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FONCTIONS D'UNE VARIABLE RÉELLE 17

la représentation indéfiniment dérivable. Dans cette
hypothèse, l'approximation de chaque dérivée est indéfiniment

1 •

petite d'ordre supérieur à toute puissance de—.

Réciproquement, l'existence d'un tel degré d'approximation assure
celle de toutes les dérivées. Nous en reparlerons plus loin.

5. — Approximation minimum.

Soit f{x) une fonction continue dans un intervalle {a, b).

Parmi les polynômes de degré donné n, il en existe un, P„,
qui donne la meilleure approximation, tel donc que
l'approximation soit minimum. Nous appellerons cette meilleure
approximation approximation minimum, et le polynôme qui
la donne est le polynôme d'approximation (ou d'approximation

minimum).
La considération de ce polynôme remonte à une époque

déjà ancienne, elle est due à Tchebycheff (7) (1859). Le grand
géomètre russe a consacré une partie importante de son
oeuvre à l'étude de l'approximation par des fonctions rationnelles

(entières ou fractionnaires). Mais l'importance des
découvertes de Tchebycheff pour notre objet actuel n'est
apparue qu'après le Mémoire de M. S. Bernstein (1912). Tant
pour la valeur des matériaux réunis que par le mérite de
l'invention, la place qui revient à Tchebycheff dans la théorie
qui nous occupe est encore la première.

Tchebycheff, comme cela était naturel de son temps,
admettait sans démonstration l'existence du polynôme
d'approximation minimum. Cette démonstration a été donnée par
M. Borel dans ses Leçons sur les fonctiorrs de variables
réelles et les séries de polynômes (1905) (13). M. Borel a
montré que le polynôme d'approximation minimum dans un
intervalle (a, b) est unique et qu'il est caractérisé par la
propriété suivante : la différence f{x) — P„ acquiert sa valeur
absolue minimum avec des signes alternés en n + 2 points
consécutifs de* l'intervalle (aH b). Ce maximum absolu est
1 approximation minimum pn. Il suit de cette propriété que
le polynôme d'approximation est un polynôme de Lagrange
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18 c. DE LA VALLÉE POUSSIN
qui coïncide avec f(x) en n + 1 points (au moins) de l'intervalle

(a, b). J'ai donné en 1910(14) à ces points de coïncidence

le nom de noeuds et le polynôme de Lagrange est
défini par ses nœuds.

Le calcul exact du polynôme d'approximation minimum
n'est possible que dans des cas très exceptionnels. Mais il
existe divers procédés de calcul qui permettent d'en approcher

autant qu'on veut. Ces procédés sont dus à M. Borel (13),
à moi-même (14) et à M. Bernstein (6). Ces procédés reviennent
tous à former successivement des polynômes de Lagrange
de plus en plus avantageux en améliorant progressivement
le choix des nœuds.

Dans 1 état actuel de la théorie, c'est l'approximation mini-
mun qu il importe surtout de connaître plutôt que le polynôme
d approximation lui-même. Faute d'un calcul exact, il convient
donc d'avoir des règles précises pour enfermer l'approximation

minimum entre des limites suffisamment resserrées. Ce
sont ces règles qui méritent de fixer maintenant notre
attention.

La détermination d'une borne supérieure est chose immédiate.

Tout polynôme donné Qn de degré n en fournit une, à

savoir le maximum de | f— Q„ |.
La détermination d'une borne inférieure demande un peu

plus de réflexion. Mais j ai donné dans mon Mémoire
de 1910(14) une règle, qui m'a paru intéressante, en vertu
de laquelle un polynôme de Lagrange de degré n fournit
généralement une telle borne.

Voici d'abord cette règle :o
Soit Qn un polynôme de degré n ; si la différence f (x) — Qn

prend, en n -f- 2 points consécutifs et avec des signes alternés,
des valeurs absolues < p, alors p est une borne inférieure cle
Vapproximation minimum.

En particulier, si est un polynôme de Lagrange à n -f 1

nœuds, ces n + i nœuds partagent {a, b) en n + 2 intervalles,
°ù f— Qn est (sauf exception) de signe alterné. Dans chaque
intervalle, f— Q/t passe par un maximum absolu et le plus
petit p de ces maxima absolus est une borne inférieure de
l'approximation minimum.
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La démonstration de notre règle est presque immédiate.

Soit Vn le polynôme d'approximation et pn l'approximation
minimum ; si l'on avait pa < p. le polynôme de degré n,

Pn-Qn=lf-Qn\-(f-*n) '

changerait de signe n -1- 3 fois au moins dans linteivallc
(a, b) et aurait, par conséquent, n + 1 racines au moins, ce

qui est impossible.
M. Bernsteina généralisé notre théorème dans son Mémoire

couronné de 1912 (6). Il l'a étendu au cas où les polynômes

sont formés avec des puissances de x dont les exposants

font partie d'une suite de nombres positifs (entiers ou non)

qui sont assignés d'avance. Il s est servi de ce théoième

généralisé pour trouver une borne intérieure de la meilleuie

approximation de \x\.
La règle précédente présente le grand avantage d avoir

une efficacité illimitée. En effet, en essayant de nouveaux

polynômes Qrt, on peut, théoriquement du moins, approcher
autant qu'on veut de la valeur exacte de l'approximation.
Il existe d'autres règles qui ont un caractère plus particulier
et qui épuisent leur efficacité dès la première application,
mais qui n'en sont pas moins très Utiles, parce qu elles sont

dans bien des cas d'une application plus facile que la précédente.

Je vais en signaler deux, qui s'appliquent directement
à l'approximation trigonométrique et indirectement aux

polynômes, grâce à la substitution de Bernstein. Il est à

peine besoin de dire que les considérations précédentes sur
la meilleure approximation par polynômes s'étendent mutatis
mutandis à la meilleure approximation trigonométrique.

Considérons, avec M. Bernstein (1912), le développement
de f(x) en série de polynômes trigonométriques ou, ce qui
est exactement la même chose, le développement de f(cos 9)

en série de Fourier

/'(cos 9) — Oq-}-cos 9 -(7 ^2 cos d~ • •

Soit S„ la somme des n + 1 premiers termes, on sait que
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les valeurs aQ, al, an des constantes de Fourier sont celles
qui miniment l'intégrale

2rr

| / [/'(coso) - SJV?
(I

Soit donc Tw la suite trigonométrique d'ordre n qui donne
l'approximation minimum, on aura

-TT

~ f[/'(oos<p) - S„]2rf? ^ I(/'- ïk)V? ^ 2p2

U U

en vertu du théorème de la moyenne (pn étant la valeur maximum

absolue de f—Tn). Mais la première intégrale a pour
valeur

2 7r"

g
I [«„_!_! COS (// + 1)© + an+2 cos (« 4- 2)cp 4- .]Vcp

^ + «w+.2 + • • • •

De là, la règle de M. Bernstein:
Si l'on désigne par a0, a4, a2, Zcs constantes de Fourier

de f(cos vp) la meilleure approximation pn de f(x) dans l'intervalle

(— 1, +1) satisfait à la condition1

p»5 \/+ + " '1

Il est clair d'ailleurs que l'on a, d'autre part,

pn 5 l "„+,1 + l«/l+äl +

puisque cette approximation est donnée par la série de
polynômes trigonométriques.

La seconde règle, qui est plus importante et qui est
antérieure (1910), a été donnée par M. Lebesgue dans son
Mémoire Sur le§ intégrales singulières (15). Voici la règle de
M. Lebesgue:

1 Nous avons ajoute sous le radical le facteur ^ qui manque dans le texte de M. Bernstein.
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Si la somme d'ordre n de la série de Fourier de la fonction
périodique f(x) donne une approximation <p(n), l'approximation

trigonométrique minimum pn satisfait à la condition

où k est ime constante numérique assignable a priori.
La démonstration repose sur les propriétés de l'intégrale

de Dirichlet, mais, si simple qu'elle soit, elle ne peut trouver
place ici.

Si l'on applique, par exemple, les deux règles précédentes
à la fonction |x|, la règle de M. Bernstein prouve que pn

n'est pas d'ordre supérieur à ^et celle de M. Lebesgue

que jo« n'est pas d'ordre supérieur a - 1q^ n. Dans ce cas.

c'est la règle de Lebesgue qui l'emporte, mais il n'en est pas

toujours ainsi.

6. — Relations entre l'ordre de grandeur de la meilleure
approximation et les propriétés différentielles.

La meilleure approximation pn d'une fonction continue

f{x) par un polynôme de degré n tend vers zéro quand n tend

vers l'infini. C'est le théorème même de Weierstrass. J'ai

posé en 1908 (12) la question de déterminer l'ordre de grandeur

de p pour n infini et M. Bernstein a posé en 1912 (6)

celle d'en déterminer la valeur asymptotique quand elle
existe.

Aujourd'hui des résultats définitifs sont acquis et répondent

à ces deux questions. Ils sont dus à M. Dunham
Jackson (1911) et surtout à M. Bernstein (1912).

Un premier résultat essentiel est qu'il existe une dépendance

étroite entre l'ordre de la meilleure approximation et
l'existence des dérivées jusqu'à un ordre plus ou moins élevé.

L'existence d'une dérivée bornéqd'un certain ordre assure
une approximation d'un ordre correspondant et c'est M. Dunham

Jackson (8) qui a trouvé les théorèmes les plus précis
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