre de gran-
deur de p, pour n infini et M. Bernstein .a posé en 1912 (6)
“celle d’en déterminer la valeur asymptotique quand elle
existe. . ,

Aujourd’hui des résultats définilifs sont acquis et répon-
dent a ces deux questions. lls sont dus a M. Dunham
Jackson (1911) et surtout a M. Bernstein (1912). ‘

Un premier résultat essentiel est qu'il existe une dépen-
dance étroite entre 'ordre de la meilleure approximation et
I'existence des dérivées jusqu’a un ordre plus ou moins élevé.

L’existence d'une dérivée bornée d’un certain ordre assure
une apprommatlon d’un ordre Porrespondant et c’est M. Dun-
ham Jackson (8) qui a trouvé les théorémes les plus précis
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