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PROBLEME DE TORRICELLI | 255

Remarque sur les deux derniéres conditions
du théoréme de Torricelli.

13. — Laissant de coté la condilion que 'hypoténuse soit
mesurée par un carré, prenons I’ensemble des deux condi-
tions : \

b+ c=1[], a+c=1[].

Il n’est pas possible d’ailleurs de leur adjoindre la condition
analogue :
a-+b=1[];

si dans un arithmotriangle pythagorique les trois sommes
de cotés pris deux a deux étaient, en effet, trois nombres
carrés parfaits, les nombres de ce triangle satisferaient aux
trois équations :

p+o=0, 22=0, (pP+2p¢—¢=0;

et ) serait simultanément un carré et le double d'un carré.
Reste donc a étudier le systéme des deux conditions:

b4+ c=1[17, a+c=1[];

la seconde permet de limiter le probléme aux triangles pri-
mitifs (A == 1) pour lesquels elle est d’ailleurs ipso facto rem-
plie. Le probléme est ainsi réductible a une seule équation
de BraumagupTa-I'ERMAT du second ordre

P+2e—¢ =0,
dont la solution générale est

7 —2

1 —x

p 14 x%’

en fonction d’un parameétre rationnel quelconque .
On peut encore prendre pour un de ces arithmotriangles
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pythagoriques, qui ne sont définis qu’a un facteur carré pres,
celui dont les cotés sont :

2 2 2 — 12
a;:%—+1, b:.c_—tl, avec c:)\+(i 1 ’

4

A restant un paramétre arbitraire.

Ce probléme est donc de ceux qui se résolvent compléte-
ment et dont la solution générale peut étre formulée en fonc-
tion de deux paramétres.

14. — De la solution générale qui précede de cette ques-
tion bien simple, résulte immédiatement Iéquation dont
dépend le probléme de Torricerir. 1l suffit de poser, a un
facteur pres sans importance, |

p=1-+ x%, g=2(1 —x);

et de résoudre le probléeme des arithmodistances pour I'arith-
moparabole que représentent, dans le systéme de coordon-
nées rectangulaires p et ¢, ces deux équations paramé-
triques ; I’équation obtenue,

(x2+’1)2—|-4(x—1)2:[:] ,
est une équation de BRaEMAGUPTA-FERMAT dut quatriéme ordre :
xt + 627 — 8x 4+ 5 =[] .

Les solutions acceptables doivent satisfaire en outre & des
inégalités qui assurent les signes positifs des cathétes des
arithmotriangles pythagoriques correspondants, ainsi que
I'ordre de grandeur ¢ > &; il faut donc que ¢ soit positif et

que le rapport g soit compris entre I'unité et V2 4 1. Des
trois inégalités

1o
x<1<§(1%“’x)<\/2+\1,

il résulte que le nombre rationnel x doit &tre compris soit
dans l'intervalle

:——-(V2~+,1) — 2\/\/§+1<x<—(\/2——|— 1) ,
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soit dans l'intervalle :
V2 —1<ae<--(V2+1+ oV V2 L1,

En posant | B
xt + 6x? — 8x + 5= («* + 1 — 2p)*,

cette équation indéterminée devient

(p.+Afl)x2——2.7c—|-1—|—\u——p2-::0,

et la condition de rationalité de x fournit la forme canonique
suivante de ’équation du probléme :

pf—2p =[] .

Le probléme de ToRRICELLI est ainst raitaché a U'étude d’une
cubique harmonique d'invariants g, — 8, g3 = 0.

Cette équation p®— 2u =[] dérive de l'équation déja
formée A* 4+ 8% — [] par la substitution:

l:p.—;

De la décomposition de certaines équations
de Brahmagupta-Fermat.

15. — Soit tout d’abord une équation cubique de BraHMA-
GupTA-FERMAT, telle que le polyndme entier cubique de son
premier membre soit doué au moins d’un zéro rationnel; si
x, est le zéro rationnel du polynéme cubique f(r), par une
transformation x = x, + ky, celui-ci se change en un poly-
néme y.g(y), produit par la nouvelle indéterminée y d’'un
trinébme g(y) du second degré.

L’équation de Fermar f(x) = [] devient ainsi y.g(y) = [,
ou en explicitant les coeflicients :

YA+ By +C) =0 ;

A, B, C pouvant toujours étre considérés comme étant des
entiers qui ne sont pas nécessairement premiers entre eux,
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