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^b8 M. PETROVITCH
la cubique admet une série d'arithmopoints d'abscisses

->=©'•
qui sont toutes des nombres rationnels carrés parfaits.

L application au problème de Fermât des principes généraux
relatifs aux équations de Brahmagupta-Fermat, soit

cubiques à zéro rationnel, soit du quatrième degré à
premier membre décomposable en un produit de facteurs rationnels

du second degré, permet, en résumé, d'expliquer
1 origine du problème de Torricelli; elle ramène
méthodiquement, en outre, la discussion de l'équation de ce
problème de Fermât et d'Ev. Torricelli à l'analyse de Lagrange
et d'EuLER.

Paris, le 5 février 1918.

REMARQUE SUR L'INTÉGRALE fuvdx
PAK

M. Michel Petrovitch (Belgrade).

Il est manifeste qu'il n'existe aucune fonction u de la
variable x telle que l'intégrale définie

00

I — Juv dx
o

ait une valeur finie, déterminée et différente de zéro quel
que soit le polynôme v en x.

Un fait curieux est, cependant, à signaler: il existe des
fonctions u de x pour lesquelles Vintégrale (1) a une valeur
finie, déterminée et différente de zéro quel que soit le polynôme

y eux à coefficients nombres algébriques (entiers, corn-
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mensurables ou irralionnels algébriques, réels ou
imaginaires, positifs ou négatifs).

Tel est, par exemple, le cas de la fonction
A

(2)

/* —1

la racine carrée \/xayant sa détermination positive.
En effet, la formule connue

4ii r
n —iuj-r—dz (z 1,2,3,...) (3)

(2*) o e -1
où B2, B4, B6, désignent les nombres de Bernoulli, par
le changement z2 x se transforme en

2 n
B2 :dx (« 1,2,3,...) (4)

(2T-)S 1

d'où Ton tire

fj^dx_ x^) („ 0,1,2,J yx " (5)

ou

; _ ,2«+! B2(„+1)
,fi,

^T+T • 0 - 2 - 3
(6)

Si donc

V(x) =z aQ + axx + a2x2 + + apxp

est un polynôme en x arbitraire, on aura

/ 7T^rfa: *Q(~2)•
O 6 1

où 0 (x) désigne le polynôme

QW ao\ + "i \+a2\x2 + + apXpxp

Lorsque les ak sont des nombres algébriques, les \ le
sont également. L'équation algébrique Q(.r) 0 ne pouvant

L'Enseignement mathém., 20e année; 1918. Ig



270 M. PETROV1TCH
avoir comme racine le nombre tt2, l'intégrale (7) est finie,
detet mince et essentiellement différente de zéro.

On peut, à 1 aide de la fonction (2), former une multitude
de fonctions u pour lesquelles l'intégrale (1) jouira de la
propriété précédente. Il suffit, par exemple, de se rappeler
1 existence de fonctions u de x telles que l'intégrale (1) est
identiquement nulle quel que soit le polynôme v en x. Telles
seraient les fonctions signalées par Stieltjes

4/~ 4 _ 4
4 ~

u e x sin *\]x u — —— ex cos -i/IT
v* v

ainsi qii une foule d'autres, pour lesquelles on a

00

J ux" dx0 pour n=:0,l, 2,
0 '

En désignant une pareille fonction (ou une combinaison
linéaire homogène de ces fonctions) par U et en prenant

l'intégrale (1) sera finie, déterminée et différente de zéro quel
que soit le polynôme v à coefficients nombres algébriques.
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