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CHRONIQUE : ' 321

Société mathématique suisse.
Zurich, 11 septembre 1917.

La -Société mathématique suisse a tenu sa huitieme réunion
ordinaire a Zurich, le 11 septembre 1917, sous la présidence de
M. le Prof. Marcel Grossymann (Zurich), a 'occasion de la réunion

~annuelle de la Société helvétique des Sciences naturelles.

Voici les résumés des communications, au nombre de quinze,
présentées a la séance ou dont les mémoires ont simplement été
annoncés, en ’absence de leur auteur.

1. — M. le Prof. A. Emcu (Urbana, E.-U.). — Sur les courbes
planes qui ont pour foyers réels, dans le plan complexe, les racines
n*=e de lunite. — 1. Soit

D, v, wy=20 (1)

I’équation d’une courbe de n'*=° classe en coordonnées homogenes
et

ut + vn 4+ w{ =10
I'équation d’une droite.
l.es coordonnées cartésiennes correspondantes sont définies par

£ .
g 0
xr =, = = ;
7 Y =7
dans ce cas
—E— i (@4 =0 2)

est I’équation d’une droite qui passe par le point (, ) et par un
des points cycliques du plan. [.es coordonnées homogeénes de la
ligne (2) sont

ou — — 1,

V= == 1

O

y W=z + iy .
Si donc, z et y sont déterminées de telle sorte que

O(—1, —i, x4ij=0 (3)

soit satisfaite par x et y, la tangente & (1) définie par (2] passera
par ie point réel (x, y) et un des points cycliques. En conséquence,
[z, y) est un foyer réel de la courbe (1). Il résulte de (3) qu’il y a,

en général n foyers réels de ce genre; on les obtient en mettant
(3) sous la forme

fle, y) + 1glx, y) =0 {4)
et en cherchant les solutions communes &

flx,y) =0 et glx, y)=0.

[’Enseignement mathém., 19e année, 1917. 21
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Nous obtenons ainsi les n foyers réels et les n(n — 1) foyers
imaginaires de la courbe (1).

Aprés avoir rappelé ces faits connus, nous allons déterminer
celles des courbes (1) qui possédent pour foyers, dans le plan
complexe, les racines ni*™* de 'unité.

L’équation (3) prend alors la forme

— 14 (i =0 (5)
et (1) devient |

- —2
a0 oa "y a4 a,v" + a" =10 (6)

Dans cette égalité les coeflicients doivent étre choisis de telle
sorte que

Ggl— 1) ey )" V= §) a1 i
+ a,(— 0"+ 1=0

soit identiquement nul, ce qui peut étre réalisé d’'une infinité de
manieres ; par suite, chaque n fournit une classe infinie de sem-
blables courbes.

[’équation cartésienne s’obtient par le procédé d’élimination
habituel. Parmi les nombreuses classes de courbes ainsi obtenues,
signalons le cas dans lequel (6} prend la forme

=" 2 =0, (

9

ou % est pair ou impair en méme temps que 7.
Une transformation facile, un peu longue toutefois, donne
I’équation de la courbe (7) en coordonnées cartésiennes

xn———‘)k.)_2k = (— ,1)11_% ) (2/f>?k

n/l (I’L . Qk)2/{-—n

C’est une hyperbole d’ordre n. Les foyers de cette courbe sont

réels ; ils sont aux sommets du polygone régulier de n cotés ins-

crits dans le cercle de rayon 1, le point (1, 0) étant un des sommets.
Lorsqu’on a

~— 14 (x4 iy)?=0,

on obtient naturellement un systéme d’hyperboles et d’ellipses
homofocales.
La courbe (7) est rationnelle; ses équations paramétriques se
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déterminent facilement. Les points a l'infini de 'axe des 2 et de
I'axe des y constituent respectivement:

(n — 1) (2k — 1) (n—1)(n — 2k — 1)
5 et 2

(n — 1) (n — 2
2

soit ensemble points doubles.

2. — M. le D* G. Pérya (Zurich). — Sur les propriétés arithmé-
tiqgues des séries entiéres, qui représentent des fonctions ration-
nelles. — 1. I’intégrale d'une fonction rationnelle ne peut pas étre
développée en série entiere a coefficients entiers, excepté le cas
ou elle est elle-méme rationnelle.

II. — En développant une fonction rationnelle en série de Mac-
Laurin a coefficients rationnels, les dénominateurs de ceux-ci
seront composés d’'un nombre fini de facteurs premiers (cas trivial
d’un théoreme d'Eisenstein). Quand arrive-t-il, que les numéra-
teurs aient la méme propriété !

Voici la réponse, qu'on obtient en combinant les éléments de
la théorie des idéaux avec certaines considérations sur les séries
entieres : toutes les séries en question peuvent étre déduites de la
seule série

1+(x+x2+x3+...:—~1~—
1 —=x
par l'application répétée (un nombre fini de fois) des opérations
sulvantes : :

1. Addition d’un polynome.

Multiplication de la série par uz’.

Changement de variable x| ax.

Changement de variable x| 2”.

. Addition des deux séries telles que le coefﬁclent de 2" soit
= O dans une des deux au moins, pour n =0, 1,2, 3, ...

O( A B B

3. — M. le D" A. Osrrowsxr (Marburg a. d. L.) et M. le D*
G. PovLya (Zurich). — Sur les polyndmes a valeurs entieres dans
un corps algebrique. — Nous dirons d’un polyndéme P (z) qu’il est
a valeurs entieres dans un corps algébrique K, si P(&) est un entier
algébrique appartenant a K pour tous les entiers & de K. Un poly-
nome a valeurs entiéres de degré m est nécessairement de la forme

ax™ 4+ fa N b 4

m!

«, B, ... A étant des entiers appartenant a K.
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(2

. . o. .
Envisageons ’ensemble de tous les entiers o tels que ;l—,;v" soit

le terme le plus élevé d’un polyn6éme a valeurs entieres de degré m.
Cet ensemble d’entiers est un certain idéal dans XK, que nous dési-
gnerons par a,. Le résultat principal de notre analyse est le cal-
cul'exphclte de a,,. Désignons par p,, p,, ... p, les idéaux premiers
divisant m!, par N, N,y ... N, leurs normes, et posons

SGRERE
N, N} N;

a, Pipyt e pit = (m!) . (1)

On a

Les polyndmes a valeurs entiéres dans le corps des nombres
rationnel)s sont, comme on sait, de la forme

x x{x — 1) 2l —1 ... (x — m + 1)
((0+a1T+02 1—?2%—+".+a"’ 1.2 ... m '

Ay, Ay Ay, ... d,, étant des entiers rationnels. Les polynémes
1 . x(x—1) x(x —1) ... {x —m + 1)
’ ’ 1.2 T 1.2 ...m T

forment donc une espece de « base » des polyndmes a valeurs en-
tiéres. Lacondition nécessaire et suffisante de ’existence d’une base
analogue dans un corps algébrique K quelconque estla suivante :
Il faut que tous les idéaux a,, a,, a,, ... q,,, ... soient des idéaux
principaux (Hauptideale). Cette condition se transforme facile-
ment a 'aide de (I): En formant le produit de tous les idéaux
premiers de méme degré, qui divisent un nombre rationnel p, il
faut que ce produit soit un idéal principal pour p quelconque.
Ainsi, dans un corps de Galois Normalkorper) 'existence de la
base ne dépend que des diviseurs du discriminant (Grundzahl).
Par exemple, la base existe dans tous les corps engendrés par une
racine primitive de 'unité de degré premier.

On peut résoudre la question de l’existence d’'une base aussi
dans le cas des polyndmes a valeurs entieres qui dépendent de
plusieurs variables. La condition est la méme.

4., — M. le D* Ferd. Gonseru (Zurich). — Un théoreme relatif a
deux ellipsoides confocaur. — Le théoreme dont il s’agit est une
extension a I’espace du théoréme bien connu de Graves :

Si un fil passé autour d’une ellipse est tendu par une pointe,
celle-ci peut décrire une ellipse confocale a la premiére.
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L’analogue de l'espace s’énonce comme suit :

Tugorikme : Si d’un point P on meéne le cone tangent a un ellip-
soide, et gu’on calcule U'intégrale de la courbure moyenne étendue
& la surface fermée, convexe, formée par le cone arrété aux points
de contact et par la portion de Uellipsoide qui lui fait suite, celle
intégrale reste constante si P décrit un ellipsoide confocal aw pre-
mier. .

La méthode de démonstration est exposée d’abord pour le théo-
réeme de Graves. L'intégrale [ [dpdeg étendue au domaine (g, p)
d’un énsemble de droites x cos¢ - ysing — p=20 est, d’apres
Crorron, la mesure de cet ensemble. En particulier la mesure des
droites qui rencontrent une courbe convexe fermée est égale a
'intégrale de sa largeur, ¢’est-a-dire — fait connu — a son péri-
metre.

D’autre part, les mémes droites étant wx 4 vy + 1 =0, on
reconnaitra que la mesure est égale a la surfuce non-euclidienne
de 'ensemble des points de coordonnées rectangulaires

, (1)

dans un plan dont la conique absolue est 2* + y*>=0.

Soient maintenant ¢, et &, deux ellipses confocales; un point P
de ¢, avec sa tangente £, d’ou I'on meéne les tangentes a et b, a ¢, .
Cette figure est transformée par la transformation définie par les
formules (1). On obtient deux coniques &, et &¢,; une tangente p
a ¢, avec son point de contact T, coupe ¢, en A et B.

Le théoreme de Graves sera exact si ’aire non-euclidienne (au
sens défini plus haut) de la portion de plan située a I'extérieur de
la courbe fermée convexe formée parle segment AB et une portion
de 'ellipse ¢, est constante lorsque p varie. On meénera une tan-
gente voisine, et il suffira de prouver 1'égalité de deux triangles
infiniment petits. Cette égalité résulte du fait que T est au milicu
(non-euclidien) de AB, puisque ¢ est la bissectrice de a et b.

Dans l'espace, on définit semblablement la mesure d'un en-
semble de plans

x == 1 y=v

xcosa - ycosf 4+ zcosy —p =10,
ou bien .

ux + vy +wz +1 =20 ;

on la reconnaitra égale au volume non-euclidien de 'ensemble des
points de coordonnées rectangulaires  — «, y = ¢, z=w, dans
un espace dont la quadrique absolue est & 4 y? + 32 =

En particulier la mesure des plans qui coupent une surface
fermée convexe vaut l'intégrale de la largeur, et d’aprés une for-
mule de M. Hurwirz, Vintégrale de la courbure moyenne de cette
surface.

Le reste de la démonstration se calquera sur la précédente.
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5. — M. le Prof. D* L. Korrros (Zurich). — Propriétés métriques
des courbes algébriques. Toute propriété métrigue peut étre con-
sidérée comme projective si I’on fait intervenir les éléments abso-
lus : la droite a 'infini et les points cycliques (pour la géométrie
euclidienne plane]. On peut done transformer les propriétés mé-
triques par une collinéation ou une réciprocité, et 'on arrive a des
rapprochements entre des théoréemes qui paraissent tres diffé-
rents. Ainsi, le théoreme de Carnot sur les courbes algébriques
planes coupées parun triangle devient — parune réciprocité dans
laquelle les points cycliques correspondent a deux cotés da tri-
angle — le théoreme suivant de Laguerre: Si par un point on
mene les n tangentes & une courbe algébrique plane de classe n
et si 'on joint ce point aux n foyers réels de la courbe, les deux
faisceaux de droites ainsi obtenues ont méme orientation .

Dans les deux théoremes, le produit de n rapports anharmo-
niques (T,0AB) est constant, O, A, B étant fixes et les T; variables.
Dans le théoreme de Laguerre, les points T;, O, A, B sont tous &
I'infini; A et B sont les points cycliques; O est le point a I'infini
de I'axe-origine des angles.

. iy . 9 !
Si B tend vers A, cette condition devient : ET—X — const.;

i=1
elle exprime (ue le pole harmonique P de A par rapport au sys-
teme des n points variables T; est fixe. Si A est a l'infini, P est le
centre de gravité des points T;. D’autre part, un foyer, point d’in-
tersection de deux tangentes isotropes, doit étre remplacé par le
point de contact d’une tangente menée de A a la courbe. Une réci-
procité telle que le point A devienne la droite a V'infini remplace
les points de contact des tangentes a la courbe issues de A par les
asymptotes de la courbe transformée. Ainsi, a un théoreme o un
systeme de droites variables a une orientation constante, corres-
pond un théoreme oi un systeme de points variables a un cenlre
de gravité fixe. De plus, a un foyer de la premiere figure corres-

pond une asymptote de la seconde.

Exemples: 1. Au théoreme de lLaguerre, cité plus haut, corres-
pond le suivant: l.e centre de gravité des points de rencontre
d’une droite avec une courbe du ni*»° ordre est le méme que celui
des points d’'intersection de la droite avec les asymptotes de la
courbe.

2. Les systémes de tangentes me- Les centres de gravité des deux
nées d’un point & deux courbes de  systémes de points de rencontre de
méme classe ont méme orientation  deux courbes algébriques de méme
sile point est foyer d’'une des courbes  ordre parune asymptote d'une courbe

1 Deux systémes de n droites ont méme orientation lorsque la somme des angles que font
les n droites avec un axe fixe est la méme pour les deux systemes (a un multiple de v prés).
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du faisceau tangentiel déterminé par
les deux premiéres (Humbert).
3. L’orientation du systeme des
mn tangentes communes a deux cour-
bes algébriques ne varie pas quand
on remplace I'une des deux par une
courbe qui lut est homofocale (La-

du faisceau ponctuel déterminé par
les deux premiéres, coincident.

Le centre de gravité des points de
rencontre de deux courbes algébri-
ques ne varie pas quand on remplace
I'une des deux par une autre qui a les
mémes asymptotes.

guerre).

6. — M. le Prof. D* O. Seigss (Bile). — Un théoreme relatif aux
fonctions rationnelles. — Lir a émis la supposition qu’on doit
pouvoir obtenir toute fonction analytique f{z) par itération d’une
substitution infinitésimale @ + g(x)dt; que flxr] est par consé-
quent un élément d’un groupe continu de transformations. On
n’a pas réussi jusqu’ici a démontrer ce théoreme, méme pour la
classe tres spéciale des fonctions algébriques. Je démontrerai ici
que la supposition de Lie est exacte au moins pour les fonctions
rationnelles. .

Le probléme peut se réduire a déterminer, pour chaque f(z)
donné, une fonction @ qui satisfasse a I’équation

I

Bifix)) = o Da) . ()

La transformation infinitésimale originelle est alors déterminée
par

Or MM. Kanics, GrEvy et LEau ont démontré depuis longtemps
qu’il existe des solutions de (1) dans le voisinage de certains
points fixes de f[x). Si, en particulier, f(2) est rationnelle, ces
méthodes fournissent toujours une solution analytique excepté le

seul cas ot 'on a, pour tout point fixe «,

g = ['lay) = e (£, est irrationnelle). (2)

Et encore dans ce cas on connait une solution si f{x) est linéaire :

L.a supposition de Lie sera donc démontrée pour une fonction
rationnelle, si nous faisons voir que :

Théoréeme : Une fonction rationnelle dont tous les points fixes
ont la propriété (2] est nécessairement linéaire.

a, de fla) =

: . . N r\x
Démonstration : l.es points fixes o, ... ()

P (nous

~—
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pouvons les supposer tous dans le fini) sont racines de I’équation :

py =as —r=20. Il en suit immédiatement :
v ()
e, = fa,) =1 — '
= (% PN
[Les nombres :
1 s (o)

sont au méme titre que les ¢, == 0, 1, « (en vertu de (2)]; par con-
séquent on aura d’apres Lagrange :

22

’~IJ —dx——ak’

1

et de la:
" ‘ w, + w 1
2 W, = [f’i] =1 ; ou bien (3) B -
b n n
1 H o

Or, en vertu de (2], les points ¢, sont sur le cercle unité de

(
centre O ; et par conséquent les points w, sur la perpendiculaire
- , 1 : \
a I'axe réel par x = 5. Mais comme, en vertu de {3), le centre de

R

gravité des w, est o = —, il faut que n=2, c’est-a-dire que f(z)

soit linéaire. C. q. f. d.

7. — M. le Prof. D* A. Hurwirz (Zurich). — Généralisation du
theoreme de Pohlke. (Extrait d’une lettre a M. Kollros.) — FEtant
donnés deux tétraedres, on peut towjours, en remplacant Uun d’euz
par un tétraedre semblable, les amener dans une position telle que
les droites joignant les sommets correspondants soient paralleles

entre elles.

En effet, si ABCD et A’/B’C’D’ sont les tétraédres donnés, l'af-

“p ARCD
finité (A’B’C’D’
un ellipsoide K’ circonscrit au tétraedre A’B’'C’D’. Déterminons
une section circulaire .c’ de l'ellipsoide K’; a ce cercle ¢’ corres-
pond, par l'affinité considérée, un cercle ¢ sur la sphere K. Dila-
tons le tétraedre ABCD, avec la sphere K et le cercle ¢, a une
échelle choisie pour que le cercle ¢ devienne un cercle ¢, égal au
cercle ¢’. Le tétraedre dilaté A,B,C,D,, semblable au tétraedre
ABCD, peut des lors étre mis dans une position telle ue le cercle c,

transforme la sphere K circonscrite a ABCD en




“irmp

CHRONIQUE 329

coincide point par point avec le cercle ¢’; ainsi les deux espaces
en affinité deviennent perspectifs et les dr oites AA’, BB’, CC’, DD’
sont paralleles.

Le probleme admet deux solutions essentiellement différentes,
correspondant chacune & 'un des deux systemes de sections cir-
culaires de 'ellipsoide K'.

Si ABCD sont quatre points d’un plan et si A'B'C'D’ est formé
de trois arétes'd’un cube passant par un méme sommet, on trouve,
comme cas particulier, le théoréme de Pohlke.

8. — M. le Prof. D* C. Cararuionory (Geettingue). — Sur le
traitement géométrique des extrémas des intégrales doubles. —
A coté des problémes aux frontiéres auxquels le calcul des varia-
tions doit son existence et a4 cdté du calcul des variations de
LLagrange, dont 'importance grandit toujours plus dans tous les
domaines, la théorie de Hamilton-Jacobi, issue il y a bientot
cent ans de 'optique et de la mécanique, joue un role tout aussi
important. ~

Un essai d’extension de cette théorie aux intégrales doubles a
été fait il y a quelques années!. Je veux, ici, esquisser les moyens
tres simples par lesquels on peut obtenir I'essentiel des résultats
de Jacobi et Hamilton, lorsqu’aucune condition aux frontieres
n’est prescrite d’avance pour la solution cherchée et qu'on évite
ainsi les difficultés particulieres aux problémes aux frontiéres.

Soit
J:/ff(_x,)',z;zx,zy)dxdy (1)

l’intégrale double a étudier. Considérons une famille a deux para-
metres

Sle,y, z)=%, T, 5,3 =p 2)

formée de courbes quelconques, traversant I'espace et envisa-
geons-la comme une gerbe de tubes infiniment minces. Sur une
surface quelconque z — z{x, y) chacun de ces tubes découpe un

élément de surface pour lequel nous pouvons calculer comme
suit la valeur de I'intégrale (1).

Posons

Ste, 5) = S(x, 5, sl 9)) . Tlx,p) = Tia, 5, z(x, 5)) (3)

L G. PraNeE, Die Hamilton-Jacobische Theorie [ur Doppelintegrale, Inaug.~Diss., Got-
tingen, 1915.
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et formons le déterminant fonctionnel

——‘D(S—’ T.I‘—)___ Sx+sz.zx, Sy"i"‘szzy

A(x,y,z;z. i S ML~ '
o(x, y) Tx-}— T;.zx , Ty - T:'Zy ’

x ? Zg/)

11 résulte alors de (1), (2}, (3)

\
\J :fc/"z/ didu.

et la valeur cherchée de J pour 'élément de surface découpé est

gd)\dp. . , (4)

Cette valear, qui dépend de z, et z,, c’est-a-dire de la position
du plan tangent a la snrface donnée z — z(x, y), est la plus
petite possible, lorsque les relations

A‘fzx—"f'Azx:O’ L\.f;y——f.Azy::O (9)
sont vérifiées et que de plus le minimum de /: A comme fonction
de z,, 3, est effectivement assuré par les valeurs tirées de (5)
(conditions de LLegendre ou de Weierstrass).

Nous appelons section du tube au point d’intersection du tube
avec la surface z —= s (2, y) le minimum de V'expression (4.

Nous exigeons maintenant de la famille de courbes (2}, qu’elle
ne contienne que des tubes de section constante. Cette condition
nous donne la relation

Zf =$(h, p
dans laquelle y(4, u) est d’abord une fonction arbitraire. Si nous
remarquons cependant que 'on peut toujours, par une transfor-
mation convenable des parametres 1 et w prendre ywii, u; =1,
nous obtiendrons finalement le systéeme d’équations

f:A ) f;x:Azx ! fzy:Azy ! (6)
duquel tout le calcul des variations des intégrales doubles se
déduit sans elfort.

9. — M. le Prof. D. HiLzrr (Geettingue). — Le raisonnement
axiomatigue. — En groupant les faits d’un certain domaine scien-
tifique, nous remarquons qu’ils sont susceptibles d’étre ordonnés.
Cet ordre se fait a 'aide d’un partage des notions, tel qu’au fait

simple du dowmaine, correspond une notion de ce partage, et a
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chaque ensemble de faits correspond une relation logique entre
les notions. Le partage des notions s appelle la théorie axioma-
tique du domaine scientifique envisagé. Ce partage est basé en
outre sur un nombre restreint de principes fondamentaux carac-
téristiques du domaine qui suffisent entierement a édifier les no-
tions d'apres les regles de la logique. Au premier coup d'eil, ces
principes fondamentaux doivent étre regardés comme les axiomes
du domaine scientifique en question Tout effort d’explication
des axiomes conduit en général & un nouveau systeme d’axiomes,
c’est-a-dire 4 une couche plus profonde d’axiomes. Ce procede
revient donc & reculer plus profondément les bases du domaine
scientifique.

La théorie d’'un domaine scientifique, c’est-a-dire le partage des
notions par lesquelles il est représenté, a pour but de 'orienter
et de 'ordonner. Pour arriver a ce but notre partage doit remplir
deux conditions : premierement, il doit donner un apergu sur la
dépendance des éléments, secondement, il doit assurer la non-
contradiction des axiomes de la théorie. Ce second point est
essentiel, car toute contradiction mettrait en doute la théorie
entiere. LLa démonstration de cette non-contradiction réussit en
cgénéral pour les théories de la géométrie et de la physique en
réduisant le probléme & la non-contradiction des axiomes de
Iarithmétique.

Pour 'arithmétique, la réduction a un autre domaine scienti-
fique plus spécial n’est plus possible, parce que, en dehors de la
logique, il n'existe plus aucune autre discipline a laquelle I'esprit
humain doit se soumettre. Il semble donc nécessaire de pousser
la recherche des axiomes delalogique dans ses derniéres limites.
Ce chemin a été préparé depuis longtemps; les recherches du
logicien Russell ont été particulierement couronnées de succes.

Cette analyse des axiomes de la logique est rattachée a une
série de questions spécialement mathématiques. Elle constitue
dans tous les cas le probleme le plus important et le plus difficile
de la théorie de la connaissance.

10. — M. le Prof. A. Sperser (Zurich). — qumézons di cinquieme
degré. — On sait que le groupe alternant de cing variables est
isomorphe aux 60 rotations de I'icosaedre. Elle admet par consé-
quent une représentation par substitutions linéaires ternaires :

l

S={(s) ,t1.2,3 S=E,A, B

ainsi que par substitutions linéaires fractionnaires

ST s,
S, - 8,
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Si w est un nombre générateur d’un corps avec ce groupe, et si
w=w,, 0,, .., o, sont les nombres conjugués, les trois nombres

A, = s 0
S

o

_—\ — e
Al — 2“"111(03 ’ Ay = 2‘312 Wg s
s s
subissent des substitutions ternaires par le passage aux conju-

gues et

& =

N e
24,

subit par la les substitutions linéaires fractionnaires.
Par la, le probleme de I'équation du 5° degré est ramené, de la
manieére la plus générale, a un probleme a un parametre.

11. — M. le D S. Bays (Fribourg). — Sur les systemes de triples
de 13 éléments. — La preuve que pour 13 éléments le systeme
cyclique de Netto, et le systeme donné par Kirkmann, Reiss,
de Vries, sont les deux seuls systemes de triples de Steiner diffe-
rents possibles, peut étre faite, sans I'aide d’aucune notion parti-
culiere et d’'une maniere assez simple, en construisant directement
les systemes de triples de 13 éléments qui ne contiennent pas un
triple fixé abc.

Un systeme de triples de Steiner qui ne contient pas le triple
abc contient les trois triples:

(@, B,y = a, b, c

ou a, 3, y peuvent étre tous les arrangements de dix éléments
trois a trois. Pour un arrangement a, 8, y fixé, il n’y a que deux
possibilités qui donnent, pour la construction du systeme, les
seules dispositions suivantes qui s’écrivent aisément :

Ier cas. Le triple e¢ffy est contenu dans le systeme.

et entre eux) ,

beco cafs aby

ase’  a.. af’. ay'. a .. af’. ay’. By
bes”  ba'm b .. by" . Ba'p B.. BY. \0

(20)
cyy!  cd'n cf. ¢ .. ya'g Y. v .

I1¢ cas. Le triple ey n’est pas contenu dans le systeme.

Dyr? n’ ’
G (¢ By
C% aam ad’n  aB’p  ay'q ao’ . . a’ B’y
© ] ’ Y o7 ’
5 1o bE. ba' . hE’. by’ . BB’ B.. (8)
= O
2 g ¢ ca’ cf’ ey’ !
2.8 Y .cf T .o ;
(l) 8 g} i4
—_ asa’ a.. aB’. ay’. a .. o. o 5’y :
g2 ‘
— ¥
~_ 20 bBm  ba'n  b3'p  bY'q BE. B. o’ -
N N
o . ’ NV ’ ’ 3 ‘.‘*
. cy. ca g’ el Y v (8) :
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= ace  a.. af’Y a.. a.. a.. a'B’'m
S ) r
;5; 2 1o bB. ba'p bR, bY. gs’. B a'y'n
; E}i ey. ca’q B . w. r.. (12)
I) e w

/ pra) ’ ’ ’ ’ r’
£~ aam ao’n  al’p ay'q ac’. a.. B
S5 2 bp. b DEW by BE7.  B.. o ..
N cy. c .. ¢, yd . Y.. (2%) pourad’n

(20) pour ba'n

ou ca’n

Dans chacune de ces dispositions, les éléments o', 8, ', diffé-
rents entre eux et des éléments a, b, ¢, a, B, y, peuvent étre tous
les arrangements des sept éléments restants trois a trois; pour
chaque arrangement o', f', y'; m, n, p, ¢ peuvent étre toutes les
permutations des quatre derniers éléments. Pour un arrangement
a', B', 7' et une permutation m, n, p, ¢ fixés, chacune des dispo-
sitions se complete par les éléments m, n, p, g (et cela sans y
mettre beaucoup de temps) du nombre de manieres que j’ai indi-
qué a droite, ¢’est-a-dire donne ce nombre de systéemes. En tenant
compte des dispositions ou les deux éléments g’ et y’ ont a prendre
le méme role que a’, nous obtenons donec:

A AZ.P (40 4 8 4 3.8 4 3.12 4 3.(24 + 2.20)) = 10! 300

systémes de triples, ne contenant pas le triple abc, et par suite
10! 300.11

10
ferent entre eux au moins par un de leurs triples. Or, les ordres des
groupes qui transforment en eux-mémes le systeme cyclique de

13! 13!
39 + T — 10! 330. Par
conséquent, le systéeme cyclique de Netto et le systéeme de Kirk-
mann sont les deux seuls systemes de triples de Steiner différents
pour 13 éléments.

= 10! 330 systemes de triples de 13 éléments, qui dif-

Netto et celui de Kirkmann sont 39 et 6;

12. — M. le Prof. L.-G. Du Pasquier (Neuchatel). — Sur un
point de la theorie des nombres hypercomplexes. — Dans un sys-
teme de nombres hypercomplexes & n unités relatives, constitué
pour une infinité d’éléments tels que

x=xye, + xe + ..+ x e, ou les iy By, cpy &

i

n

sont des nombres réels quelconques dits « coordonnées du nombre
hypercomplexe x », et les ¢, ¢,, ..., e, des symboles dits wnités
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relatives, supposons définies I’égalité et deux opérations de calcul :
I’addition et la multiplication. Il en résulte 'existence de deux
opérations inverses qu’on appellera soustraction et division. En-
visageons le corps de nombres 3R% formé par 'ensemble des
nombres hypercomplexes a coordonnées xy toutes rationnelles.

Pour faire I’'arithnomie de % R % , commencons par définir le nombre
hypercomplexe -« entier ». Selon la définition lipschitzienne, un
nombre hypercomplexe rationnel x est nombre entier, quand
toutes ses 1z coordonnées 2y sont des nombres entiers ordinaires,
tandis que 2 est réputé « non entier », dés que 'une de ses coor-
données xy est un nombre fractionnaire. On sait depuis Gauss
que. cette définition, appliquée aux nombres complexes ordinaires
2, 4+ 2,7, oui? = — 1, donne une arithnomie parfaitement régu-
liere, analogue en tout point a larithmétique classique. L’'exemple
le plus simple montrant combien cette définition lipschitzienne
si simple est cependant peu appropriée en général comme base
d’une arithmétique généralisée, est fourni par les « nombres com-
plexes de secounde espéce» 2 = x, -+ x,/, ou j est un symbole
défini par I'égalité j* = 1.

En adoptant la définition lipschitzienne, on voit que dans ce
systeme particulier, un produit peuat étre divisible par un
nombre entier sans qu'aucun des facteurs ne le soit; exemple:
(34 /) (6 — 3/) = 12 — 47 qui est divisible par 2. On peut faire
tomber cette irrégularité, et d’autres encore, en remplacant la
définition lipschitzienne par la définition hurwitzienne d’apres
laquelle un nombre hypercomplexe & est réputé « entier » s’il est
contenu dans le domaine holoide maximal [M] du corps de nombres
en question, « non entier » s’il ne fait pas partie de ce domaine
holoide maximal [M]. En vertu de cette définition nouvelle, un
complexe rationnel x peut fort bien étre entier quoiqu’ayant des
coordonnées x, fractionnaires. Dans le cas particulier cité, on
appellera entier tout nombre complexe de seconde espece repré-

[ b .
sentable par la formule « + % -+ §)J> ou a et bsont des nombres
5 3 .

2 2
sont maintenant des complexes « entiers » et il n’est des lors plus
surprenant que (3 ++ ;) (b — 3/) soit divisible par 4.

LLa définition hurwitzienne postule dans le corps de nombres
envisagé lexistence d'un domaine holoide maximal. On appelle
ainsi tout ensemble [M] contenant une infinité de nombres, parmi
lesquels le nombre 1 et le nombre 0, jouissant des propriétés sui-
vantes : 1) la somme, la différence et le produit de deux nombres
quelconques de 'ensemble appartienttoujours au méme ensemble;
2) il possede une base finie; 3) il n’existe pas dans le corps de

. .
. . . .7 . . [3)
entiers ordinaires d’ailleurs quelconques. Ainsi, ' - i)
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nombres en question un autre domaine holoide contenant tous

les éléments de [M] plus encore d’autres non contenus dans [M].
i I

Dans le cas des nombres complexes de Gauss, 'ensemble de

tous les n, 4 n, .7, lorsque n, et n, parcourent, mdepegdamment

Pun de lautre, la série des nombres entiers de — = a -+ o, cons-

titue un domaine holoide maximal dans 31{%, en sorte que défi-
nition lipschitzienne et définition hurwitzienne se confondent.
Tel n'est pas le cas des nombres complexes de seconde espece:
I'ensemble [H] de tous les n, + n,j, c’est-a-dire des complexes.a
coordonnées entiéres, constitue bien un domaine holoide, mais
qui n’est pas maximal dans gH %, puisque 'ensemble [M] de tous
les n, + %2 + %2] contient les éléments de [H] et, en plus, d’autres
ne faisant pas partie de [H].

Il existe des systemes de nombres hypercomplexes ou le corps
%Rf des complexes rationnels ne posséde pas de domaine holoide
maximal. Dans ce cas, il n’est pas possible de définir le nombre
hypercomplexe «entier» de maniere a obtenir une arithnomie
réguliere. L’exemple le plus simple d’un tel systeme est fourni
par les « nombres complexes de 3¢ espece» y = y, + ¥, ol les
coordonnées y,, y, sont de nouveau des nombres réels et i/ un
symbole défini par /> = 0, le calcul sur ces nombres se faisant
d'apres les regles ordinaires de I'algebre.

Pour caractériser les systemes de nombres hypercomplexes
sans domaine holoide maximal, envisageons la suite 2, 2%, 2% ...,
any antl o ou x représente un nombre hypercomplexe a n unités
relatives. Si l'une de ses puissances est identiquement nulle,
2" =10, le nombre x est dit «nilpotent» ou « pseudonul », ou
encore « racine r'®° de zéro. Ainsi, dans le systeme des nombres
complexes de 3° espece, // est une racine carrée de zéro, puisque,
par définition, " = 0,

Une condition nécessaire pour que le corps 3R§ des nombres
hypercomplexes rationnels soit dépourvi de domaine holoide maxi-
mal est que le systeme en question contienne des racines de zéro.
Sile nombre des unités relatives dépasse 3, cette condition néces-
saire n’est pas toujours suffisante. Mais quand un systeme de
nombres contenant des racines de zéro n’est pas dépourva com-
pletement de domaine holoide maximal, il posséde une infinité
de domaines holoides maximaux différents entre eux. La défini-
tion du complexe « entier » est alors plurivoque.

13. — M. le Prof. L.-G. Du Pasouier (Neuchétel). — Une nouw-

velle formule d’interpolation dans la théorie mathématique de la
poptlation. — Pour étudier les variations AP que subit un groupe

de population P(z) avec le temps ¢, on suppose que U'effectif P (¢)

A
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est une fonction continue du temps et l'on définit Iintensité de
variation a linstant t par

AP dP p’
c(t)::Lim(————) T e %
Atao \Po AL | P.dt P

On définit de méme des intensités spéciales, notamment ’inten-
site de natalité v(t); Uintensite de mortalite p(t); Uintensité d’immi-
gration 1(t); lintensité d’émigratian ¢(t). Pour les facteurs qui
tendent & diminuer l'effectif, on arrive a la méme notion en par-
tant de la théorie des probabilités mathématiques. On définit par
exemple le taux instantané de mortalité par

q
. nit
Lim

—— )
n=>0 n

en désignant par n?z la probabilité pour une personne d’age ¢ de
décéder au cours des n premieres années, et 'on démontre que ce
taux est égal a I'intensité de mortalité w(¢). En vertu d’une pro-
priété fondamentale des « fonctions d’intensité » ou «taux ins-
tantanés », on peut écrire

la natalité, la mortalité, 'immigration et 'émigration étant les
quatre facteurs dont la variation de leffectif P(z) dépend direc-
tement.

En faisant des hypotheses appropriées sur le taux instantané
de variation, on retrouve les théories formelles de la population
émises jusqu’ici. Ainsi, 6(/)==0 donne la théorie de la population
stationnaire (E. Hatvey); ¢(¢) = const. conduit a la théorie eulé-
rienne de la population variant en progression géométrique; o (z)

(4

inversement proportionnel a 'effectif, ¢(t) = 5, donne la théorie

de la population variant en progression arithmétique (de MoivrE);
I'hypothese
6(t) =c(m — P) ,

ou ¢ et m désignent des constantes positives, donne la théorie de
[F.-P. VermuLsT qui suppose que la population, partant de l'ef-
fectif initial P,, augmente constamment, mais de plus en plus
lentement et finit par atteindre un état stationnaire caractérisé
par Ueffectif m (abstraction faite des écarts accidentels); formule:

m. emct

met )
P,.e + m — P,

P(t)= P

0"
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On peut développer une théorie nouvelle en supposant qu’avec
le temps surgissent des facteurs qui influencent I'intensité de
variation. Une formule relativement simple se déduit entre autres
de 'hypothese

, 2¢ C e
s(t) = ?(b — ) (P — m)?

ou ¢, b, m désignent des constantes ; elle conduit par intégration a

P, — m
P(t) = m -+ - : '
c(P, — m) (1> — 200) + 1

Parti de Veffectif initial P, la population passe (apres un temps )
. . . 1 . .
par un maximum égal a m 4 T buis tend vers un état sta-
1 — 2

tionnaire caractérisé par l'effectif constant .

En terminant, l'auteur indique les bases d’une théorie future
de la population, théorie formelle mieux adaptée a la réalité que
celles émises jusqu’ici.

14. — M. le D* H. Bervixer (Berne). — Sur wune loi de la plu-
ralité infinie permettant d’interpréter chaque theoreme de la géo-
métrie projective d’une infinité de manieres. — l.a recherche des
coordonnées homogenes projectives d’un point du plan est basée
sur les propriétés suivantes : chaque point détermine trois trans-
versales parles sommets du triangle fondamental A, A, A, du sys-
teme des coordonnées. Chaque point et le point fondamental dé-
terminent d’'une manicre univoque trois rapports doubles, dont
le produit est constant pour tous les points. Inversement trois
rapports déterminent un point du plan. Au lieu des points on
peut admettre les courbes symétriques triangulaires D, avec
I'indice m qui est un entier quelconque comme élément de la
recherche des coordonnées homogenes et projectives. l.a repré-
sentation paramétrique de ces courbes est de la forme

oy = cl(a)‘t ~+ [))Y”’ (k= 1, 2, 3

(on a choisi les ¢, pour pouvoir considérer aussi les points comme
courbes). L.es points communs d'une courbe D, et des cotés de
A A A, sont trois points de tangence ou trois sommets (suivant
que /m est positif ou négatif). Par chacun de ces derniers il n’existe
qu’une seule tangente. Les D,, déterminent ainsi trois transver-
sales des sommets A, D (2 =1, 2, 3, c’est-a-dire passant par les
points de tangence de D,, avec les cotés opposés ou les tangentes
deDyen A, Ay, A;. Avec une telle courbe D,, et 1’élément fon-

[’Enseignement mathém., 19¢ année; 1917 22
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damental (ce dernier peut étre une courbe triangulaire symétrique
fixe quelconque d’un indice k entier). On détermine trois rapports

anharmoniques dont le produit a la valeur (— 1)]{_’”. Inversement
trois rapports anharmoniques déterminent d’une maniére uni-
voque une courbe D,,. On peut admettre les D,, comme éléments
fondamentaux et les coordonnées D,, homogénes sont 2™ 2™ 2™,

Elles sont données par les équations

m—Fk , X 1(’")
(— 17 A (A Ay LD D) = % ; ()
)2
(m)
m—Fk X
<— /1) A) (A}I—]—l A)+2 D/nDk) — %_}——)— ‘II)
ot
()
L om—k , ( (——:)’”_“ X5 41
ol (— 1) [A‘A(A)‘-Q—i A)l-}—‘B D/cD/;z)] - I(—m)— (III)
e
(A=1, 2, 3) .

Les coordonnées homogenes projectives linéaires et ponctuelles
ne sont que les coordonnées D, et D, d’apres la disposition (III;.

Lorsqu'une courbe est donnée en forme paramétrique a l'aide
des coordonnées D,, : Qx&’”) :f)(t), donc comme lieu des D,,,
I’enveloppe de toutes les courbes D, est représentée paramétri-
quement par les équations suivantes :

m--1 ’ m

exy = [0 [Aga () fge(0) — f>,.+z(‘)fi+1“)] , (1)

nm

sxy = [fy 14) —1][/';‘+1(i) ) — Frpa g0 ] )

L omA =y o ) . . om
ou : ery = (1] Uy ) fge () — bq0t) 44 ()] (ILI)

(\:1,2,3) .

si I’on a utilisé la définition I, II ou IlI pour les coordonnées
D,.. Particulierement lorsque les D,, sontles éléments fondamen-
taux, l'enveloppe précédente est une courbe D,, resp. D,.—1 ou
D,y Pour la définition III seculement, les éléments fonda-
mentaux et les formations fondamentales sont réciproques. En
prenant les bases précédentes comme nouveaux éléments fonda-
mentaux, les bases des nouvelles formations fondamentales seront
les anciens éléments fondamentaux. La condition d’incidence
d’une D,, et d’'une D,.41 est pour les cas I et Il :

()

n (m)
X
3

x: .1'2
x(lm—{—l) —I_ xgm—}—l) _|_ xi(%m—{—l)

=0,
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<
C.

pour le cas II1:

x(lnz)xgnz—{—‘l) i x(21)z)x(2m—|—‘l) . x%m) .‘7(‘:(;"_{_1) — 0 ,

ou les x(m et 2"+ sont les coordonnées D), et D1 On suppose
encore que les coordonnées D,, et D41 admeltent la méme courbe
Di: comme élément fondamental.

Nous pouvons donc interpréter chaque théoreme de la géomé-
trie projective d’une infinité de manieres. On remplace les points
par les D, (m est un entier quelconque) comme éléments fonda-
mentaux. Quand les D,, sont déja choisis le théoreme a encore
deux interprétations. En prenant une fois les D, d’apres I, une
autre fois un D, d’aprés Il comme bases relatives aux forma-
tions élémentaires. Ce principe est le principe ou la loi de la plu-
ralité infinie. La dualité en est un cas spécial pour lequel on ne
regarde que les points et les droites, donc les D, et D, comme
éléments fondamentaux. Chague théoreme projectif se démontre
a l'aide des coordonnées homogénes projectives; dans cette dé-
monstration on peut remplacer les coordonnées points par les
coordonnées D, quelconques. '

Dans I'espace, cette méme loi de la pluralité infinie subsiste.
On peut admettre comme éléments des coordonnées projectives
fondamentales de l'espace les surfaces symétriques tétraédrales
d’un indice entier quelconque. La dualité dans I'espace est un
cas spécial de la loi générale. Chaque théorcme projectif de la
géomélrie réglée s’interprete d’une infinité de manieres. Les
courbes symétriques tétraédrales d’un indice entier quelconque
sont les courbes d’intersection de deux surfaces symétriques
tétraédrales du méme indice m.

Pour finir, nous remarquons encore que sous des conditions
deéterminées, on peut traiter aussi les courbes symétriques trian-
gulaires et les surfaces symétriques tétraédrales d’un indice com-
plexe comme éléments fondamentaux du plan ou de 'espace.

15. — M. le D" K. Merz (Coire). — Transformation quadratique
d’une collinéation ; une métrique qui s’y rapporte. — Par les for-
mules

2 2 9 9

B2 — a?: (r?— a? — 32) 12 =92 (P2 — a® — 32)

le plan indéfini des &, 7 est transformé dans l'intériear du cercle
4?4+ y* = r*; la droite a l'infini correspondant au périmétre de
ce dernier. Aux droites paralleles a & correspondent des ellipses
dont le grand axe est le diamétre du cercle, sur . Pour n==—1, on
trouve le demi petit axe sur y r:9/2. Si ce segment est choisi

comme unité pour les 7, et si ’on fait coincider les axes des coor-

9

&

, ¢ . 4 r
données &n avec xy, les points sur 2? + 32 = — se correspondent
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a eux-mémes. A un segment de droite AB a 'intérieur du cercle,
qui, prolongé, couperait le cercle en U et V, correspond un arc
A'B’" d’une hyperbole dont les asymptotes sont OU et OV.

Si 'on opére, consécutivement a cette transformation, la nou-
velle transformation, quadratique, £ =¢; 2 =79'; a? =2
y2=y'; o 112 obtient la collinéation centrale, de centre O, da‘<e

e 5, avec la droite limite 2" 4+ y’ = 2. On peut déduire

de cette collinéation des propriétés de la précédente transforma-
tion du plan &7 dans le cercle r.

Pour obtenir une métrigue! a lintérieur du cercle r, il faut
mesurer le segment A (x, y,) B(z,y,) par une fonction F(z, y) qui
prenne une valeur infinie lorsque A ou B viennenten Uou V. Pour
cela la mesure choisie sera 'arc d’hyperbole A’B’. Les coordon-
nées x et ¥ d’'un point P, dans 7, seront alors mesurées par les
arcs d’hyperboles appartenant a P, « et ¢, qui correspondent aux
segments x et y. Ces coordonnées curvilignes sont représentées
par des intégrales elliptiques :

= [V, Vi

;|
./

_32)3 '\/(’___ /;__,).2)'3

Ces arcs et ¢ se coupent en P’ sous un angle ¢. Pour que I'élé-
ment linéaire donné par ds®> = dz* + dy? soit mesuré par son
correspondant du® + de¢* — 2dudy cos ¢, on représentera 'angle
droit, formé par dx et dy , par

r?(r? — x? — y?

o — arct ——
v gxy‘(2r2—-—1’2~—y"l

L.a fonction mesurante F(zy) est alors a déterminer a l'aide de
w, v, .

Dans cette metmque les lignes geode51ques ne sont pas des
segments AB, mais des arcs a elllpses qui correspondent, dans la
transformatlon a la corde de 'arc d’hyperbole A’B’. Dans le voi-
sinage de O, ces arcs et les segments AB se confondent de plus
en plus, et 'on obtient une métrique euclidienne.

16. — Séance administrative. — l.a Société prend connaissance
et approuve le rapport du trésorier, M. le Prof. Crerizr. Elle pro-
cede ensuite au renouvellement de son Comité pour 1918 et 1919.
M. Michel Praxcuerer (Fribourg) est nommé président, M. L.
CreLier (Bienne- Berne), vice-président, et M. O. Srirss (Bile),

secrétaire-trésorier.

La prochaine réunion annuelle auralieu, saufimprévu, a Lugano.

1 Ceci est un exemple pour les considérations générales de géométrie non-euclidienne
qu’on peut trouver dans K. Mrrz, Zur Erkenntnistheorie von Raum und Zahl aus Histo-
rischem der Steinerschen Fliche (S. 10%), Jahresbericht der Naturf. Gesellschaft, Graubiindens,
Chur, 1917. .
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