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276 M. ZACK

mais toutes sont examinées et complétées convenablement parles
objets de la nouvelle colonne, ainsi que celle qui peut-élre man-
quait (celle qui peut-étre manquait ne peut étre la i Oop -ov By
car celle-ci est en évidence). Nous aurons donc, en général

R
OEEL =’ .

Et puisque cette formule est vraie pour les valeurs y=—3, v =2
et que si elle est vraie pour une valeur de w et », elle sera aussi
vraie pour cette valeur augmentée de 'unité, il suit qu’elle est
générale.

Atheénes, 1915.

SUR LA DETERMINATION ET QUELQUES PROPRIETES
DES LIGNES ELASTIQUES

PAR

M. Zack (Zurich).

L’emploi des coordonnées que M. Cesiro a introduites
en Géométrie, dans I’étude des questions se rapportant a la
résistance des matériaux présenterait, 4 mon avis, un grand
avantage. Cependant, cette tentative, a ce que je sache, n’a
Jamais été faite jusqu’ici. Je me propose donc dans les lignes
qui suivent de montrer sur un exemple particulier, celui des
lames élastiques, commeant I'emploi de ces coordonnées sim-
plifie I'étude de ce cas et permet d’obtenir des solutions
aussi élégantes qu’utiles dans la pratique. ]

Pour déterminer un point P d’une courbe C’ correspon-
dant d’aprés une relation quelconque a4 un point A d’une
courbe C, M. Cesiro se sert d'un systéme rectangulaire
mobile, I'axe des x étant la tangente et l'axe des y étant la
normale de C en A. Soient x et y, coordonnées de P, des
fonctions de I'arc s de C, A’ le point de C infiniment voisin
de A, P'le point de C’ correspondant a A’, x 4+ dx et y + 0y
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les coordonnées de P’ dans le systéme de A, x + dx et
M ’

y + dy les coordonnées de P’ dans le systéeme de A', et,

enfin, Az et Ay les coordonnées de A’ dans le systeme A.

On aura (fig. 1)

x -+ dx = Ax 4 (x + dx) cos Ay — (y 4+ dy) sinle ,
y 4+ 3y = Ay + (x + dx) sin Dy + (y + dy) cos JAY-I

) p &

D\

ox

B\ [y | \"‘”’E

c
N
A | _Ax | x %
'S
— *
Fig. 1.

d’ou, en divisant ces expressions par ds(= As), en remar-

Axr AV . s .
~ =1 et lim = =0 et en négligeant les in-

finiment petits d’ordre supérieur on obtient les formules
fondamentales de M. Cesiro,

quant que lim

dx _dx gy 8y __dy | =x
=& st TG T @
ou p est le rayon de courbure de C en A.
Rappelons encore briévement quelques propriétés des
vecteurs paralleles. Considérons un systéme de vecteurs
paralleles, positifs ou négatifs, mais généralement non nuls,

distribués le long d'une courbe plane OA suivant une cer-
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laine loi et dirigés normalement a ce plan. Soit d’autre part
. un coefficient attaché au vecteur relatif au point % et
déterminant sa grandeur et son sens. Pour toute portion de
la courbe OA telle que OM Uensemble des vecteurs peut étre
remplacé par un vecteur unique appliqué au centre de gra-
vité de Uensemble des masses p correspondant a la portion
considérée. | |

On sait que la variation de I'angle de courbure en % de la

u : M
fibre neutre est donnée par 'expression Adw — —El—k-dS, ou M,
k

est le moment de flexion et I, le moment d’inertie de la sec-
tion %. Or, Ade est en méme temps la rotation de I’élément
considéré par rapport a I'élément qui

5 le précéde, et peut étre représenté par
K_\ un vecteur normal au plan de OA et de
A M _
R grandeurm—ka’s = p,ds. Pour avoir le
k

82 siege de la rotation relative de M par

rapport a O, il suffira de composer tous
les vecteurs pds correspondant a I'arc OM, c’est-a-dire
trouver le centre de gravité de I'arc OM de densité nety
appliquer le vecteur résultant de grandeur ¢ = 3y ds ou a

la limite ¢ :f{;ds. On obtient ainsi pour chaque point M
0

un vecteur résultant de grandeur ¢ appliqué au centre de
gravité de I'arc OM de densité p ou de masse g. Ainsi, a la
courbe OA correspond point par point une courbe (G), lieu
des centres de gravité des arcs OM de masse 5. La connais-
sance de cette courbe (G) permet en méme temps d’obtenir la
ligne élastique de la lame OA, le déplacement d’un point M
par rapport a O étant une rotation ¢ autour de G. Le point M
décrit donc un arc de cercle de centre G et de longueur ¢.GM.

Or, si on prend pour axes de coordonnées le axes de
M. Cesiro, c’est-a-dire la tangente et la normale de OA
en M, les équations qui déterminent la courbe (G) s’écriront

dex _ oy doy o

— G, = — —, A | (2)

ds —? ds e
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ou x et y sont les coordonnées de (G) par rapport aux axes
choisis et p — le rayon de courbure de OA en M.

Supposons ‘que la rotation est tres petite (ce qui arrive
généralement), de sorte que son carre est négligeable devant ‘
¢. On peut alors confondre l'arc ¢.GM avec-sa tangente el
les équations de la ligne élastique s’obtiendront en posant
dans (2) oy =& et gx = —n, £ et n étant les coordonnées
du point de la ligne élastique correspondant a M, d‘a”ns le
systéme d’axes choisi. On aura

fll]___ 5 d§ n o « - (3)
ds 0 el dsTp

Si o et s sont données en fonction de g, les équations (3)
s'écriront : ' o 3 ~
dny ds dt : : ,
L emg— — —_— . : 3
Dans le cas particulier ou OA est un arc de cercle, s = ag,
les équations (3") deviennent

n dt

— = — == . (3"

o N ( );
Remarquons qu’il suffit de connaitre une courbe (E} quel-

conque salisfaisant aux équations (3) et un seul point de la

ligne élastique correspondant & un point déterminé de la

1 Les équations (2) s’obtiennent de la facon suivante : Les formules (1)deviennent dans
le cas de la figure 3 :

Su du v Ov dv ur ' ook
) = + — “ . (a)

25_1_ 051 P dsy 6?1 e

Pour que z et ¢ définissent un poinl et un seul (59

quel que soit s, il faut que Ou et Ov soient nuls, ¢ 2
c’est-a-dire L "'%‘,s- S
- e :

ou v ov oou
—_—= =1, — = — (b)
08¢ e 08y P
- Posons '
. 52 S r Sy
ox =fp,uds2 et QY =fp.vdsz . (c)
0 0

En multipliant (b) par pds,, en intégrant et jen tenant conipte de (c), on obtient les

équations (2). Le raisonnement subsiste si s, se confond avee «,.
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courbe (E) pour pouvoir construire immédiatement la ligne
élastique, car le segment de droite reliant deux points corres-
pondanis de deux courbes (E) est consiant en grandeur et
fixe en direction. On le vérifie facilement en posant & —= £,
+ Rcos6 et n, =u,+ Rsing; des équations (3) il vient
R = const. et j—;’—z = — %, ce qui démontre la proposition.

Les équations (3) permettent de résoudre différents pro-
blémes relatifs & la ligne élastique. On peut, par exemple,
s’imposer certaines conditions pour le déplacement (£, ») du
point M et déterminer 1 en fonction de s ou de ®, pour une
forme donnée de la fibre neutre s — f(p) ou s =f(g) et un
moment de flexion M = {(s) ou M = {(¢) donné, de facon
que ces conditions soient satisfaites. Inversement, on peut
déterminer la forme de la fibre neutre pour un 1 et un M
donnés de facon que le déplacement d’un point M satisfasse
a une certaine condition. On peut, enfin, pour une forme
donnée de la fibre neutre et un 1 et un M donnés, trouver le
déplacement d’un point M.

Considérons, par exemple, le cas d’une lame droite. Les
équations (3) deviennent dans ce cas :

dn dt 0

ds — ' ds

et la premiére de ces équations n’est autre que I'équation
. d?y M . .

bien connue d—%:i— St le point O de la lame est fixe,

, x El

§ =0 et le déplacement est normal & la fibre neutre.
Appliquons a & et 5 les formules (1). On obtient en tenant

compte de (3)

BE
d"‘s_

& -
1, I =7° d’out =g, (%)

N g

Les tangentes a la fibre neutre et a la ligne €lastique se
coupent sous un angle a tel que Iga =0 ou, puisque o est
supposé trés petit, « = g. On pourra donc, une fois la ligne
élastique construite, trouver sur elle le point qui correspond
a un point M de la fibre neutre par le procédé suivant. On
mene une tangente en M a le fibre neutre et on la coupe par




LIGNES ELASTIQUES , 281

une droite arbitraire sous un angle ¢; la tangente a la ligne
¢lastique paralléle a cette droite la touchera au point cherché.

De (4) on tire encore en posant ds’ — V882 + on?

ds’ = Kds ou K= V14
ou

s = f Kds . (5)
En négligeant ¢® devant 1 on obtient
5" =3 ¥ . (57)

Pour avoir le rayon de courbure p’ de la ligne élastique
on remarquera que

o da deo da
o 4+ da = a + da + do d’ou Ig__‘%—{—&—s
ou enfin
K 1 da
T T d &
En négligeant ¢? devant 1 on oblient
1 1  ds T 1 M g
= tEs Ty TE (6)

relation bien connue. _

En éliminant s entre (5) et (6) ou entre (5') et (6'), on obtient
Iéquation intrinséque de la ligne élastique.

Les équations (3) permettent encore de résoudre le pro-
bléme, trés important, suivant :

Supposons qu’on ait construit la ligne élastique pour une
forme donnée de la fibre neutre s, =/, (0,) ou s, = f,(¢,) et |
un moment de flexion M et un moment d'inertie I donnés, ‘
\’ ] b, 1 A e : i iy i
c’est-a-dire un g, donné, ¢, = ¢, (s,) ou (¢, = ¢, (¢,). Trouver
pour une forme de la fibre neutre s,=/f,(p,) ou s.=/,(9,), le

s Aty ’ : 3 N ‘ B — — g
moment d’inertie 1, c’est-a-dire un g, = (s,) ou o, =, (¢,),
telle que la nouvelle ligne élastique se confonde avec la
premiere.
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Les équations (3) s’écriront pour les deux cas:

dn o & : U
ds, " 1 g’ ' dsy — ' g
(7) et :
K A )
ds, o, dsy gy
Les équations (8) peuvent encore s’écrire :
dn _ds _Eds, & _nds,
ds, = Pds;  p,ds, ds, ~ gy ds,’

d’ott en comparant (7) et (8') on obtient

1

) 1 d.s-2 ds2
1 o Py ds,

P g, — G, —=
1 stl

ou encore

ou, finalement,
%y Py

P2

P = O — @ Oy =

ou ¢, est I'angle que forment entre elles les normales aux
deux fibres neutres a l'origine. On voit que les points cor-
respondants sonl situés sur des normales qui forment un ‘
angle g, entre elles. La seconde des relations (9”) permet, par
un choix approprié de ¢, qui dépend de M, et de I,, de trouver |
les conditions pour qu'une forme donnée s, soit tautoélas- “
ltque a une autre forme s,. La forme qu'on prendra de pré-
férence comme forme fondamentale sera un arc de cercle
$y=a,9, ou p; = a, avec un I, constant. Ou aura alors pour
les différentes formes choisies, comme conditions de tauto-

élasticité les relations suivantes :
Pour la développante de cercle

: o, a
! — 2a 0 — a Gy == 1l b .
Py | .232. u P2 292 > 2 ay (9, — %)
pour la tractrice
| , \/ 25,
@ . _ g, @,
gy = @, e% —1 ou Py = a, tg o, , ¥y =

ay (P, — )

(9°)

(9%)
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pour la chainette
% ay __ 0,4, COSy (®y — Po)

pz._a2+~— ou. Pg = = y -0y =
ay - COSy P g

pour la chainette d’égale résistance

‘3 =Sy
%2 (o a a _G,a, cos(p — ')
= Zle% - e 0 = , g, —
2 ( + ) H Pa oS @, 2 a,
pour la parabole
s : 1 dp ou g, = P G — 1 Gy cos® (o, — ) .
’ cos® g, 2 P

2
()~
: P

Par un choix approprié de g, et de @, on pourra toujours
~ faire passer 'arc de la courbe en question par les deux pomts
Oet A. | | .
~ Dans tout ce qui précéde nous avons supposé qu’on con-
naissait u pour chaque point de la lame OA. Généralement,
il n’en est pas ainsi; cependant la méthode est toujours
applicable. Considérons, par exemple, le cas de la ﬁgure 3
Supposons d’abord que
le bout A de la lame
puisse se déplacer le
long de la droite OA et
que la lame soit arti-
culée en O. Si P est la
résultante des forces
verticales appliquées,

on pourra déterminer
V, et V, et par conséquent . et ¢. On pourra donc construire

la courbe élastique correspondante. Supposons maintenant
que la lame est également articulée en A; deux forces égales
et opposées H s’introduiront alors. Il est évident que ces

Fig. 4.

forces H doivent étre telles ‘que le déplacement du point A

TN ey

B S
o RTITE T T
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correspondant soit égal et opposé au déplacement corres-
pondant aux forces V,, V, et P. On aura donc

Ve +m0 =V 1 a0

ou &, n,) estle déplacement de A d{i aux forces V,, V,et P
et (€., n,) le déplacement de A di aux forces H. On aura
alors, en remarquant que

Ve +m=u)E ¥,

ol (&, n,) est le déplacement di aux forces 1 paralléles et
de méme sens que H,

VE

H = A,
I/Ef—l—n:

De méme, si la lame est en outre encastrée en A, il s’in-

troduira un moment d’encastrement M, et il faudra que’

A
M .

@‘g) * provenant de M,. On obtient donc pour M, . en remar-
A

_ on\ __
quant que %), %

ds - %
MA/E_I:cA dou M, = P—

fds
El
ou ¢, est dit aux forces V,, V,, P et H.

Dans le cas ou o* n’est pas négligeable devant o, les équa-
tions (3) ne représentent plus la ligne élastique et il faut
revenir aux équations (2) et a la courbe (G). Remarquons
encore qu'il suffit de connaitre une courbe quelconque (T)
satisfaisant aux équations (2) et un point G de la courbe (G)
correspondant a un point T' de la courbe (I') pour pouvoir

T S AT e I

L e g
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construire la courbe (G) elle-méme, car, comme il est facile
de le vérifier, on a:

d0 1

sR = counst. et — =
ds 0
c'est-a-dire le segment de droite qui relie deux points corres-
pondants de (G) et de (T') est inversement proportionnel a la
rotation o et fixe en direction. D'autre part, la droite G
qui relie un point de la courbe (G) au point correspondant

. ) y
de la fibre neutre, est tangente a la courbe (G), carg—i:i

v

comme il est facile de s’en convaincre en remplacant dans (1)
dx
ds
fois la courbe construite, de trouver immédiatement le point
G qui correspond a un point M donné de la fibre neatre.

Le cas ol ¢ a une valeur telle qu'on ne puisse plus négliger
o? devant ¢ ne se présentant généralement pas en pratique,
nous ne nous arréterons pas a son étude. En résumé, je
_crois avoir montré par Uexposé qui précede que 'emploi des
coordonnées de M. Cesiro permet de résoudre facilement
diverses questions se rapportant a la ligne élastique des
lames de diverses formes, questions qui seraient plus diflici-
lement abordables par une autre méthode.

dly > » .
et - par leurs valeurs tirées de (2). Cecl permel, unc

L’Enseignement mathém , 20¢ année, 1918. 19
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