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268 M. PETROVITCH

la cubique admet une série d’arithmopoints d’abscisses

3\?2 113\2
xr, = E y Xy == 'ﬁ— ) ees

qui sont toutes des nombres rationnels carrés parfaits.

L’application au probléeme de Fermar des principes géné-
raux relatifs aux équations de BrauMAaGUPTA-FERMAT, soit
cubiques a zéro rationnel, soit du quatrieme degré a pre-
mier membre décomposable en un produit de facteurs ration-
nels du second degré, permet, en résumé, d’expliquer
I'origine du probléme de TorricerLr; elle raméne métho-
diquement, en outre, la discussion de ’équation de ce pro-
bléeme de FeErmaT et d’Ev. TORRICELLT & I'analyse de LaGrRaNGE
et I’ EuLER.

Paris, le 5 février 1918.

REMARQUE SUR L’INTEGRALE [uodx

PAR

M. Michel Perrovircn (Belgrade).

Il est manifeste qu’il n’existe aucune fonction « de la
variable x telle que I'intégrale définie

I:fuvdx (1)
0

ait une valeur finie, déterminée et différente de zéro quel
que sott le polyndme v en x.

Un fait curieux est, cependant, a signaler: il existe des
fonctions u de x pour lesquelles Uintégrale (1) a une valeur
finie, déterminée et différente de zéro quel que soit le poly-
nome v en x d coefficients nombres algébrigues (entiers, com-
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mensurables ou irralionnels algébriques, réels ou imagi-
naires, positifs ou négatlils).
Tel est, par exemple, le cas de la fonction

la racine carrée V/ 'z ayant sa déterminalion posilive.
En effet, la formule connue

o

ou B,, B,, Bg, ... désignent les nombres de Bernoulli, par
le changement z2 — x se transforme en

u %1

(=123, ..) SN

2'::

B,, f f (n=1,2 3, .. (%)
(27' 0o e x__
d’ou I'on tire
S on
d
S e =, w0 (n=0,1,2, ) (5)
0o e’ —1
ou
B,
)\ . 2.11—{—1 2(n4-1) o . 1
e b = 2B, = 3 (6)
Si donc
Plx) =a,+ a,x + a,2* + ... + apxp
est un polynéme en x arbitraire, on aura
S de = mque o)
x /
v e 7 —1

ou Q(x) désigne le polynéme
Qx) = ayry + a}x + a2 + ... + ap)\pxp .

Lorsque les @, sont des nombres algébriques, les a i, le
sont également. L équation algébrique Q(x) == 0 ne pouvant

L’Enseignement mathém., 20e année; 1918. 18
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avoir comme racine le nombre n?, Uintégrale (7) est finie,
déterminée el essentiellement différente de zéro.

On peut, & P'aide de la fonction (2), former une multitude
de fonctions u pour lesquelles Pintégrale (1) jouira de la
propriété précédente. Il suffit, par exemple, de se rappeler
I'existence de fonctions u de z telles que l'intégrale (1) est
tdentiquement nulle quel que soit le polyndéme v en x. Telles
seraient les fonctions signalées par Stieltjes

o, .
— . 1
U= e—‘/x sin Yz , TR er cos ;/;
Va

’

ainsi qi'une foule d’autres, pour lesquelles on a

[*2]
fuxndx =0 pour n=20,1, 2, ..
3 ,

En désignant une pareille fonction (ou une combinaison
linéaire homogene de ces fonctions) par U et en prenant

'intégrale (1) sera finie, déterminée et différente de zéro quel
que soit le polynéme ¢ a coeflicients nombres algébriques.
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