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PROBLÈME DE 263

\ doit satisfaire à l'équation du paragraphe précédent

X2_\S +

L'impossibilité de l'équation considérée, ou encore celle du

système des équations simultanées :

X2 + 2X + 2 X2 — 2X — 2

est équivalente à celle de l'équation sin u sin v 1.

Application des considérations précédentes

au problème de Torricelli.

Ig. — Au paragraphe 8, la solution du problème de FIîrmat

a été rattachée par une voie toute naturelle à l'étude des solutions

rationnelles de l'équation de Brahmagupta-Fermat :

(1 + t2)(1 + 2t—

Cette équation est du type qui vient d'être considéré à l'instant

: le polynôme du quatrième degré du premier membre

est décomposé en un produit de facteurs quadratiques à

coefficients rationnels.
La traduction analytique de l'énoncé du problème de

Fermât pouvait fort bien se présenter à Torricelli sous une

forme équivalente, à la seule condition d'utiliser les

formules de Diophante et non les formules de Brahmagupta,
dans la représentation de l'arithmotriangle pythagorique.

Ces formules de Diophante,

P2 — Q2 _ 2PQ
b — p2 _|_ Q2

a ' p2 + Q2

ramènent la recherche des arithmotriangles pythagoriques,
jouissant des deux propriétés énoncées « et & + c=Q,
à l'étude des solutions entières de l'équation indéterminée :

(P2 + Q2) (P2 + 2PQ - Q2j

Tout facteur premier de l'un des deux polynômes quadratiques

doit être un facteur premier de l'autre, et dans les
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deux cas sous des puissances impaires; or tout diviseur
commun des deux polynômes quadratiques appartient aussi
à leur somme et à leur différence :

2P(P + Q), 2Q(P — Q) ;

P et Q étant premiers entre eux, par définition, ce facteur
commun ne peut être que le nombre deux.

Comme d'autre part, en raison de la présence de P2 + Q2,
aucun doute n'est possible sur les signes, l'équation se
décompose soit en le système :

P2 -f Q2 P2 + 2PQ — Q2

soit en le système :

P2 + Q2 2Q P2 + 2PQ — Q2 2Q ;

le second système se ramène d'ailleurs au premier par la
substitution P + Q 2P4, P — Q 2Q1 ; en d'autres termes,
à toute solution t, correspond une nouvelle solution t \l + 'i
ce qui résulte de la symétrie qui existe dans les rôles des
deux cathètes.

L'équation
(P2 + Q2)(P2 + 2PQ-Q2)zz:n

du problème de Fermât se décompose ainsi en deux équations
simultanées

P2 + Q2 P2 + 2PQ — Q2 Q

dont le système lui est équivalent.
Nous avons alors :

(P -F Q)2
« + c Wwfl [=] '

nous retrouvons ainsi que la somme de l'hypoténuse et de
l'une des deux cathètes est un nombre carré parfait.

La solution générale de l'équation P2 4- 2PQ — Q2
étant donnée par la formule
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nous sommes, par cette, méthode et en utilisant l'équation

p2 _|_ Q2 — ramenés à l'équation,

(a-2 + l)2 + 4(x — l)2 ;

du paragraphe 14.

19_ Pour terminer, il convient de remarquer que les

considérations générales du paragraphe 15 s'appliquent
précisément aux équations

X3 + 8X et [X3 — 2 [A

des paragraphes 8.et 14. J'ai déjà signalé que la seconde

n'est qu'une conséquence de la première par la transforma-

tion
2

_ F-

qui implique d'ailleurs que X soit un carré parlait.

L'équation
X3 -j- 8X Q ou X(X2 -f- 8) L]

est bien de l'espèce considérée au paragraphe 15. En posant
P

X elle devient
PQ(P2 + 8Q2) ;

Q ne peut avoir de facteur premier à une puissance impaire :

c'est nécessairement au signe près un carré parfait. Quant
à P, il est de même de l'une des formes zb ou ± 2/>2. Le

produit PQ devant être positif, la question de signe ne se

pose.pas et il suffît de prendre :

P 2p2 ou p2 et Q =z q2

La première hypothèse, P 2p2, Q donne :

2(/>4 + 2<74) ;

le nombre entier pdoit donc être pair; soitp 2 ; l'équation

devient
8/>'4 + ?4 ;

p'2
et la solution correspondante est X' 8-^ Quant à la se-
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conde hypothèse, elle donne la même équation :

pl +8?4

«2
mais avec q'''^ntre 'es deux solutions X et X', qui
correspondent ainsi à une même solution de l'équation

co4 + 8

existe la relation XX' 8, laissant invariante l'équation

X3 + 8X

Enrésumé: les solutions cle cette dernière équation sont
des nombres rationnels carrés ou doubles de carrés, et elles
se transforment en l'équation :

to4 + 8

Nous retombons ainsi sur l'analyse de Lagrange (pages 38ft
et 387 du mémoire cité); les plus simples solutions sont
(d'après Lagrange) :

to — 1 - 239
w —' 6 tit '

20. — L'équation
(A8 - 2[X

se laisse traiter d'une manière analogue; p est au signe près
un carré ou le double d'un carré et, suivant les cas, cette-
équation se transforme en l'une ou l'autre des équations :

2x4 -y* Q x4 — 2/

Lagrange (pages 378-379 de son remarquable Mémoire) a
bien remarqué qu'alors que les équations
x4 ± V 2(x* ± y4)x4 + 2y4= [J sont
impossibles, d'après Diophante, Fermât ou Euler, il n'en est
pas de même de l'une et de l'autre des deux équations

2x4 — f x4 — 2j-4
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la première admet les solutions :

267

x 1525

x 13

x=z 2-165-017 j 2-372-159 ;

la seconde admet les solutions1 :

x 113 y 84

x — 57-123 y 6*214

Plus loin (p. 386 et 387), Lagrange a mis en évidence

l'équivalence de chacune de ces deux équations avec l'équation

sé + 8ld du paragraphe précédent. J'ai noté au

paragraphe 6 qu'une pièce des Operapostuma de L. Euler
concernait également l'équivalence des équatione s4 + 8l4

et 2x4 — yé
Si d'ailleurs on applique à la cubique d'équation

la méthode de dérivation des arithmopoints au moyen de la

tangente, on trouve que les coordonnées (#2, yü) du nouveau
point d'intersection de la cubique avec la tangente au point
(,r4, iji) sont fournies par les formules :

la loi de succession des abscisses est notamment la suivante :

x3 — 2x y'

x2 xi + 2J-P « n Ji + (3^2 — 2)P »

avec

P

16x2 — 3j4
Sx2y3

4 -1- 12x'2 — 3x4

——8^

1 Une erreur s'est glissée dans l'édition des Œuvres de Lagrange (p. 378), où le nombre y
de la troisième solution particulière de l'équation x4 — 2y4 Q est égal à 2*614; alors
que la véritable valeur de ce nombre est celle ci-dessus indiquée (6*214).
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la cubique admet une série d'arithmopoints d'abscisses

->=©'•
qui sont toutes des nombres rationnels carrés parfaits.

L application au problème de Fermât des principes généraux
relatifs aux équations de Brahmagupta-Fermat, soit

cubiques à zéro rationnel, soit du quatrième degré à
premier membre décomposable en un produit de facteurs rationnels

du second degré, permet, en résumé, d'expliquer
1 origine du problème de Torricelli; elle ramène
méthodiquement, en outre, la discussion de l'équation de ce
problème de Fermât et d'Ev. Torricelli à l'analyse de Lagrange
et d'EuLER.

Paris, le 5 février 1918.

REMARQUE SUR L'INTÉGRALE fuvdx
PAK

M. Michel Petrovitch (Belgrade).

Il est manifeste qu'il n'existe aucune fonction u de la
variable x telle que l'intégrale définie

00

I — Juv dx
o

ait une valeur finie, déterminée et différente de zéro quel
que soit le polynôme v en x.

Un fait curieux est, cependant, à signaler: il existe des
fonctions u de x pour lesquelles Vintégrale (1) a une valeur
finie, déterminée et différente de zéro quel que soit le polynôme

y eux à coefficients nombres algébriques (entiers, corn-
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