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CHRONIQUE 321

Société mathématique suisse.

Zurich, 11 septembre 1917.

La Société mathématique suisse a tenu sa huitième réunion
ordinaire à Zurich, le 11 septembre 1917, sous la présidence de
M. le Prof. Marcel Grossmann (Zurich), à l'occasion de la réunion
annuelle de la Société helvétique des Sciences naturelles.

Voici les résumés des communications, au nombre de quinze,
présentées à la séance ou dont les mémoires ont simplement été
annoncés, en l'absence de leur auteur.

1. — M. le Prof. A. Emch (Urbana, E.-U.). — Sur les courbes
planes qui ont pour foyers réels, dans le plan complexe, les racines
nièmes fa [yun fa % I. Soit

<P(u v w) 0 (1)

l'équation d'une courbe de tiïème classe en coordonnées homogènes
et

M? + V'(] -f- wt 0

l'équation d'une droite.
Les coordonnées cartésiennes correspondantes sont définies par

dans ce cas
— Ç — iyj + [x -f iy)t 0 (2)

est l'équation d'une droite qui passe par le point (x, y) et par un
des points cycliques du plan. Les coordonnées homogènes de la
ligne (2) sont

Pu — — î t pr — — i p«>' ~ x -}- iy

Si donc, x et y sont déterminées de telle sorte que

$(— 1 — i x -f /y) 0 (3)

soit satisfaite par x et y, la tangente à (1) définie par (2) passera
par le point réel [x, y) et un des points cycliques. En conséquence,
[x, y) est un foyer réel de la courbe (1). Il résulte de (3) qu'il y a,
en général n foyers réels de ce genre; on les obtient en mettant
(3) sous la forme

f(x > ï) + i${x y) 0 (4)

et en cherchant les solutions communes à

f{x > j) — 0 et g(x y) — 0
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322 CHRONIQUE
Nous obtenons ainsi les n foyers réels et les n{n — 1) foyers

imaginaires de la courbe (1).
Après avoir rappelé ces faits connus, nous allons déterminer

celles des courbes (1) qui possèdent pour foyers, dans le plan
complexe, les racines ;zièmes de l'unité.

L'équation (3) prend alors la forme

— 1 -f- (x iy)n — 0 (5)

et (1) devient

aQun -f- a1 un~1 v -f a2un~2vÈ -f- -f- anvn + w11 ~ 0 (6)

Dans cette égalité les coefficients doivent être choisis de telle
sorte que

a0( 1)" -f- a1{— 1)" *(— i) -f- a 2 (— 1)" " {— if + •••

+ an (— i)'L + 1 EE 0

soit identiquement nul, ce qui peut être réalisé d'une infinité de
manières ; par suite, chaque n fournit une classe infinie de
semblables courbes.

L'équation cartésienne s'obtient par le procédé d'élimination
habituel. Parmi les nombreuses classes de courbes ainsi obtenues,
signalons le cas dans lequel (6) prend la forme

$ EE un-2k.v2k - wH 0 (7)

où k est pair ou impair en même temps que n.
Une transformation facile, un peu longue toutefois, donne

l'équation de la courbe (7) en coordonnées cartésiennes

x'-s*.,-ai= {-!)»-« ,2*)M

n" (n — 2k)h\-k—n

C'est une hyperbole d'ordre n. Les foyers de cette courbe sont
réels ; ils sont aux sommets du polygone régulier de n côtés
inscrits dans le cercle de rayon 1, le point (1, 0) étant un des sommets.

Lorsqu'on a
1 + |.r -h iyf — 0

on obtient naturellement un système d'hyperboles et d'ellipses
homofocales.

La courbe (7) est rationnelle; ses équations paramétriques se
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déterminent facilement. Les points à l'infini de l'axe des x et de
l'axe des y constituent respectivement

(ra —. 1) (2A — 1) 1) — — 1)
5 _ et « • --- -

soit ensemble — — points doubles.

2. — M. le D1' G. Pölya (Zurich). — Sur les propriétés arithmétiques

de s séries entières, qui représentent des fonctions rationnelles.

— I. L'intégrale d'une fonction rationnelle ne peut pas être
développée en série entière à coefficients entiers, excepté le cas
où elle est elle-même rationnelle.

II. — En développant une fonction rationnelle en série de Mac-
Laurin à coefficients rationnels, les dénominateurs de ceux-ci
seront composés d'un nombre fini de facteurs premiers (cas trivial
d'un théorème d'Kisen stein). Quand arrive-t-il, que les numérateurs

aient la même propriété
Voici la réponse, qu'on obtient en combinant les éléments de

la théorie des idéaux avec certaines considérations sur les séries
entières : toutes les séries en question peuvent être déduites de la
seule série

1 -J- m. 4- x2 Xs -—-—1 — X

par l'application répétée (un nombre fini de fois) des opérations
suivantes :

1. Addition d'un polynôme.
2. Multiplication de la série par ax '.

3. Changement de variable x ax.
4. Changement de variable x\xm.
5. Addition des deux séries telles que le coefficient de x11 soit
0 dans une des deux au moins, pour n ~ 0, 1, 2, 3,

3. — M. le Dr A. Ostrowski (Marburg a. d. L.) et M. le Dr
G. Pölya (Zurich). — Sur les polynômes ci valeurs entières dans
un corps algébrique. — Nous dirons d'un polynôme P(x) qu'il est
à valeurs entières dans un corps algébrique K, si P(£) est un entier
algébrique appartenant à K pour tous les entiers £ de K. Un
polynôme à valeurs entières de degré m est nécessairement de la forme

+ + + X

in

ß, X étant des entiers appartenant à K.
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Envisageons l'ensemble de tousles entiers a tels que s0^

le terme le plus élevé d'un polynôme à valeurs entières de degré m.
Cet ensemble d'entiers est un certain idéal dans K, que nous
désignerons par am. Le résultat principal de notre analyse est le calcul

explicite de am. Désignons par p1, p2, les idéaux premiers
divisant m par Nd, N2-, leurs normes, et posons

L —
m

T
m

1

m

n] ih K K +

On

^ (I)

Les polynômes à valeurs entières dans le corps des nombres
rationnels sont, comme on sait, de la forme

x x(x — 1) x{x — L (.r — m + 1)
«0 + «1T + at ^-2— + + •

a0, a±, a2, am étant des entiers rationnels. Les polynômes

x(x — 1) x(x — 1) (x — m -j- 1)
1

• • i.j • -• 1.2... • •••

forment donc une espèce de « base » des polynômes à valeurs
entières. La condition nécessaire et suffisante de l'existence d'une base
analogue dans un corps algébrique K quelconque est la suivante :

Il faut que tous les idéaux a0, a1, a2, am, soient des idéaux
principaux (Hauptideale). Cette condition se transforme facilement

à l'aide de (I) : En formant le produit de tous les idéaux
premiers de même degré, qui divisent un nombre rationnel p, il
faut que ce produit soit un idéal principal pour p quelconque.
Ainsi, dans un corps de Galois (Normalkörper) l'existence de la
base ne dépend que des diviseurs du discriminant (Grundzahl).
Par exemple, la base existe dans tous les corps engendrés par une
racine primitive de l'unité de degré premier.

On peut résoudre la question de l'existence d'une base aussi
dans le cas des polynômes à valeurs entières qui dépendent de
plusieurs variables. La condition est la même.

4. — M. le Dr Ferd. Gonseth (Zurich). — Un théorème relatif à

deux ellipsoïdes confocaux. — Le théorème dont il s'agit est une
extension à l'espace du théorème bien connu de Graves :

Si un fil passé autour d'une ellipse est tendu par une pointe,
celle-ci peut décrire une ellipse confocale à la première.
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L'analogue de l'espace s'énonce comme suit :

Théoiœme : Si d'un point P on mène Iß cono tangent ci un
ellipsoïde, et qu'on calcule Vintégrale de la courbure moyenne étendue

à la surface fermée, convexe, formée par le cône arrêté aux points
de contact et par la portion de l'ellipsoïde qui lui fait suite, cette

intégrale reste constante si P décrit un ellipsoïde confocal au
premier.

La méthode de démonstration est exposée d'abord pour le théorème

de Graves. L'intégrale f fdpdcp étendue au domaine (9), p)
d'un ensemble de droites x cos 9) -(- y sin 9)—/? — 0 est, d après
Ckofton, la mesure de cet ensemble. En particulier la mesure des

droites qui rencontrent une courbe convexe fermée est égale à

l'intégrale de sa largeur, c'est-à-dire — fait connu — à son
périmètre.

D'autre part, les mêmes droites étant ux + w/ -f- 1 0, 011

reconnaîtra que la mesure est égale à la surface non-euclidienne
de l'ensemble des points de coordonnées rectangulaires

x — 11 y — F (1)

dans un plan dont la conique absolue est x2 y~ — 0.

Soient maintenant i et deux ellipses confocales ; un point P

de ei, avec sa tangente t, d'où l'on mène les tangentes a et b, à fr
Cette figure est transformée par la transformation définie par les
formules (i). On obtient deux coniques et G ; une tangente p
à avec son point de contact T, coupe e\2 en A et B.

Le théorème de Graves sera exact si l'aire non-euclidienne (au
sens défini plus haut) de la portion de plan située à l'extérieur de
la courbe fermée convexe formée parle segment AB et une portion
de l'ellipse C2 est constante lorsque p varie. On mènera une
tangente voisine, et il suffira de prouver l'égalité de deux triangles
infiniment petits. Cette égalité résulte du fait que T est au milieu
(non-euclidien) de AB, puisque t est la bissectrice de a et b.

Dans l'espace, on définit semblablement la mesure d'un
ensemble de plans

x cos a -f- y cos ß -j- s cos y — p — 0

ou bien
x

ux -j~ vy -f- wz 1 — 0 ;

on la reconnaîtra égale au volume non-euclidien de l'ensemble des
points de coordonnées rectangulaires x ==t2 u, y v, z dans
un espace dont la quadrique absolue est x~ -f- y2 + 0.

En particulier la mesure des plans qui coupent une surface
fermée convexe vaut l'intégrale de la largeur, et d'après une
formule de M. H u a Witz l'intégrale de la courbure moyenne de cette
surface.

Le reste de la démonstration se calquera sur la précédente.
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5. — M. le Prof. Dl L. Kollros (Zurich). — Propriétés métriques

des courbes algébriques. Toute propriété métrique peut être
considérée comme projective si l'on fait intervenir les éléments absolus

: la droite à l'infini et les points cycliques (pour la géométrie
euclidienne plane). On peut donc transformer les propriétés
métriques par une collinéation ou une réciprocité, et l'on arrive à des
rapprochements entre <ies théorèmes qui paraissent très
différents. Ainsi, le théorème de Carnot sur les courbes algébriques
planes coupées par un triangle devient —par une réciprocité dans
laquelle les points cycliques correspondent à deux côtés du
triangle — le théorème suivant de La guerre : Si par un point on
mène les n tangentes à une courbe algébrique plane de classe u
et si l'on joint ce point aux n foyers réels de la courbe, les deux
faisceaux de droites ainsi obtenues ont même orientation1.

Dans les deux théorèmes, le produit de n rapports anharmo-
niques (T^OAB) est constant, 0, A, B étant fixes et les 1\ variables.
Dans le théorème de Laguerre, les points \\, 0, A, B sont tous à

l'infini; A et B sont les points cycliques; 0 est le point à l'infini
de l'axe-origine des angles.

11

Si B tend vers A, cette condition devient : 7\g~X const- ;

i=1 1

elle exprime que le pôle harmonique P de A par rapport au
système des n points variables TL est fixe. Si À est à l'infini, P est le
centre de gravité des points \j. D'autre part, un foyer, point
d'intersection de deux tangentes isotropes, doit être remplacé par le
point de contact d'une tangente menée de A à la courbe. Une
réciprocité telle que le point A devienne la droite à l'infini remplace
les points de contact des tangentes à la courbe issues de A par les

asymptotes de la courbe transformée. Ainsi, à un théorème oh un
système de droites variables a une orientation constante, correspond

un théorème ou un système de points variables a un centre
de gravité fixe. De plus, à un foyer de la première figure correspond

une asymptote cle la seconde.
Exemples : 1. Au théorème de Laguerre, cité plus haut, correspond

le suivant : Le centre de gravité des points de rencontre
d'une droite avec une courbe du /iièmc ordre est le même que celui
des points d'intersection de la droite avec les asymptotes de la
courbe.

2. Les systèmes de tangentes
menées d'un point à deux courbes de
même classe ont même orientation
si le point est foyer d'une des courbes

Les centres de gravité des deux
systèmes de points de rencontre de
deux courbes algébriques de même
ordre par une asymptote d'une courbe

1 Deux systèmes de n droites ont même orientation lorsque la somme des angles que l'ont
les n droites avec un axe fixe est la même pour les deux systèmes (à un multiple de 7T près).
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du faisceau tangentiel déterminé par
les deux premières (Humbert).

3. L'orientation du système des

mn tangentes communes à deux courbes

algébriques ne varie pas quand
on remplace l'une des deux par une
courbe qui lui est homofocale (La-
guerre).

du faisceau ponctuel déterminé par
les deux premières, coïncident.

Le centre de gravité des points de

rencontre de deux courbes algébriques

ne varie pas quand on remplace
l'une des deux par une autre qui a les

mêmes asymptotes.

6. — M. le Prof. Dr O. Spiess (Baie). — Un théorème relatif aux
fonctions rationnelles. — Lie a émis la supposition qu'on doit
pouvoir obtenir toute fonction analytique/(#) par itération d'une
substitution infinitésimale x-\- g[x)dt\ que f{x) est par conséquent

un élément d'un groupe continu de transformations. On
n'a pas réussi jusqu'ici à démontrer ce théorème, même pour la
classe très spéciale des fonctions algébriques. Je démontrerai ici
que la supposition de Lie est exacte au moins pour les fonctions
rationnelles.

Le problème peut se réduire à déterminer, pour chaque f(x)
donné, une fonction <2> qui satisfasse à l'équation

(b (f{x) p. <b (x) (1)

La transformation infinitésimale originelle est alors déterminée
par

fl*) - §7

Or MM. Ivœnigs, Grévy et Léau ont démontré depuis longtemps
qu'il existe des solutions de (1) dans le voisinage de certains
points fixes de f[x). Si, en particulier, f[x) est rationnelle, ces
méthodes fournissent toujours une solution analytique excepté le
seul cas où l'on a, pour tout point fixe ak

£k — ff(ak) ~ e^nihk (hk est irrationnelle). (2)

Et encore dans ce cas on connaît une solution si f(x) est linéaire :

(t)[x — x.
La supposition de Lie sera donc démontrée pour une fonction

rationnelle, si nous faisons voir que :

Théorème : Une fonction rationnelle dont tous les points fixes
ont la propriété (2) est nécessairement linéaire.

Démonstration : Les points fixes ai, an de f[x)~'~^~ (nous
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pouvons les supposer tous dans le fini) sont racines de l'équation :

ip xs — r 0. Il en suit immédiatement :

Y y-k

zk f'i*k) 1 —

Les nombres :

'¥(*lr

sont au même titre que les k 9^ 0, 1, ce (en vertu de (2) ; par
conséquent on aura d'après Lagrange :

ix — a,
l h

é J

et de là :

wi + -•• + wn 12-. [t] 11 ou bien (3)
n

Or, en vertu de (2), les points ek sont sur le cercle unité de

centre 0; et par conséquent les points wk sur la perpendiculaire

à l'axe réel par x ~ Mais comme, en vertu de (3), le centre de

gravité des wk est x il faut que n 2, c'est-à-dire que f[x)
soit linéaire. C. q. f. d.

7. — M. le Prof. Dr A. Hurwitz (Zurich). — Généralisation da
théorème de Pohlke. (Extrait d'une lettre à M. Kollros.) — Etant
donnés deux tétraèdres, on peat toujours, en remplaçant l'an d'eux
par an tétraèdre semblable, les amener dans une position telle que
les droites joignant les sommets correspondants soient parallèles
entre elles.

En effet, si ABCD et A'B'C'D' sont les tétraèdres donnés,

l'affinité transforme la sphère K circonscrite à ABCD en

un ellipsoïde K/ circonscrit au tétraèdre A'B'C'D'. Déterminons
une section circulaire .c' de l'ellipsoïde K'; à ce cercle c' correspond,

par l'affinité considérée, un cercle c sur la sphère K. Dilatons

le tétraèdre ABCD, avec la sphère K et le cercle c, à une
échelle choisie pour que le cercle c devienne un cercle ci égal au
cercle cr. Le tétraèdre dilaté A4 B4 Cl D4, semblable au tétraèdre
ABCD, peut dès lors être mis dans une position telle que le cercle ci
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coïncide point par point avec le cercle c' ; ainsi les deux espaces
en affinité deviennent perspectifs et les droites AA', BB', CC', DD'
sont parallèles.

Le problème admet deux solutions essentiellement différentes,
correspondant chacune à l'un des deux systèmes de sections
circulaires de l'ellipsoïde KL

Si ABCD sont quatre points d'ün plan et si A'B'C'D' est formé
de trois arêtesd'un cube passant par un même sommet, on trouve,
comme cas particulier, le théorème de Pohlke.

8. — M. le Prof. Dr C. Carathéodory (Gœttingue). — Sur le
traitement géométrique des ex trémas des intégrales doubles. —
A côté des problèmes aux frontières auxquels le calcul des variations

doit son existence et à côté du calcul des variations de
Lagrange, dont l'importance grandit toujours plus dans tous les
domaines, la théorie de Hamilton-Jacobi, issue il y a bientôt
cent ans de l'optique et de la mécanique, joue un rôle tout aussi
important.

Un essai d'extension de cette théorie aux intégrales doubles a
été fait il y a quelques années1. Je veux, ici, esquisser les moyens
très simples par lesquels on peut obtenir l'essentiel des résultats
de Jacobi et Hamilton, lorsqu'aucune condition aux frontières
n'est prescrite d'avance pour la solution cherchée et qu'on évite
ainsi les difficultés particulières aux problèmes aux frontières.

Soit

J —ff f(xy s ; Zx, Zy)dxdy (1)

l'intégrale double à étudier. Considérons une famille à deux
paramètres

S(x y *) — X T(x y z) — y (2)

formée de courbes quelconques, traversant l'espace et
envisageons-la comme une gerbe de tubes infiniment minces. Sur une
surface quelconque z z(x, y) chacun de ces tubes découpe un
élément de surface pour lequel nous pouvons calculer comme
suit la valeur de l'intégrale (1).

Posons

Sf* y) S (x y z(x, y)) T(.x, y) m T (x y, z(x y)) (3)

1 U. Prangh, Die Hamilton-Jacobische Theorie für üoppelintegrale, Inaug.-Diss.,
Göttingen, 1915.
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et formons le déterminant fonctionnel

Ai \
ö (S T)A[x y £ ; z zzz -1 ad Hx,y)

Il résulte alors de (1), (2), (3)

s. + s,.: S?/+S,->
T</ + 'Vz

et la valeur cherchée de J pour l'élément de surface découpé est

f
A d\d[L

Cette valeur, qui dépend de et zy, c'est-à-dire cle la position
du plan tangent à la surface donnée f
petite possible, lorsque les relations

z{x, y), est la plus

A-f= fS ° (5)

sont vérifiées et que de plus le minimum de f: A comme fonction
de zx, zy est effectivement assuré par les valeurs tirées de p)
(conditions de Legendre ou de Weierstrass).

Nous appelons section du tube au point d'intersection du tube
avec la surface s z(x, y) le minimum de l'expression (4).

Nous exigeons maintenant de la famille de courbes (2), qu'elle
ne contienne que des tubes de section constante. Cette condition
nous donne la relation

-t <h(X, (J.)

dans laquelle ip[X, y) est d'abord une fonction arbitraire. Si nous
remarquons cependant que l'on peut toujours, par une transformation

convenable des paramètres 1 et (x prendre ip[X, y) 1,

nous obtiendrons finalement le système d'équations

f= A fz A. fz At (6)
~X x ~y

duquel tout le calcul des variations des intégrales doubles se
déduit sans effort.

9. — M. le Prof. D. Hilbert (Gœttingue). — Le raisonnement
axiomatique. —En groupant les faits d'un certain domaine
scientifique, nous remarquons qu'ils sont susceptibles d'être ordonnés.
Cet ordre se fait à l'aide d'un partage des notions, tel qu'au fait
simple du domaine, correspond une notion de ce partage, et à
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chaque ensemble de faits correspond une relation logique entre
les notions. Le partage des notions s'appelle la théorie axioma-
tique du domaine scientifique envisagé. Ce partage est basé en
outre sur un nombre restreint de principes fondamentaux
caractéristiques du domaine qui suffisent entièrement à édifier les
notions d'après les règles de la logique. Au premier coup d'œil, ces

principes fondamentaux doivent être regardés comme les axiomes
du domaine scientifique en question. Tout effort d'explication
des axiomes conduit en général à un nouveau système d'axiomes,
c'est-à-dire à une couche plus profonde d'axiomes. Ce procédé
revient donc à reculer plus profondément les bases du domaine
scientifique.

La théorie d'un domaine scientifique, c'est-à-dire le partage des
notions par lesquelles il est représenté, a pour but de l'orienter
et de l'ordonner. Pour arriver à ce but notre partage doit remplir
deux conditions : premièrement, il doit donner un aperçu sur la
dépendance des éléments, secondement, il doit assurer la non-
contradiction des axiomes de la théorie. Ce second point est
essentiel, car toute contradiction mettrait en doute la théorie
entière. La démonstration de cette non-contradiction réussit en
général pour les théories de la géométrie et de la physique en
réduisant le problème à la non-contradiction des axiomes de
l'arithmétique.

Pour l'arithmétique, la réduction à un autre domaine scientifique

plus spécial n'est plus possible, parce que, en dehors de la
logique, il n'existe plus aucune autre discipline à laquelle l'esprit
humain doit se soumettre. Il semble donc nécessaire de pousser
la recherche des axiomes de la logique dans ses dernières limites.
Ce chemin a été préparé depuis longtemps; les recherches du
logicien Russell ont été particulièrement couronnées de succès.

Cette analyse des axiomes de la logique est rattachée à une
série de questions spécialement mathématiques. Elle constitue
dans tous les cas le problème le plus important et le plus difficile
de la théorie de la connaissance.

10. — M. le Prof. À. Speiser (Zurich). — Equations du cinquième
degré. — On sait que le groupe alternant de cinq variables est
isomorphe aux 60 rotations de l'icosaèdre. Elle admet par conséquent

une représentation par substitutions linéaires ternaires :

s (i-J
1

| 1, 2 3 S E A B

ainsi cpie par substitutions linéaires fractionnaires

S, X -j- s0
X — ~

SZX -j- S±
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Si co est un nombre générateur d'un corps avec ce groupe, et si

co — o)s, coA, cos sont les nombres conjugués, les trois nombres

Ai Ssnws A0 12
A — ïs3 * JmUO

subissent des substitutions ternaires par le passage aux conjugués

et

- A2±|/a»- 4Â^
a

âÂT

subit par là les substitutions linéaires fractionnaires.
Par là, le problème de l'équation du 5e degré est ramené, de la

manière la plus générale, à un problème à un paramètre.

11. — M. le D1 S. Bays (Fribourg). — Sur les systèmes de triples
de 13 éléments. — La preuve que pour 13 éléments le système
cyclique de Netto, et le système donné par Kirkmann, Reiss,
de Vries, sont les deux seuls systèmes de triples de Steiner différents

possibles, peut être faite, sans l'aide d'aucune notion
particulière et d'une manière assez simple, en construisant directement
les systèmes de triples de 13 éléments qui ne contiennent pas un
triple fixé abc.

Un système de triples de Steiner qui ne contient pas le triple
abc contient les trois triples :

ca ß öU ß y ^z£: a b c et entre eux)

où a, ß, y peuvent être tous les arrangements de dix éléments
trois à trois. Pour un arrangement «, ß, y fixé, il n'y a que deux
possibilités qui donnent, pour la construction du système, les
seules dispositions suivantes qui s'écrivent aisément :

Ier cas. Le triple aßy est contenu dans le système.

(40}

aaCL' a. flßU aY OL aß'. «t'.
bedm b V- ßa 'p ß..

cyy' cd II cf. C ya'q # T • •

IIe cas. Le triple aßy n'est pas contenu dans le système.

PÏ«' Yaß/ aßY'

g aam
ce

(tain apP ay'q aa'. a.. a'ßY

Y lo >'? bd b[i'. w. ßß'. ß.. (8)
a cv

Si B C'Y
C 'CD ' cd. cp cY- TT'- T- •

a) g;
«H- « «aa
1/3

<D

a ap. ayd a a. a'ßY
2° h$m bd il bpp by'q ßß'. ß.. a'.

\ CY • cd cP. CY tt' • T- • (8)
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s aaa' a a\i'y' a OL a. afin
à)

"a
o S

1° bf ba'p 6(3'. by'. ßß'. ß.. a 'fn
o
» M ey. cafq cf. cy'. Tï'- Y- • (12)

P- œ

<*> rP
V

Cß

a cl m acdn «ßV ay'q oca'. a. PY-
G a

rt
-a

2° 7;ß. b 6ßV by'. ßß'. ß.. a'
QQ_

ct - c cß'. cf0Lf n'- T- • (24) pour aan

3 33

*>)

(20) pour ba'n

ou carn

Dans chacune de ces dispositions, les éléments a\ ß\ y\ différents

entre eux et des éléments a, b, c, a, ß, y, peuvent être tous
les arrangements des sept éléments restants trois à trois; pour
chaque arrangement a', ß\ yf ; m, /i, /?, q peuvent être toutes les
permutations des quatre derniers éléments. Pour un arrangement
a', ß\ y' et une permutation /?z, n, p, q fixés, chacune des
dispositions se complète par les éléments /?z, n, p, q (et cela sans y
mettre beaucoup de temps) du nombre de manières que j'ai indiqué

à droite, c'est-à-dire donne ce nombre de systèmes. En tenant
compte des dispositions où les deux éléments ß' et yr ont à prendre
le même rôle que a', nous obtenons donc :

A*o. AJ. P4. (40 + 8 + 3.8 -f- 3.12 + 3.(24 + 2.20)) 10 300

systèmes de triples, ne contenant pas le triple abc, et par suite
10 ' 300 11
-— — — 10! 330 systèmes de triples de 13 éléments, qui
diffèrent entre eux au moins par un de leurs triples. Or, les ordres des

groupes qui transforment en eux-mêmes le système cyclique de
13 1 jQ

Netto et celui deKirkmann sont 39 et 6; ~ -\—— =10! 330. Par
OJ O

conséquent, le système cyclique de Netto et le système de Kirk-
mann sont les deux seuls systèmes de triples de Steiner différents
pour 13 éléments.

12. — M. le Prof. L.-G. Du Pasquier (Neuchâtel). — Sur un
point de la théorie des nombres hypercomplexes. — Dans un
système de nombres hypercomplexes à n unités relatives, constitué
pour une infinité d'éléments tels que

x =• xQe0 -f x1e1 + -f- xnen où les xlt x2, xn

sont des nombres réels quelconques dits « coordonnées du nombre
hypercomplexe x », et les e0, ei, en des symboles dits unités
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relatives, supposons définies l'égalité et deux opérations de calcul :

l'addition et la multiplication. Il en résulte l'existence de deux
opérations inverses qu'on appellera soustraction et division.
Envisageons le corps de nombres jRj formé par l'ensemble des
nombres hypercomplexes à coordonnées x^ toutes rationnelles.
Pour faire l'arithnomie de j R j, commençons par définir le nombre
hypereomplexe « entier »

v Selon la définition lipschitzienne, un
nombre hypereomplexe rationnel x est nombre entier, quand
toutes ses n coordonnées x^ sont des nombres entiers ordinaires,
tandis que x est réputé « non entier», dès que l'une cle ses
coordonnées x^ est un nombre fractionnaire. On sait depuis Gauss
que-cette définition, appliquée aux nombres complexes ordinaires
x0 -(- i, où P — i, donne une arithnomie parfaitement régulière,

analogue en tout point à l'arithmétique classique. L'exemple
le plus simple montrant combien cette définition lipschitzienne
si simple est cependant peu appropriée en général comme base
d'une arithmétique généralisée, est fourni par les « nombres
complexes de seconde espèce» x x0 -f- où j est un symbole
défini par l'égalité f2 — 1.

En adoptant la définition lipschitzienne, on voit que dans ce
système particulier, un produit peut être divisible par un
nombre entier sans qu'aucun des facteurs ne le soit; exemple:
(3 -f- j) (5 — 3/) — 12 — 4/ qui est divisible par 2. On peut faire
tomber cette irrégularité, et d'autres encore, en remplaçant la
définition lipschitzienne par la définition hurwitzienne d'après
laquelle un nombre hypereomplexe x est réputé « entier » s'il est
contenu dans le domaine holoïde maximal [M] du corps de nombres
en question, « non entier » s'il ne fait pas partie de ce domaine
holoïde maximal [M]. En vertu de cette définition nouvelle, un
complexe rationnel x peut fort bien être entier quoiqu'ayant des
coordonnées x^ fractionnaires. Dans le cas particulier cité, on
appellera entier tout nombre complexe de seconde espèce

représentable par la formule a -f- ^ -f- —y, où a et h sont des nombres

..3/53.entiers ordinaires d'ailleurs quelconques. Ainsi, - -f- - — — -gj
sont maintenant des complexes « entiers » et il n'est dès lors plus
surprenant que (3 -J- j) (5 — 3/) soit divisible par 4.

La définition hurwitzienne postule dans le corps de nombres
envisagé Vexistence d'un domaine holoïde maximal. On appelle
ainsi tout ensemble [M]'contenant une infinité de nombres, parmi
lesquels le nombre 1 et le nombre 0, jouissant des propriétés
suivantes : 1) la somme, la différence et le produit de deux nombres
quelconques de l'ensemble appartient toujours au même ensemble ;

2) il possède une base finie; 3) il n'existe pas dans le corps de
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nombres en question un autre domaine holoïde contenant tous
les éléments de [M] plus encore d'autres non contenus dans [M].

Dans le cas des nombres complexes de Gauss, l'ensemble de

tous les ni + /z2./, lorsque ni et /?2 parcourent, indépendamment
l'un de l'autre, la série des nombres entiers de —ce à 4- cc, constitue

un domaine holoïde maximal dans j R j
> en sorte que

définition lipschitzienne et définition hurwitzienne se confondent.
Tel n'est pas le cas des nombres complexes de seconde espèce :

l'ensemble [H] de tous les ni -f- n2/, c'est-a-dire des complexes a

coordonnées entières, constitue bien un domaine holoïde, mais

qui n'est pas maximal clans j R j, puisque l'ensemble [M] de tous

les /?, -f- ^ "2 J contient les éléments cle [FIj et, en plus, d'autres

ne faisant pas partie de [II].
Il existe des systèmes de nombres hypercomplexes où le corps

j R j des complexes rationnels ne possède pas de domaine holoïde
maximal. Dans ce cas, il n'est pas possible de définir le nombre
hypercomplexe «entier» de manière à obtenir une arithnomie
régulière. L'exemple le plus simple d'un tel système est fourni
par les « nombres complexes de 3e espèce » y =: yQ -j- yAï où les
coordonnées y0, yi sont de nouveau des nombres réels et i' un
symbole défini par i'1 0, le calcul sur ces nombres se faisant
d'après les règles ordinaires de l'algèbre.

Pour caractériser les systèmes de nombres hypercomplexes
sans domaine holoïde maximal, envisageons la suite x, x~, xd

xn, .rw+L où x représente un nombre hypercomplexe à 11 unités
relatives. Si l'une de ses puissances est identiquement nulle,
xr 0, le nombre x est dit «nilpotent» ou «pseudonuls, ou
encore « racine rième de zéro. Ainsi, dans le système des nombres
complexes de 3e espèce, i' est une racine carrée de zéro, puisque,
par définition, 1'- — 0.

Une condition nécessaire pour que le corps JR| des nombres
hypercomplexes rationnels soit dépourvu de domaine holoïde maximal

est que le système en question contienne des racines de zéro.
Si le nombre des unités relatives dépasse 3, cette condition nécessaire

n'est pas toujours suffisante. Mais quand un système de
nombres contenant des racines de zéro n'est pas dépourvu
complètement de domaine holoïde maximal, il possède une infinité
cle domaines holoïdes maximaux différents entre eux. La définition

du complexe « entier » est alors plurivoque.

13. — M. le Prof. L.-G. Du Pasquier (Neuchatel)« — Une
nouvelle formule d'interpolation dans la théorie mathématique de la
population. — Pour étudier les variations AP que subit un groupe
cle population P f) avec le temps t, on suppose que l'effectif P (/}
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est une fonction continue du temps et l'on définit l'intensité de
variation à l'instant t par

/iP \ dP P'

AUO \ P dt p

On définit de même des intensités spéciales, notamment l'intensité

de natalité v[t) ; l'intensité de mortalité g (t) ; l'intensité d'immigration

*(t) ; l'intensité d'èmigratian s (t). Pour les facteurs qui
tendent à diminuer l'effectif, on arrive à la même notion en partant

de la théorie des probabilités mathématiques. On définit par
exemple le taux instantané de mortalité par

LimfîlA
«- o V n J

en désignant par nqt la probabilité pour une personne d'âge t de
décéder au cours des n premières années, et l'on démontre que ce
taux est égal à l'intensité de mortalité g[t). En vertu d'une
propriété fondamentale des « fonctions d'intensité » ou « taux
instantanés », on peut écrire

a (fi — v (fi — u.(fi -f- i(fi — e(fi

la natalité, la mortalité, l'immigration et l'émigration étant les
quatre facteurs dont la variation de l'effectif P (fi dépend
directement.

En faisant des hypothèses appropriées sur le taux instantané
de variation, on retrouve les théories formelles de la population
émises jusqu'ici. Ainsi, cfifi — 0 donne la théorie de la population
stationnaire (E. Halley) ; <7(fi const, conduit à la théorie eulé-
rienne de la population variant en progression géométrique; <r(fi

inversement proportionnel à l'effectif, <r(fi ^, donne la théorie

de la population variant en progression arithmétique (deMoiVRE);
Phypothèse

g (fi ~ c {m — P)

où c et m désignent des constantes positives, donne la théorie de
F.-P. Verhulst qui suppose que la population, partant de
l'effectif initial P0, augmente constamment, mais de plus en plus
lentement et finit par atteindre un état stationnaire caractérisé
par l'effectif m (abstraction faite des écarts accidentels); formule:

P(*)= P0.
P0 •e>nct + ~ P0



CHR ONIQUE 337

On peut développer une théorie nouvelle en supposant qu avec

le temps surgissent des facteurs qui influencent l'intensité de

variation. Une formule relativement simple se déduit entre autres
de l'hypothèse

v(t)="('•< - <)(P — »oä

où c, b, m désignent des constantes ; elle conduit par intégration à

Pn — m
P (t) m -f

C(P0 - m) (fi - 2bl) + 1

Parti de l'effectif initial P0, la population passe (après un temps h)
1

par un maximum égala m -f- - ^, puis tend vers un état sta-

tionnaire caractérisé par l'effectif constant m.
En terminant, l'auteur indique les bases d'une théorie future

de la population, théorie formelle mieux adaptée à la réalité que
celles émises jusqu'ici.

14. — M. le Dr H. Berliner (Berne). — Sur une loi de la
pluralité infinie permettant d'interpréter chaque théorème de la
géométrie projective d'une infinité de manières. — La recherche des
coordonnées homogènes projectives d'un point du plan est basée
sur les propriétés suivantes : chaque point détermine trois
transversales parles sommets du triangle fondamental A1A2A3 du
système des coordonnées. Chaque point, et le point fondamental
déterminent d'une manière univoque trois rapports doubles, dont
le produit est constant pour tous les points. Inversement trois
rapports déterminent un point du plan. Au lieu des points on
peut admettre les courbes symétriques triangulaires D//? avec
l'indice m qui est un entier quelconque comme élément de la
recherche des coordonnées homogènes et projectives. La
représentation paramétrique de ces courbes est de la forme

?xl — cjmt + bj)m (X 1, 2. 3)

(on a choisi les c. pour pouvoir considérer aussi les points comme
courbes). Les points communs d'une courbe D//z et des cotés de
A A

2
A g sont trois points de tan gen ce ou trois sommets (suivant

que m est positif ou négatif). Par chacun de ces derniers il n'existe
qu'une seule tangente. Les D/;, déterminent ainsi trois transversales

des sommets A^Dä (/ — 1, 2, 3), c'est-à-dire passant par les
points de tangence de D,„ avec les côtés opposés ou les tangentes
de D,„. en A.,, A2, A3. Avec une telle courbe Dm et l'élément fon-

L'Enseignement mat.hém., 19e année; 1917
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damental (ce dernier peut être une courbe triangulaire symétrique
fixe quelconque d'un indice k entier). On détermine trois rapports
anharmoniques dont le produit a la valeur (— 1)* m. Inversement
trois rapports anharmoniques déterminent d'une manière uni-
voque une courbe Dm. On peut admettre les comme éléments
fondamentaux et les coordonnées homogènes sont x[m)
Elles sont données par les équations

m—k X-, i i Im

(-1) A.(A.+1A.>+2D,DJ _i±L_;
*X+2

» Jifn)
(-1)"' a^A-^A^D,,^.) =^±I

•r>.+2

; / .v/n

(~ 'A)w -S1
*X+2

(X 1,2,3)

Les coordonnées homogènes projectives linéaires et ponctuelles
ne sont que les coordonnées D0 et Dd d'après la disposition (Illj.

Lorsqu'une courbe est donnée en forme paramétrique à l'aide
des coordonnées Dm \ f^{t), donc comme lieu des Dm,
l'enveloppe de toutes les courbes Dm est représentée paramétri-
quement par les équations suivantes :

?Xy — [/') fi J I./X-j-1 (/) /X-J--2 (/) (£3 />4-1 ' (h

- /i+2(0/>+.2<0/x4.jf dp

7/7-1-/ 1 )'" / //i
0U • [/1 I ' //-f2 1 * ^/+2 W /),+! (^]

(X 1,2, 3)

si l'on a utilisé la définition I, II ou III pour les coordonnées
Dm. Particulièrement lorsque les D,« sont les éléments fondamentaux,

l'enveloppe précédente est une courbe Dm resp. Dm_i ou
Dm+(_1}m. Pour la définition III seulement, les éléments
fondamentaux et les formations fondamentales sont réciproques. En
prenant les bases précédentes comme nouveaux éléments
fondamentaux, les bases des nouvelles formations fondamentales seront
les anciens éléments 'fondamentaux. La condition d'incidence
d'une Dm et d'une Dm+i est pour les cas I et II :

xrll X(m) x\m)
5

1

2
1

3
zz: 0

x(m+l) ~
x[>nJrV x[+l)

(h

di)

(Iii)
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pour le cas III :

4'»> *('»+!> -f 4^4#w+ii + 4,w)4#n+l) o f

où les et tr(/n+i) sont les coordonnées Dm et Dm+i. On suppose
encore que les coordonnées D/w et admettent la même courbe
D/t comme élément fondamental.

Nous pouvons donc interpréter chaque théorème de la géométrie

projective d'une infinité de manières. On remplace les points
par les Dm [m est un entier quelconque) comme éléments
fondamentaux. Quand les D,„ sont déjà choisis le théorème a encore
deux interprétations. En prenant une fois les D,„ d'après I, une
autre fois un D,«_i d'après II comme bases relatives aux formations

élémentaires. Ce principe est le principe ou la loi de la
pluralité infinie. La dualité en est un cas spécial pour lequel on ne
regarde que les points et les droites, donc les D0 et Dt comme
éléments fondamentaux. Chaque théorème projectif se démontre
à l'aide des coordonnées homogènes projective s ; dans cette
démonstration on peut remplacer les coordonnées points par les
coordonnées D,« quelconques.

Dans l'espace, cette même loi de la pluralité infinie subsiste.
On peut admettre comme éléments des coordonnées projektives
fondamentales de l'espace les surfaces symétriques tétraédrales
d'un indice entier quelconque. La dualité dans l'espace est un
cas spécial de la loi générale. Chaque théorème projectif de la
géométrie réglée s'interprète d'une infinité de manières. Les
courbes symétriques tétraédrales d'un indice entier quelconque
sont les courbes d'intersection de deux surfaces symétriques
tétraédrales du même indice m.

Pour finir, nous remarquons encore que sous des conditions
déterminées, on peut traiter aussi les courbes symétriques
triangulaires et les surfaces symétriques tétraédrales d'un indice
complexe comme éléments fondamentaux du plan ou de l'espace.

15. — M. le DJ K. Merz .Coire). — Transformation quadratique
d'une colli,néalion ; une métrique qui s'y rapporte. — Par les
formules

?2 *2 '• (r2 — *3 — f) ; Y)2 — y2 : (r2 - .x2 — f)
le plan indéfini des £, rj est transformé dans l'intérieur du cercle
>1'2 + I/2 ~ />2 ; la droite à l'infini correspondant au périmètre de
ce dernier. Aux droites parallèles à £ correspondent des ellipses
dont le grand axe est le diamètre du_cercle, sur m. Pour 1, on
trouve le demi petit axe sur y r : y2 Si ce segment est choisi
comme unité pour les q, et si l'on fait coïncider les axes des

coordonnées £7 avec xy, les points sur .r2 + z/2 se correspondent
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à eux-mêmes. A un segment de droite AB à l'intérieur du cercle,
qui, prolongé, couperait le cercle en U et V, correspond un arc
A'B' d'une hyperbole dont les asymptotes sont OU et OV.

Si l'on opère, consécutivement à cette transformation, la nouvelle

transformation, quadratique, £2 ; ry — rj' ; .r2 xf ;

y'2 y' ; on obtient la collinéation centrale, de centre 0, d'axe
xr -)- y' —, avec la droite limite xr -\- yr r~. On peut déduire
de cette collinéation des propriétés de la précédente transformation

du plan £ï] dans le cercle r.
Pour obtenir une métrique1 à l'intérieur du cercle /-, il faut

mesurer le segment A(^iyi) B(.r2z/2) par une fonction Ff.r, y) qui
prenne une valeur infinie lorsque A ou B viennent en U ou V. Pour
cela la mesure choisie sera l'arc d'hyperbole A'B'. Les coordonnées

x et y d'un point P, dans i\ seront alors mesurées par les
arcs d'hyperboles appartenant à P', u et c, qui correspondent aux
segments x et y. Ces coordonnées curvilignes sont représentées
par des intégrales elliptiques :

Ces arcs u et v se coupent en P' sous un angle cp. Pour que
l'élément linéaire donné par ds2 — dx2 dy* soit mesuré par son
correspondant did dv^ — 2dudv cos cp, on représentera l'angle
droit, formé par dx et dy par

La fonction mesurante F(xy) est alors à déterminer à l'aide de
a e, cp.

Dans cette métrique, les lignes géodésiques ne sont pas des

segments AB, mais des arcs d'ellipses, qui correspondent, dans la
transformation à la corde de l'arc d'hyperbole A'BL Dans le
voisinage de 0, ces arcs et les segments AB se confondent de plus
en plus, et l'on obtient une métrique euclidienne.

16. — Séance administrative. — La Société prend connaissance
et approuve le rapport du trésorier, M. le Prof. Crelier. Elle
procède ensuite au renouvellement de son Comité pour 1918 et 1919.
M. Michel Plancherel (Fribourg) est nommé président, M. L.
Crelier (Bienne-Berne), vice-président, et M. 0. Spiess (Baie),
secrétaire-trésorier.

La prochaine réunion annuelle aura lieu, sauf imprévu, à Lugano.

1 Ceci est un exemple pour les considérations générales de géométrie non-euclidienne
qu'on peut trouver dans K. Mhrz, Zur Erkenntnistheorie von Raum und Zahl aus
Historischem der Steinerschen Fläche (S. 10i), Jahresbericht der Naturf. Gesellschaft, Graubündens,
Chur, 1917.

cp m arctg
my (2r2 —- oc2 — y2)
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