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SUR LES EQUATIONS TRANSCENDANTES
QUI SE PRESENTENT
DANS LA THEORIE DES TIGES ELASTIQUES

PAR

M. Pascuoup (Lausanne).

1. — Dans leurs Funktionentafeln mit Formeln und Kurven
(Teubner, 1909), MM. JannxkE et EMpre donnent (p. 2 et 3) les
racines de diverses équations transcendantes, parmi les-
quelles se trouvent les suivantes :

cosx chax = + 1 et tgx cothax = — 1
ou
x —x X —X
e e e e
chx:———i_m, et cothx:-~—i_——~.
2 : . e® — %

Il semble intéressant de remarquer que les racines de
’équation tgx cothx == — 1 se déduisent immédiatement de
celles de I'équation cosx chx =1, fait qui parait avoir
échappé a MM. JaunkE et Empe.

Plus généralement, il est facile de montrer que des racines
des équations cos.x chx = -1, on déduit celles des équa-

tions
tgx cothx = 41 | et tgxther=41.

2. — Les équations transcendantes indiquées ci-dessus se
présentent dans la théorie du mouvement vibratoire des
tiges élastiques.

On sait que I'équation du mouvement vibratoire d’une telle

tige est
dZy. d‘i)
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y est I'ordonnée d’un point d’abscisse x, t est le temps, k*
le moment d'inertie de la section de la barre, 6 = E/[y, ou
I est le module d’élasticité et u la masse de la tige par unité
de longueur.

Pour intégrer (1), on pose

kb,
Yy = u cos Fmt

u étant fonction d'x seul; ¢ est la longueur de la tige, m un
nombre a déterminer. En portant cetie expression de ¥y
dans (1), il vient pour u ’équation

dtu m?
dxt ™ F.u

Si T estla période de vibration, on a

2wl2 '

T = ey
kbm?

Pour déterminer complétement u, il faut encore indiquer
" les conditions aux extrémités de la tige, qui sont:
pour un bout libre:

d?u d3u
=0 =0
pour un bout appuyé:
d?u
u—20, 2 = :
pour un bout encasiré:
du
— 0 et )
u , P 0

_L’intégrale de (2) s’écrit, sous forme symétrique,
U= A(““%"*’ Ch#) -+ B(cos# — chlllg—c—) - C(sinln—zi e sh%x_)

-+ D(sin# — sh %{) .

A, B, C, D soni les constantes d’intégration qui se déte1-
minent par les conditions aux extrémités de la tige.
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Ces conditions aux extrémités donnent :
pour une tige libre a ses deux bouls :

cosm chm =1,
pour une flige encasirée a ses deux bouts :

cosmchm =1,

pour une fige appuyée a ses deux bouls :

sinm =0 ,
pour une lige libre a un bout, encastrée ¢ Uautre :

cosmchm = — 1 |

pour une tige libre & un bout, appuyée a Uautre :

tgmcothm =1 |

pour une tige encastrée a un bout, appuyée a Uautre :
cosmchm=1.

On reconnait parmi ces équations transcendantes celles
dont nous avons parlé. |

3. — Les deux plus importantes de ces équations,
cosm chm = == 1 ont été étudiées par Porsson (Mécanique,
2° éd., t. II, p. 389 et suivantes).

Pour
cosm chm=—1 |, (3)

PoissoN remarque que lorsque m est grand, chm est tres
grand et positif. Donc pour que (3) soit satisfaite, il faut que
cos m soit trés petit et positif, ¢’est-a-dire que m soit 4 peu
K

E‘o

Pour m pair, la racine m, correspondante est

prés de la forme (2n 4- 1)

bo| A

m, (2n + 1)
et pour n impair,

m, > (2n 4+ 1)

ro| A
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Poisson pose alors

m, = (2n + ’l)-;— — (—1)"8, »

ol B, est petit et posilif et il calcule B, par approximations
successives. Mais les valeurs qu'il donne pour les plus petites
racines de cosm chm =1 et de cosm chm = —1 ne soni
pas exactes. ‘ ‘ ’

Lord Rayreicu (The Theory of Sound, 2¢ ¢dit., t. I, p. 277
et suivantes) a repris le calcul des racines des deux équa-
tions cosm chm = —= 1 et, par approximations successives,
1 calcule les valeurs exactes de ces racines. Ce sont, pour
cosmchm=1":

0 m, = 4,7300408

m

I

1

7,8532046  m, = 10,9956078
141371655  mg == 17,2787596 .

7713 ——

!

m

5

Au-dela, avec sept décimales exactes,

ro| >

m, = = (2n + )= .

Pour ’équation
cosmchm=—1, (4)

Lord RAYLEIGH trouve

1,875104 m, = 4,694098
10,995541
17,278759 .

ml —_—

m, — 7,854757 m,

3

m, = 14,137168 m

|

. 1 . ) ..
Au-dela, m, = 5(2/1 — 17, avec six décimales exactes.

4. — Des calculs analogues a ceux de Lord RAYLEIGH per-
mettraient de trouver les racines des équations

)

tgm cothm = + 1 et tgmthm =241 .

Nous allons les déduire de celles de (3) et de (4).
5. — Partons de
cos2m ch2m =1 ; (5)
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cette équation s’écrit

: 1 1
(2 cos?m — 1)(2ch?m — 1) — 4 — 9
(2 cos?m J(2eh?m — 1) =1 ou > + e
ou enfin

14+ tg?m =14 thtm ,

c’est-a-dire fg m cothm = 4 1,

Les racines de (5) se décomposent donc en deux groupes
qui sont formés respectivement par les doubles des racines
de tg m cothm =1 et de tgm cothm — — 1,

On a ainsi, pour les racines de tg m cothm — 1

7,8532046
3 — 9

m =0, m

= 3,9266023 [

4.1371655
my = L‘Ejﬂ — 7,0685825 .
et, au-dela,

ke

1
Myppq = 2n )3

Les racines de tg m cothm —= — 1 sont
4,730040 10,99
my — — "~ 2Oi 8 = 2,365020% , ] _——~—5‘56078 = 5,4878039
. , |
m, = wﬁ = 8,6393798
2
et, au-dela,
1\ =
m, =— <,‘Zn — _Q-)E .
Cette derniére équation tgm cothm = — 1 a été rencon-

trée par M. F6érpL dans un probleme concernant les vibra-
tions propres d’un navire (Technische Mechanik, 4 édit.,
t. IV, p. 268). M. FéppL trouve ses racines, par titonnements,
en se servant de tables de fonctions hyperboliques et de
fonctions circulaires.

6. — La décomposition des racines de cos 9m chm =1
en deux groupes pouvait eétre prévue. On sait en effet qu’une
tige élastique, de longueur Z, libre 4 ses deux bouts et qui
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vibre de facon a avoir un nceud en son milieu, se partage en
o ! _ ;
deux tiges, de longueur 3, dont chacune vibre comme Si

elle avait une extrémité libre et I'autre appuyée.

Pour la barre entiére, vibrant de la facon indiquée, il faut
donner a m les valeurs des racines my, Mz, My ... de 'équa-
tion cosm chm = 1. |

La période T correspondant a ce mode de vibration est

27l?

— kbm?

T
Pour chacune des deux demi-barres, libres a un bout et

appuyées a l'autre, en lesquelles la barre totale se divise,
la période de la vibration est la méme. Puisque la longueur

- ;
de ces barres est 5, pour que T ne change pas, il faut que

m m m i
_2.1, -53, 55!, .. et ces valeurs seront

des racines de I’équation tg m cothm =1, qui doit étre véri-
" fiée dans le cas d’une barre libre & un bout et appuyée a
l'autre (n° 2). | "

7. — Comme au n° 5, on voit que ’équation

m prenne les valeurs

cos‘Qm ch2m = — 1 ' (6)
peut s’écrire
tgmthm==21.

Les racines de (6) se décomposent donc aussi en deux
groupes qui sont formés respectivement par les doubles des
racines de tgm thm =1 et tgm thm = — 1.

On a donc, pour les racines de tg mthm =1

1,875104 ' (
m, = b ; ia — 0,937552 , my, = 7——'85;757 = 3,927378
14,137168
m, — —————6— — 7,068584%

5 2

et, au-dela,
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Les racines de tg m th m = — 1 sont
4.694098 1 4
my = = 2.3470069 , m, = —9:9%§§i1-:: 5,497770
17,2787
o= LL2T8T59 g 65957
, 2
ct, au-dela,
1\ =
m,, = <2n — 5)5 .
8. — Si, pour plus de symétrie, on prend pour origine

des coordonnées le milieu de la barre, on voit que pour une
barre libre a ses deux extrémités, m doit satisfaire soit &
I'équation tg m cothm =1, soit a tgm cothm = — 1.

Pour une barre libre a un bout et encasirée i Pautre, on
trouve de méme que m doit étre solution soit de-

tgmthm =1 , soit de tgmthm = — 1 ,

Ceci montre bien encore les relations qu'il y a entre les
racines des six équations transcendantes considérées.

MELANGES ET CORRESPONDANCE

A propos d'un article sur la rectification approchée
des arcs de cercle.

Aprés avoir indiqué, dans son étude sur la rectification appro-
chée des arcs de cercle (E. M., tome XX, p. 215), une derniére
variante de la construction a laquelle il a été conduit, M. E. Preskor
ajoute (p. 218): « La valeur approchée est identique a celle qu’on
obtient par la construction donnée par M. d’Ocagne. » C’est qu’en
effet les deux constructions sont elles-mémes identiques. Il suffit,
pour s’en convaincre, de compléter la fig. 4 de la page 217 en
appelant P le point de rencontre de la droite AC et du cercle K,
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