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LES ANTINOMIES DE RUSSELL ET DE BURALI-FORTI

ET LE

PROBLÈME FONDAMENTAL

DE LA THÉORIE DES ENSEMBLES

PAR

D. Mirimanoff (Genève).

Introduction.

Aucune théorie mathématique n'a fourni, comme on le
sait, autant de faits paradoxaux et d'antinomies, au moins

apparentes, que la fameuse théorie des ensembles de Cantor.
Les plus connues et les plus importantes de ces antinomies
sont celles de Russell et de Burali-Forti ; mais combien
d'autres faits bizarres ont été révélés, depuis la publication
des premiers travaux de Cantor sur la théorie des ensembles,

par Borel, Peano, Richard et Cantor lui-même.
Les antinomies cantoriennes, qui déconcertent et déroutent

presque toujours au premier abord, ont fait le désespoir
de quelques géomètres logiciens. C'est là sans doute qu'il
faut voir la cause de la défiance exagérée que les idées et les
théories cantoriennes les mieux établies inspirent à des

esprits particulièrement défiants.
Est-il besoin de dire que rien ne justifie, au fond, ni cette

défiance ni ce désespoir N'avons-nous pas eu des surprises
comparables dans la théorie des fonctions et en géométrie?

Qu'on se rappelle, par exemple, la découverte par Riemann
et Weierstrass de fonctions continues non dérivables et
de courbes sans tangentes, dont une étude approfondie n'a



38 D. MIRIMANO FF

justement pu être faite depuis qu'à l'aide de la théorie des
ensembles1 ; on pourrait citer également la propriété si
curieuse des séries semi-convergentes, révélée par Lejeune
Dirichlet, d'avoir une somme dépendant de l'ordre des
termes.

Dans tous ces cas, il y a une contradiction manifeste entre
les faits nouveaux et les propriétés que nous croyions
toujours vraies et qui nous semblaient évidentes, mais qui
reposaient en réalité sur une expérience ou une intuition incomplètes,

et n'étaient vraies que sous certaines conditions.
C'est ainsi que, dans le cas des séries semi-convergentes,
le fait nouveau signalé par Dirichlet semble incompatible
avec la propriété fondamentale de l'addition algébrique, qui
est d'être une opération commutative. Cette propriété est
toujours vraie dans un domaine fini, mais les exemples de

Dirichlet prouvent qu'elle peut cesser d'être vraie lorsque
les substitutions par lesquelles on passe à l'ordre nouveau
portent sur un nombre infini d'addendes. Le sentiment
d'évidence repose ici sur une intuition incomplète.

Or les antinomies cantoriennes et, en particulier, celles
de Russell et de Burali-Forti sont comparables aux exemples

que nous venons de rappeler. On croyait, et il semblait
évident, que l'existence des individus devait entraîner
nécessairement celle de leur ensemble ; mais Burali-Forti et
Russell ont montré, par des exemples différents, qu'un
ensemble d'individus peut ne pas exister, bien que ces
individus existent. Comme nous ne pouvons pas ne pas accepter
ce fait nouveau, nous sommes obligés d'en conclure que la

proposition qui nous semblait évidente et que nous croyions
toujours vraie est inexacte, ou plutôt qu'elle n'est vraie que
sous certaines conditions2. Et alors le problème suivant se

pose, que l'on peut regarder comme le problème
fondamental de la théorie des ensembles :

Quelles sont les conditions nécessaires et suffisantes pour
qu'un ensemble d'individus existe

Certes, l'étude de ce problème est moins avancée que celle

1 Cf. Mme Grace Chisholm Young : Sur les courbes sans tangente (Ens. math., année 1915, p. 348).
Cf. J. Könic : Neue Grundlagen der Logik, Arithmetik und Mengenlehre, chap. II.
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des séries semi-convergentes, mais le premier pas est fait,
grâce surtout aux recherches de Russell1, H. Poincaré 2 et
J. König3. Dans les derniers paragraphes de ce travail, je
donne une solution du problème fondamental pour le cas

particulier des ensembles que j'appelle ensembles ordinaires.
Mes déductions s'appuient sur trois postulats, qu'on applique
couramment dans l'étude des problèmes de la théorie des
ensembles.

D'autre part, les exemples mêmes de Russell et de Burali-
Forti auraient besoin d'être examinés de plus près. Je ferai
voir qu'il est facile de donner une forme plus précise à

l'exemple de Russell en le débarrassant de difficultés parasites

qui n'ont rien à faire avec l'antinomie de Russell
proprement dite. Je transformerai de même l'exemple de Burali-
Forti, ce qui va me permettre de faire un rapprochement
nouveau entre les deux antinomies.

Je ferai abstraction, dans ce travail, des distinctions
nouvelles introduites par J. König (loc. cit.) dans la théorie des
ensembles quelconques, et en particulier dans celle des
ensembles bien ordonnés. Deux ensembles contenant les mêmes
éléments ne seront jamais regardés comme différents, à

moins qu'on ne tienne compte des relations d'ordre ; et à

tout ensemble bien ordonné, s'il existe, correspondra, par
définition, un type d'ordre déterminé. Je donnerai dans un
autre travail les raisons qui m'ont déterminé à ne pas rattacher

cette étude à la théorie de J. König.
Je commencerai par l'antinomie de Russell.

Antinomie de Russell.

1. On sait que Russell distingue deux sortes d'ensembles :

Un ensemble E est de première sorte s'il diffère de chacun
<ie ses éléments.

1 Russell : The Principles of Mathematics.
2 H. Poincaré : Science et Méthode. Dernières pensées.
5 J. König : loc. cit., chap. II et IX. On trouvera des indications bibliographiques et des

remarques intéressantes dans le livre de G. Hessenberg : Grundbegriffe der Mengenlehre ;
dans le t. II de l'ouvrage de K. Schoenplies : Die Entwicklung der Lehre von der Punkt-
mannigfaltigkeiten-, et dans les mémoires de Zermelo.
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Un ensemble E est de seconde sorte s'il contient un
élément qui ne diffère pas de E.

Il résulte de cette définition qu'un ensemble de deuxième
sorte contient toujours parmi ses éléments un ensemble de
deuxième sorte. D'où ce lemme :

Un ensemble d'ensembles de première sorte est également
un ensemble de première sorte.

Envisageons maintenant, avec Russell, l'ensemble R de
tous les ensembles de première sorte.

Il est facile de montrer que cet ensemble n'existe pas. En
effet, s'il existait, il devrait être, en vertu du lemme précédent,

de première sorte, c'est-à-dire différent de chacun de
ses éléments ; d'autre part, l'ensemble R doit contenir tous
les ensembles de première sorte, donc, en particulier,
l'ensemble R lui-même, — résultat absurde.

Par conséquent, les conditions exprimées par les mots
première sorte et tous sont incompatibles, et l'ensemble R
n'existe pas.

Tel est l'exemple remarquable donné par Russell, et il
prouve bien, comme je l'ai rappelé dans l'introduction, qu'un
ensemble d'individus peut ne pas exister bien que ces
individus existent \

2. — Nous allons maintenant donner à l'exemple de Russell

une forme légèrement différente.
Faisons remarquer d'abord que la seule propriété des

éléments qui intervienne dans cet exemple est leur composition.

Un élément est-il un ensemble ou non (par définition)

et s'il l'est, de quelle manière se compose-t-il Ses

éléments sont-ils à leur tour décornposables ou non?... et
ainsi de suite. Voilà ce qui est seul important de savoir.

Pour préciser, j'introduirai une notion qui nous sera très
utile dans la suite.

Soient deux ensembles E et E'. Je dirai qu'ils sont isomorphes

si les conditions suivantes sont satisfaites :

a) Les ensembles E et E' sont équivalents ; en d'autres

1 On sait que l'exemple de Burali-Forti, que nous allons examiner plus loin, a été donné
avant celui de Bussell.
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termes, une correspondance parfaite peut être établie entre
les éléments de E et ceux de E'.

b) Cette correspondance peut être établie de telle manière
qu'à tout élément indécomposable e de E corresponde un
élément indécomposable e' de E\ et réciproquement ; et

qu'à tout élément-ensemble F de E corresponde un élément-
ensemble équivalent F' de E', la correspondance parfaite
entre les éléments de F et F' pouvant être à son tour établie
de telle manière qu'à tout élément indécomposable de F
corresponde un élément indécomposable de F7, et à tout
élément-ensemble de F un élément-ensemble équivalent de

F', — et ainsi de suite.
Si donc deux ensembles sont isomorphes, les éléments

correspondants le sont aussi, et réciproquement.
Sont isomorphes, par exemple, les deux ensembles

(el, em, F), (e\, em, F')\ où lese et les e' sont
des éléments indécomposables, et les F, F' des ensembles
contenant chacun un même nombre d'éléments indécomposables.

Nous dirons qu'un ensemble E est de première sorte s'il
n'est isomorphe à aucun de ses éléments ; nous dirons qu'il
est de deuxième sorte s'il est isomorphe à l'un au moins de
ses éléments. Est, par exemple, de deuxième sorte l'ensemble
E [e, E'), où E/ (e/,E"), E" E/y/), et en général
E("] [en\ E(n+1)) pour tout/z, les e désignant des éléments
indécomposables.

La définition que nous venons de donner n'est pas identique

à celle du paragraphe précédent, mais les propriétés
essentielles des ensembles de première et de deuxième sorte
subsistent, et le lemme reste vrai.

Revenons maintenant à l'antinomie de Russell. Envisageons
l'ensemble R' de tous les ensembles de première sorte, au
sens nouveau. On démontre comme dans le paragraphe
précédent, que cet ensemble n'existe pas. En effet, s'il existait,

1 Dans ce travail, je désigne un ensemble dont les éléments sont a, b, c,... par {a, b, c,...),
et cela quels que soient ces éléments ; par exemple, une parenthèse de la forme E, F), où
E, F sont des ensembles, représente l'ensemble dont les éléments sont E et F. et non
Tensemble-somme formé par la réunion des ensembles E et F.
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il serait, en vertu de notre lemme, de première sorte, et,
d'autre part, il devrait être isomorphe à l'un de ses éléments,
résultat absurde.

La forme nouvelle sous laquelle nous venons de mettre
l'exemple de Russell ne se prête pas bien, comme nous le

verrons dans la suite, à un rapprochement avec l'exemple de
Burali-Forti. Pour y arriver, une transformation nouvelle est
nécessaire. Je vais la donner dans le paragraphe suivant.

3. — Je commencerai par introduire une notion dont nous
nous servirons souvent.

Soient E un ensemble, E' un de ses éléments, E" un
élément quelconque de E', et ainsi de suite. J'appelle descente
la suite des passages de E à E', de E' à E", etc. Cette descente
prend fin lorsqu'on tombe sur un élément indécomposable.
Dans ce cas elle est finie, mais elle peut ne pas l'être, ce qui
arrive par exemple pour tout ensemble de deuxième sorte
E, lorsqu'on passe de cet ensemble E à l'élément E' qui lui
est isomorphe, de E' à son isomorphe E", et ainsi de suite.

Je dirai qu'un ensemble est ordinaire lorsqu'il ne donne
lieu qu'à des descentes finies ; je dirai qu'il est extraordinaire

lorsque parmi ses descentes il y en a qui sont infinies.
Tout ensemble de deuxième sorte est donc un ensemble

extraordinaire, mais ces deux notions (d'ensemble de
deuxième sorte et d'ensemble extraordinaire) ne sont pas
équivalentes, puisqu'une descente infinie peut se présenter
aussi dans un ensemble de première sorte.

Soit, par exemple, l'ensemble E (ex, E'), où E' est un
ensemble de la forme (et, e2, E"), E" (ei, e3, Ew),

et, en général, E(") (e„ + i, ex, E(" + 1)) pour tout n.
L'ensemble E ainsi défini est de première sorte, bien que la

descente E, E',... E(/i)... soit infinie.
Appelons longueur d'une descente (dans un ensemble

ordinaire) le nombre des passages qui la constituent. A toute
descente correspond ainsi un nombre entier n déterminé,
mais cette correspondance n'est pas biunivoque en général,
et les nombres n bien que finis, ne sont pas nécessairement
bornés dans leur ensemble.

Les propriétés des ensembles de première sorte dont nous
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avons fait usage dans le paragraphe précédent subsistent

pour les ensembles ordinaires ; notre lemme reste vrai et

s'énonce de la manière suivante :

Un ensemble d'ensembles ordinaires est un ensemble
ordinaire.

Envisageons maintenant l'ensemble V de tous les ensembles

ordinaires existants. On démontre, comme dans les

paragraphes 1 et 2, que l'ensemble V ne saurait exister.
Introduisons à présent une restriction.
Soit E un ensemble ordinaire. Par définition, toutes les

descentes de E sont finies et aboutissent à des éléments

indécomposables qui, bien entendu, ne sont pas en général
des éléments de E. Pour éviter la confusion, je les appellerai
noyaux de E.

Envisageons les ensembles ordinaires dont les noyaux
f, 5",... font partie d'un ensemble existant donné

X — (e, f\ g,...). Soit Y' l'ensemble de tous ces ensembles.
On démontre immédiatement que cet ensemble, qui est un
sous-ensemble de Y n'existe pas non plus.

En particulier, l'ensemble de tous les ensembles
ordinaires à un seul noyau e n'existe pas. Dans le paragraphe 7

nous serons amené à définir des ensembles à un noyau
d'une forme particulière.

En partant des ensembles déjà introduits, on peut définir
des ensembles non-existants d'une nature différente.

Soit, par exemple, E un ensemble de première sorte au
sens nouveau, et 3 l'ensemble de tous les ensembles isomorphes

à E. A tout E correspond un <§, et si un ensemble E/
est non-isomorphe à E, l'ensemble correspondant &V est différent

de &. Prenons dans chacun des ensembles 3 un
représentant quelconque E0. L'ensemble de tous ces E0, qui est
un sous-ensemble de PL, n'existe pas. Des sous-ensembles
analogues peuvent être définis en partant des ensembles
Vet Y'.

Dans les paragraphes suivants, j'aurai à m'appuyer sur une
propriété des ensembles existants qui est loin d'être
évidente, mais que je regarderai comme vraie, du moins pour
les ensembles que j'envisage dans ce travail.
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Propriété /. — L'existence d'un ensemble entraîne celle
de tous ses sous-ensembles1.

En vertu de cette propriété, il suffît de montrer cpie V'
n'existe pas pour en conclure immédiatement cju'il doit en
être de même des ensembles V, R' et R.

Antinomie de Burali-Forti.

4. — Burali-Forti arrive, comme on le sait, à l'antinomie
qui porte son nom 2

par la considération des types d'ordre
d'ensembles bien ordonnés (nombres ordinaux de Cantor),
Je rappelle que ces nombres se succèdent suivant une loi
déterminée, et forment une sorte de chaîne dont les
premiers chaînons sont les suites finies de 1 (suite ou ensemble
impropre), 2,... /?,... éléments, puis la suite &>, et les types
d'ordre o) -f~ 1, w + 2 ù) -f- /^, etc.

Les propriétés des ensembles bien ordonnés sont très
bien connues. Je me bornerai à en rappeler les deux
suivantes qui nous seront particulièrement utiles :

a) Tout ensemble bien ordonné infini est semblable à

l'ensemble de tous ses segments. Cette propriété est' encore
vraie pour les ensembles finis et, par conséquent, pour tous
les ensembles bien ordonnés, si l'on adjoint à l'ensemble
des segments un segment fictif dont le type d'ordre est 0,

par définition. Je le désignerai par la lettre e. Il en résulte
que tout nombre ordinal tt est le type d'ordre de l'ensemble
des nombres ordinaux a. < tt. y compris 0.

b) Un ensemble bien ordonné n'est semblable à aucun de

ses segments.
Ceci rappelé, envisageons avec Burali-Forti l'ensemble W

de tous les nombres ordinaux de Cantor.
L'ensemble W ainsi défini n'existe pas. En effet, si W

existait, il serait bien ordonné et aurait un type d'ordre k
(cf. introduction) ; or, tout nombre n est un élément de W,
et l'ensemble des nombres ordinaux a est un segment

1 Cf. J. König : loc. cit., chap. VI, § 16.
2 Burali-Forti : Una questions sui nurncri transftniti, Hendiconti del Circolo Matematico

di Palermo, vol. 11 (1897), p. 154.



THÉORIE DES ENSEMBLES 45

de W. L'ensemble de Burali-Forti serait donc, en vertu de

{#), semblable à l'un de ses segments ; conclusion absurde,

en vertu de {b).

Telle est l'antinomie de Burali-Forti, la plus ancienne et

peut-être la plus importante des antinomies cantoriennes

connues.
11 semblerait à première vue qu'on s'appuie implicitement,

dans l'antinomie de Burali-Forti, sur le postulat suivant :

tous les nombres ordinaux de Cantor existent. En réalité,
l'antinomie signalée par Burali-Forti est indépendante de ce

postulat; pour s'en assurer, il suffit d'envisager l'ensemble
de tous les nombres ordinaux existants. En effet, si un nombre

ordinal n existe, il en est de même, en vertu de la

propriété I, de tous les nombres ordinaux a < tt, et, par
conséquent, tout nombre existant n est le type d'ordre de

l'ensemble des nombres ordinaux existants inférieurs à 71.

Le raisonnement de Burali-Forti s'applique sans modification,

et l'on retombe sur la même antinomie qu'auparavant.
Nous désignerons par W l'ensemble de tous les nombres
ordinaux existants.

Je ferai remarquer que l'antinomie de Burali-Forti ne
dépend que des relations d'ordre de W. Or les relations
d'ordre d'un ensemble sont transmises à tout ensemble
équivalent. D'où cette propriété.

Propriété IL — Un ensemble n'existe pas, s'il est équivalent
à l'ensemble W de Burali-Forti.

Et, d'une manière plus générale (en vertu de la
propriété I) : Un ensemble n'existe pas s'il contient un sous-
ensemble équivalent à W.

Je vais maintenant donner une forme un peu différente à

l'exemple de Burali-Forti que je viens de rappeler.
5. — Soit E un ensemble bien ordonné quelconque, et E'

l'ensemble de tous ses segments, y compris le segment e

(voir le paragraphe précédent). En vertu de la propriété (a),
E' est semblable à E. Remplaçons les segments dont se

compose E' par les ensembles des segments de ces segments,
et appliquons une transformation analogue aux segments
introduits de cette manière, et ainsi de suite. A chaque



46 J). MIR IMAN OFF

ensemble bien ordonné E correspond ainsi un ensemble
d'une forme particulière que j'appellerai ensemble S (lettre
initiale du mot segment, pour rappeler le rôle joué par les
segments dans cette transformation).

Le segment fictif e subsiste seul après cette transformation.

On voit qu'un même ensemble S correspond à tous les
ensembles bien ordonnés du même type d'ordre a. Je le
désignerai par «ç, et je dirai que le nombre ordinal a est le

rang de l'ensemble «
Par exemple les ensembles S qui dérivent des ensembles

bien ordonnés des types 1, 2 et 3 s'écrivent

(e); (e, {e)); (e, (e), (e, (e))).

L'élément e sera considéré comme indécomposable.
Il résulte de la définition précédente que les éléments

d'un ensemble S sont également des ensembles S.

Je dis maintenant que tout ensemble S est un ensemble
ordinaire à un seul noyau e. En effet, dans les descentes
auxquelles donne lieu un ensemble S, on parcourt une suite
de segments s'emboîtant les uns dans les autres, et l'on sait
que les suites de ce genre sont toujours finies.

Toute descente prend nécessairement fin et aboutit à l'élément

e.

Les ensembles S sont donc bien des ensembles ordinaires.
Il en résulte entre autres qu'un ensemble S ne saurait être
isomorphe à l'un de ses éléments.

Soient maintenant deux ensembles bien ordonnés quelconques,

E et F, et soient Eç, F^les ensembles S correspondants.
Deux cas sont possibles : ou bien les ensembles E et E sont
semblables, ou bien l'un d'eux (par exemple E) est semblable
à un segment de l'autre (ensemble F).

Nous avons vu que dans le premier cas Eç Fç ; dans le
deuxième cas, E^ est isomorphe et même égal à un élément F

Ceci établi,, revenons à l'antinomie de Burali-Forti. Soit
W l'ensemble de tous les as existants. Je dis que l'ensemble
W n'existe pas.

Première hypothèse : A tout nombre existant a correspond
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un ensemble existant L'ensemble W' est alors équivalent
a W ; il n'existe pas, en vertu de la propriété II.

Deuxième hypothèse : L'existence d'un nombre a n'entraîne

pas nécessairement celle de l'ensemble Soit alors 7r le

plus petit nombre tel que ns n'existe pas. Aucun as n'existe

pour a >> 7i, car l'existence d'un ensemble as pour a > 7i

entraînerait celle de r.s, qui est un élément de a.; par conséquent,

W est l'ensemble des c^de rangs inférieurs arc; donc

W' TT,. W' n'existe pas, puisque ns n'existe pas.
Il est facile maintenant de rapprocher l'exemple de Burali-

Forti de celui de Russell. En effet, l'ensemble R est relié à

W par l'intermédiaire des ensembles R', V, V' et W'. Or
l'ensemble R' est un sous-ensemble de R; l'ensemble V, un
sous-ensemble de R'; tout ensemble V% un sous-ensemble
de Y; et, enfin, l'ensemble W, un sous-ensemble d'un VL
Les ensembles R, R\ W forment donc une suite
d'ensembles s'emboîtant les uns dans les autres. 11 en résulte
qu'il suffit de montrer que l'ensemble de Burali-Forti n'existe
pas pour en conclure qu'il doit en être de même de chacun
des ensembles R, R',... W''. Cela est vrai, comme nous
l'avons vu, de l'ensemble YV% et, en vertu de la propriété I,
cela est vrai encore de chacun des ensembles R, R', V et V'.
11 n'est donc pas nécessaire d'appliquer à ces ensembles le
raisonnement de Russell ; chacun des résultats partiels que
nous avons obtenus d'une manière directe peut être considéré

comme une conséquence de l'antinomie de Burali-Forti.
6. — Je ferai remarquer encore qu'on peut définir les

ensembles S sans passer par l'intermédiaire des ensembles
bien ordonnés. Soit E un ensemble S. Nous avons vu que :

1. L'ensemble E est un ensemble ordinaire à un noyau
(le noyau e).

2. Si x et y sont deux éléments quelconques de E, l'un
d'eux est un élément de l'autre.

En outre :

3. Si x est un élément de E, tout élément de x est un
élément de E.

Ces propriétés sont caractéristiques des ensembles S, et
peuvent servir à les définir. On démontre immédiatement
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que les ensembles E ainsi définis sont bien les ensembles S

du paragraphe précédent. A tout ensemble E correspond un
type d'ordre déterminé, et l'ensemble de tous les ensembles
E ne diffère pas de l'ensemble W'.

Solution du problème fondamental dans le cas
d*ensembles ordinaires.

7. — L'étude des différentes antinomies que nous avons
rencontrées jusqu'ici a mis en évidence les faits suivants :

dans chacun de nos exemples, il est possible de former des
ensembles de plus en plus vastes, mais l'ensemble de tous
les individus n'existe pas ; quel que soit l'ensemble qu'on
envisage (pourvu qu'il existe), des individus nouveaux
surgissent, et un ensemble plus vaste apparaît nécessairement;
on est bien en présence d'une extension indéfinie qui ne

comporte pas d'arrêt ou borne. En traitant le problème
fondamental, je serai amené à préciser cette notion un peu
vague de borne et d'absence de borne.

Rappelons à ce propos qu'on trouve dans les ouvrages
cités au commencement de ce travail une analyse logique et
psychologique approfondie des antinomies cantoriennes et
de la notion d'ensemble ; je n'en aurai pas besoin pour le
but que j'ai en vue.

Nous supposerons que les ensembles ordinaires E que nous
aurons à envisager dans l'étude du problème fondamental
vérifient les deux conditions suivantes :

Condition (a). —Les éléments de E sont distincts; il en
est de même des éléments de chacun de ces éléments, et
ainsi de suite. Par cette condition je n'écarte pas les ensembles

E qui ont des éléments isomorphes ni ceux dont les
éléments-ensembles contiennent des éléments isomorphes,
etc. L'identité seule est exclue.

Condition (b). —Les noyaux e, f g,... de tout ensemble
E font partie d'un ensemble N (e, f, g,...) que nous
considérerons comme donné ou connu (cf. paragraphe 3).

Nous avons donc à résoudre le problème suivant :

Quelles sont les conditions nécessaires et suffisantes pour
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qu'un ensemble d'ensembles ordinaires distincts, vérifiant
les conditions (a) et (ô), existe

Je partirai des trois postulats suivants :

Postulat 1. — Si un ensemble d'ensembles ordinaires
existe, il en est de même de l'ensemble de tous ses sous-
ensembles distincts (Potenzmenge).

Postulat 2. — Si un ensemble (E, F,...), où les éléments
E, F,... sont des ensembles ordinaires, existe, il en est de
même de la somme des ensembles E, F,... (Vereinigungsmenge)

\
Postulat 3. — Si un ensemble {a, 6, c, ...} existe, il en est

de même de tout ensemble équivalent (E, F, G,...), où
E, F,... sont des ensembles ordinaires existants.

Commençons l'étude du problème fondamental par le cas
particulièrement simple d'ensembles S.

Nous avons appelé rang d'un ensemble son type d'ordre
a. Je dis qu'en vertu du postulat 3, à tout nombre ordinal
existant a correspond un ensemble existant la deuxième
hypothèse du paragraphe 5 doit donc être rejetée. En effet,
un est l'ensemble de tous les ensembles S de rangs
inférieurs à &.. Soit TT le plus petit nombre existant tel que
7rç n'existe pas ; tous les éléments de existent ; d'autre
part, tt est équivalent à un ensemble bien ordonné existant;
il devrait donc exister, en vertu du postulat 3, contrairement
à notre supposition.

11 en résulte que l'ensemble W' de tous les « est équivalent
à l'ensemble W de Burali-Forti.

Je dirai que les ensembles S ou leurs rangs ont une borne
cantorienne s'il existe un nombre ordinal supérieur au rang
de chacun de ses ensembles. Dans le cas contraire, les
ensembles S envisagés n'ont pas de borne cantorienne. On
a alors le critère suivant : pour qu'un ensemble d'ensembles
S non-isomorphes existe, il faut et il suffit que ces ensembles

aient une borne cantorienne.
Supposons d'abord que les ensembles S envisagés n'aient

pas de borne cantorienne. Je dis que l'ensemble de ces

1 J. König : loc. cit. chap. VI, par. 16.

L'Enseignement mathém., 19e année; 1917. 4
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ensembles, que je désignerai par <§ ne saurait exister.
Supposons le contraire, et soit ns l'un des ensembles S envisagés.
J'appelle A (n) Tensemble des éléments de <§ dont les rangs
sont inférieurs à 7t, et par B (7r) l'ensemble des ensembles S

dont les rangs sont supérieurs à ceux des éléments de A,
mais ne dépassent pas 71. L'ensemble B (tt) qui ne contient
qu'un seul élément de <g (l'ensemble 7r est un sous-ensemble
de (71 + i) j il existe donc, en vertu de la propriété I.

A tout élément tts de S correspond un ensemble déterminé
B (tt).

Si l'ensemble S existait, il en serait de même, en vertu
des postulats 3 et 2, de la somme des ensembles B (tt)
étendue à tous les éléments de mais ce dernier ensemble

n'est autre que l'ensemble W\ et nous savons que WA
n'existe pas ; donc l'ensemble & n'existe pas non plus.

La première partie de notre critère est établie.
Supposons maintenant que les ensembles S envisagés

ont une borne cantorienne. Je dis que l'ensemble S de tous
ces ensembles existe. Soit, en effet, irs un ensemble S dont
le rang soit supérieur aux rangs de nos ensembles ;

l'ensemble est un sous-ensemble de t:s; il existe donc, en vertu
de la propriété I.

Notre critère est établi.
Avant de passer à l'étude du cas général, je ferai quelques

remarques pour préciser le problème.
8. — Faisons remarquer d'abord que le critère du paragraphe

précédent reste vrai si, au lieu des ensembles S, on envisage

les nombres ordinaux de Cantor.
Soit maintenant S ={ Ea Eß,...) un ensemble quelconque

équivalent à un ensemble de nombres ordinaux a, Si
les nombres a, ß\.. n'ont pas de borne cantorienne,
l'ensemble (aç, ßs,...) n'existe pas. Par conséquent, <g ne saurait
exister, en vertu du postulat 3, car son existence entraînerait
celle de (av ,ß ; d'où ce lemme :

Lemme.— Un ensemble (Ea,Eß,...) n'existe pas, si les
nombres a, ,5,... n'ont pas de borne cantorienne. Il en est
de même, en vertu de la propriété I, de tout ensemble qui
contient un sous-ensemble de cette nature.
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Nous pouvons maintenant étendre la notion de rang au cas

d'un ensemble ordinaire quelconque (existant).
Définition (/'}, — Le rang d'un ensemble ordinaire est le

plus petit nombre ordinal supérieur aux rangs de ses
éléments. Le rang d'un noyau est zéro.

Cette définition fournit un rang déterminé à tout ensemble
ordinaire E. Supposons en effet que chacun des éléments de

E ait un rang déterminé, en vertu de (,r) ; je dis qu'il devra
en être de même de l'ensemble E, puisque les rangs des
éléments de E ont une borne cantorienne, en vertu du dernier

lemme. Si donc E n'avait pas de rang déterminé, il
existerait au moins un élément E' de E ayant la même
propriété ; de même E' contiendrait au moins un élément
E" n'ayant pas de rang déterminé, et ainsi de suite, — résultat
absurde, puisque toute descente telle que E, E', E",.
aboutit à un noyau dont le rang est zéro. Tout ensemble E a

donc un rang déterminé, en vertu de (/*).
9. — On a alors le critère suivant :

Pour qu'un ensemble d'ensembles ordinaires distincts
vérifiant les conditions (a) et (b) existe, il faut et il suffit que
les rangs de ces ensembles aient une borne cantorienne.

Je vais d'abord démontrer un lemme.
Lemme. — L'ensemble Oa de tous les ensembles

ordinaires distincts de rang a vérifiant les conditions (ci) et (b)

existe, quel que soit le nombre ordinal a.
Pour démontrer ce lemme, je me servirai d'un raisonnement

que j'ai déjà employé dans le paragraphe précédent, et
qui n'est qu'un transformé du principe d'induction complète.

Supposons que le lemme soit vrai pour tous les a
inférieurs à un nombre r.. Je dis qu'il sera vrai pour n.

Soit, en effet, 2 la somme des ensembles Oa, pour tous les

a<7r. Cet ensemble existe, en vertu des postulats 3 et 2.
Or, l'ensemble 0^, est un ensemble de sous-ensembles de 2;
il existe donc, en vertu du postulat 1.

Le lemme s'en déduit immédiatement. En effet, si un
ensemble Qa n'existait pas, il en serait de même d'une suite
d'ensembles Oa', Oa" où « > a' > résultat absurde,
cette suite devant aboutir à l'ensemble O0, c'est-à-dire à
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l'ensemble N qui existe par hypothèse. Donc 0a existe, quel
que soit a, G. Q. F. D.

Revenons maintenant à notre critère, et soit & l'ensemble
des ensembles ordinaires envisagés E.

Supposons d'abord que les rangs des ensembles E n'aient
pas de borne cantorienne. Dans ce cas, l'ensemble & n'existe
pas, en vertu du lemme du paragraphe 8.

Supposons maintenant que les rangs des ensembles E ont
une borne cantorienne, et soit r. un nombre ordinal supérieur
à tous ces rangs. Envisageons l'ensemble 2, somme des
Oa relatifs à tous les a << ?r. Cet ensemble existe, en vertu
du dernier lemme et des postulats 3 et 2. Mais l'ensemble &
est un sous-ensemble de 1. Il existe donc en vertu de la

propriété I.
Notre critère est démontré.
Tels sont les principaux résultats que je voulais établir

dans ce travail.
En résumé, dans les paragraphes consacrés aux antinomies

de Russell et de Burali-Forti, je me suis attaché
surtout à décrire et à coordonner d'une manière nouvelle des
faits en partie connus. J'ai passé ensuite au problème
fondamental dont j'ai donné une solution dans le cas d'ensembles

ordinaires, en m'appuyant d'une part sur l'antinomie de

Burali-Forti et, d'autre part, sur plusieurs postulats. Bien

que ces postulats soient fréquemment employés dans l'étude
des problèmes de la théorie des ensembles, ils sont loin
d'être évidents, et auraient besoin d'être examinés de près
et discutés.

J'aurai l'occasion de revenir sur ces questions dans un
autre travail que je consacrerai aux antinomies cantoriennes
et à la théorie de J. König 1.

Genève, mai-septembre 1916.

1 H m'a été impossible, à mon grand regret, de prendre connaissance des publications
parues depuis le commencement de la guerre.
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