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Remarque sur les deux dernières conditions
du théorème de Torricelli.

13. — Laissant de côté la condition que l'hypoténuse soit
mesurée par un carré, prenons l'ensemble des deux conditions

:

6 + c a -1- c

Il n'est pas possible d'ailleurs de leur adjoindre la condition
analogue :

a b — 1 | ;

si dans un arithmotriangle pythagorique les trois sommes
de côtés pris deux à deux étaient, en effet, trois nombres
carrés parfaits, les nombres de ce triangle satisferaient aux
trois équations :

(p + q)2l 2p2X (p2 + 2pq -q2)X ;

et A serait simultanément un carré et le double d'un carré.
Reste donc à étudier le système des deux conditions:

b + c > a + c \Z\

la seconde permet de limiter le problème aux triangles
primitifs (X 1) pour lesquels elle est d'ailleurs ipso facto remplie.

Le problème est ainsi réductible à une seule équation
de Brahmagupta-Fermat du second ordre

p2 + 2pq — q2

dont la solution générale est

1 — 2 Lzif.
p 1 -f X2

en fonction d'un paramètre rationnel quelconque x.
On peut encore prendre pour un de ces arithmotriangles
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pythagoriques, qui ne sont définis qu'à un facteur carré près,
celui dont les côtés sont :

« £+1, fr=£-l, avec c
X* + (X-l)*44 x

1 restant un paramètre arbitraire.
Ce problème est donc de ceux qui se résolvent complètement

et dont la solution générale peut être formulée en fonction
de deux paramètres.

14. — De la solution générale qui précédé de cette question
bien simple, résulte immédiatement l'équation dont

dépend le problème de Torricelli. Il suffît de poser, à un
facteur près sans importance,

p1 +x2 2(1 — ;

et de résoudre le problème des arithmodistances pour l'arith-
moparabole que représentent, dans le système de coordonnées

rectangulaires p et q, ces deux équations paramétriques;

l'équation obtenue,

(a:2 + l)2 + 4(x — 1)2 ;

est une équation de Brahmagupta-Fermat du quatrième ordre :

+ 6x2 — 8x + 5 m

Les solutions acceptables doivent satisfaire en outre à des
inégalités qui assurent les signes positifs des cathètes des
arithmotriangles pythagoriques correspondants, ainsi quel'ordre de grandeur c > b;ilfaut donc que q soit positif et
que le rapport ^ soit compris entre l'unité et \/2 -f- 1. Des
trois inégalités

*<1<2(î^r4< V2 + 1

il résulte que le nombre rationnel x doit être compris soit
dans l'intervalle

V2 + i) — 2I/ V2 + t<^< — (V2 + 1)
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soit dans l'intervalle :

1/2"— 1 < x < - - V2"+ 1) + ^V2"+1 •

En posant
^4 + 6x2 _ Sx _j_ 5 — (x2 + 1 — 2[J.)2

cette équation indéterminée devient

(p. + i)x2 — 2x + 1 + p. — p.2 0

et la condition de rationalité de x fournit la forme canonique
suivante de l'équation du problème :

[Xs — 2p.

Le problème de Torricelli est ainsi rattaché à l'étude d'une

cubique harmonique d'invariants g2 8, g3 0.

Cette équation a3 — 2a G dérive de l'équation déjà
formée Jl3 + 8X par la substitution :

De la décomposition de certaines équations
de Brahmagupta-Fermat.

15. — Soit tout d'abord une équation cubique de

Brahmagupta-Fermat, telle que le polynôme entier cubique de son
premier membre soit doué au moins d'un zéro rationnel; si

x0 est le zéro rationnel du polynôme cubique f{x), par une
transformation x — x0 + ky, celui-ci se change en un
polynôme y.g{y), produit par la nouvelle indéterminée y d'un
trinôme g{y) du second degré.

L'équation de Fermât f\x) devient ainsi y .g(y) —
ou en explicitant les coefficients :

y Aj2 + Bj + G) ;

A, B, C pouvant toujours être considérés comme étant des
entiers qui ne sont pas nécessairement premiers entre eux,
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