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LES ANTINOMIES DE RUSSELL ET DE BURALI-FORTI
ET LE
PROBLEME FONDAMENTAL
DE LA THEORIE DES ENSEMBLES

PAR

D. Mirimvanorr (Geneve).

Introduction.

Aucune théorie mathématique n’a fourni, comme on le
sait, autant de faits paradoxaux et d’antinomies, au moins
apparentes, que la fameuse théorie des ensembles de Cantor.
Les plus connues et les plus importantes de ces antinomies
sont celles de Russell et de Burali-Forti; mais combien
d’autres faits bizarres ont été révélés, depuis la publication
des premiers travaux de Cantor sur lathéorie des ensembles,
par Borel, Peano, Richard et Cantor lui-méme. ‘

Les antinomies cantoriennes, qui déconcertent et dérou-
tent presque toujours au premier abord, ont fait le désespoir
de quelques géometres logiciens. C’est la sans doute qu'il
faut voir la cause de la défiance exagérée que les idées et les
théories cantoriennes les mieux établies inspirent a des
esprits particulierement défiants.

Est-il besoin de dire que rien ne justifie, au fond, ni cette
défiance ni ce désespoir? N'avons-nous pas eu des surprises
comparables dans la théorie des fonctions et en géométrie ?

Qu’on se rappelle, par exemple, ladécouverte par Riemann
et Weierstrass de fonctions continues non dérivables et
de courbes sans tangentes, dont une étude approfondie n’a



38 , D. MIRIMANOFF

justement pu étre faite depuis qu’a 'aide de la théorie des
ensembles'; on pourrait citer également la propriété si
curieuse des séries semi-convergentes, révélée par Lejeune
Dirichlet, d’avoir une somme dépendant de l'ordre des
termes.

Dans tous ces cas, il y a une contradiction manifeste entre
les faits nouveaux et les propriétés (ue nous croyions tou-
jours vraies et qui nous semblaient évidentes, mais qui repo-
saient en réalité sur une expérience ou une intuition incom-
plétes, et n’étaient vraies que sous certaines conditions.
C’est ainsi que, dans le cas des séries semi-convergentes,
le fait nouveau signalé par Dirichlet semble incompatible
avec la propriété fondamentale de ’addition algébrique, qui
est d’étre une opération commutative. Cette propriété est
toujours vraie dans un domaine fini, mais les exemples de
Dirichlet prouvent qu’elle peut cesser d’étre vraie lorsque
les substitutions par lesquelles on passe a 'ordre nouveau
portent sur un nombre infini d’addendes. Le sentiment d’évi-
dence repose ici sur une intuition incompléte.

Or les antinomies cantoriennes et, en particulier, celles
de Russell et de Burali-Forti sont comparables aux exem-
ples que nous venons de rappeler. On croyait, et il semblait
évident, que l'existence des individus devait entrainer néces-
sairement celle de leur ensemble; mais Burali-Forti et
Russell ont montré, par des exemples différents, qu’un
ensemble d'individus peut ne pas exister, bien que ces indi-
vidus existent. Comme nous ne pouvons pas ne pas accepter
ce fait nouveau, nous sommes obligés d’en conclure que la
proposition qui nous semblait évidente et que nous croyions
toujours vraie est inexacte, ou plutdt qu’elle n'est vraie que
sous certaines conditions?. Kt alors le probleme suivant se
pose, que l'on peut regarder comme le probleme fonda-
mental de la théorie des ensembles :

Quelles sont les conditions nécessaires et suflisantes pour
qu’un ensemble d’individus existe ?

Certes, 'étude de ce probléeme est moins avancée que celle

1 Cf. Mme Grace Chisholm Youna: Sur les courbes sans tangente (Ens. math.,année 1915, p. 348).
Cf. J. Konic : Neue Grundlagen der Logik, Arithmetik und Mengenlehre, chap. I1.
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des séries semi-convergentes, mais le premier pas est fait,
grace surtout aux recherches de Russellt, H. Poincaré ? et
J. Konig? Dans les derniers paragraphes de ce travail, je
donne une solution du probléme fondamental pour le cas
particulier des ensembles que j'appelle ensembles ordinaires.
Mes déductions s'appuient sur trois postulats, qu’on applique
couramment dans l'étude des probléemes de la théorie des
ensembles.

D’autre part, les exemples mémes de Russell et de Burali-
Forti auraient besoin d’étre examinés de plus prés. Je ferai
voir qu’il est facile de donner une forme plus précise a
I'exemple de Russell en le débarrassant de difficultés para-
sites qui n’ont rien a faire avec 'antinomie de Russell pro-
prement dite. Je transformerai de méme l'exemple de Burali-
Forti, ce qui va me permettre de faire un rapprochement
nouveau entre les deux antinomies.

Je ferai abstraction, dans ce travail, des distinctions nou-
velles introduites par J. Konig (loc. cit.) dans la théorie des
ensembles quelconques, et en particulier dans celle des en-
sembles bien ordonnés. Deux ensembles contenant les mémes
éléments ne seront jamais regardés comme différents, a
moins qu'on ne tienne compte des relations d'ordre: et a
tout ensemble bien ordonné, s’il existe, correspondra, par
définition, un type d’ordre déterminé. Je donnerai dans un
autre travail les raisons qui m'ont déterminé a ne pas ratta-
cher cette étude a la théorie de J. Konig.

Je commencerai par I'antinomie de Russell.

Antinomie de Russell.

1. On sait que Russell distingue deux sortes d’ensembles:
Un ensemble E est de premiére sorte s'il differe de chacun
de ses éléments.

1 RussELL : The Principles of Mathematics.

2 H. POINCARE : Science et Mcthode. Derniéres pensées.

* J. Konia: loe. cit., chap. 1l et IX. On trouvera des indications bibliographiques et des
remarques intéressantes dans le livre de G. HESSENBERG : Grundbegriffe der Mengenlehre ;
dans le t. I de l'ouvrage de K. ScHOENFLIES : Die Entwicklung der Lehre von der Punkt-
mannigfaltigkeiten ; et dans les mémoires de ZERMELO.
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Un ensemble E est de seconde sorte s’il contient un élé-
ment qui ne différe pas de E.

Il résulte de cette définition qu’'un ensemble de deuxiéeme
sorte contient toujours parmi ses éléments un ensemble de
deuxieme sorte. D’ou ce lemme :

Un ensemble d’ensembles de premiére sorte est également
un ensemble de premiére sorte.

Envisageons maintenant, avec Russell, I'ensemble R de
tous les ensembles de premiére sorte.

Il est facile de montrer que cet ensemble n’existe pas. En
effet, s’il existait, il devrait étre, en vertu du lemme précé-
dent, de premiére sorte, c’est-a-dire différent de chacun de
ses éléments ; d'autre part, I’ensemble R doit contenir fous
les ensembles de premiére sorte, donc, en particulier, I’en-
semble R lui-méme, — résultat absurde.

Par conséquent, les conditions exprimées par les mots
premiére sorte et tous sont incompatibles, et I'’ensemble R
n’existe pas.

Tel est I'exemple remarquable donné par Russell, et il
prouve bien, comme je I’ai rappelé dans 'introduction, qu’un
ensemble d'individus peut ne pas exister bien que ces indi-
vidus existent . '

2. — Nous allons maintenant donner a 'exemple de Rus-
sell une forme légerement différente.

Faisons remarquer d’abord que la seule propriété des
éléments qui intervienne dans cet exemple est leur compo-
sition. Un élément est-il un ensemble ou non (par défini-
tion)? et s’il I'est, de quelle maniére se compose-t-il? Ses
éléments sont-ils a leur tour décomposables ou non?... et
ainsi de suite. Voila ce qui est seul important de savoir.

Pour préciser, jintroduirai une notion qui nous sera trés
utile dans la suite.

Soient deux ensembles E et E'. Je dirai qu’ils sont isomor-
phes siles conditions suivantes sont satisfaites :

a) Les ensembles E et E’ sont équivalents ; en d’autres

1 On sait que I'exemple de Burali-Forti, que nous allons examiner plus loin, a été donné
avant celui de Russell.
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termes, une correspondance parfaite peut_étre établie entre
les éléments de E et ceux de E’.

b) Cette correspondance peut étre établie de telle maniére
qu'a tout élément indécomposable e de E corresponde un
élément indécomposable e’ de E’, et réciproquement; et
qu'a tout élément-ensemble F de E corresponde un élément-
ensemble équivalent F' de E’, la correspondance parfaite
entre les éléments de F et F' pouvant élre a son tour établie
de telle maniére qu'a tout élément indécomposable de F
corresponde un élément indécomposable de F', et & tout élé-
ment-ensemble de F un élément-ensemble équivalent de
F’, — et ainsi de suite.

Si donc deux ensembles sont isomorphes, les éléments
correspondants le sont aussi, et réciproquement.

Sont isomorphes, par exemple, les deux ensembles
€1y €ogyenny my F), (€, €4y.nn e, FN)L ot les e et les e’ sont
des éléments indécomposables, et les F, ' des ensembles
contenant chacun un méme nombre d’éléments indécompo-
sables.

Nous dirons qu'un ensemble E est de premiere sorte s’il
n’est isomorphe a aucun de ses éléments; nous dirons qu’il
est de deuxiéeme sorte s’il est isomorphe a 'un au moins de
ses éléments. Est, par exemple, de deuxiéme sorte I'ensemble
E={(e, E'), ou E'=(e', E"), E" = (¢, E"), et en général
E" = (", E"F") pour tout n, les e désignant des éléments
indécomposables.

La définition que nous venons dec donner n’est pas identi-
que a celle du paragraphe précédent, mais les propriétés
essentielles des ensembles de premiere et de deuxiéme sorte
subsistent, et le lemme reste vrai.

Revenons maintenant a ’antinomie de Russell. Envisageons
'ensemble R’ de tous les ensembles de premiere sorte, au
sens nouveau. On démonltre comme dans le paragraphe pré-
cédent, que cet ensemble n'existe pas. kn effet, s'il existait,

! Dans ce travail, je désigne un ensemble dont les éléments sont a, &, c,... par (a, &, ¢,...), ~
et cela quels que soient ces éléments; par exemple, une parenthése de la torme (E, F), oi
E, F sont des ensembles, représente l'ensemble dont les éléments sont E et F, et non
I'ensemble-somme formé par la réunion des ensembles E et F.
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il serait, en vertu de notre lemme, de premiere sorte, et,
d’autre part, il devrait étre isomorphe a I'un de ses éléments,
résultat absurde. |

La forme nouvelle sous laquelle nous venons de melire
I'exemple de Russell ne se préte pas bien, comme nous le
verrons dans la suite, & un rapprochement avec I'exemple de
Burali-Forti. Pour y arriver, une transformation nouvelle est
nécessaire. Je vais la donner dans le paragraphe suivant.

3. — Je commencerai par introduire une notion dont nous
nous servirons souvent.

Soient E un ensemble, E’ un de ses éléments, E” un élé-
ment quelconque de E’, et ainsi de suite. J'appelle descente
la suite des passagesde EaE’, de E' a E”, etc. Cette descente
prend fin lorsqu’on tombe sur un élément indécomposable.
Dans ce cas elle est finie, mais elle peut ne pas 'étre, ce qui
arrive par exemple pour tout ensemble de deuxiéme sorte
E, lorsqu’on passe de cet ensemble E al'élément E' qui lui
est isomorphe, de E’ 4 son isomorphe E”, et ainsi de suite.

Je dirai qu'un ensemble est ordinaire lorsqu’il ne donne
lien qu’a des descentes finies; je dirai qu’il est extraordi-
naire lorsque parmi ses descentes il y en a qui sont infinies.

Tout ensemble de deuxieme sorte est donc un ensemble
extraordinaire, mais ces deux notions (d'ensemble de
deuxiéme sorte et d’ensemble extraordinaire) ne sont pas
équivalentes, puisqu’'une descente infinie peut se présenter
aussi dans un ensemble de premiére sorte.

Soit, par exemple, 'ensemble E = (¢,. E’), ou E’ esl un
ensemble de la forme (e, ¢,, E"), E" = (e,, ¢e,, e,, E"),
et, en général, E" = (e,4 1, e, e,, E"TY) pour tout n.
L’ensemble E ainsi défini est de premieére sorte, bien que la
descente E, E’,... E"... soit infinie.

Appelons longueur d’une descente (dans un ensemble
ordinaire) le nombre des passages qui la constituent. A toute
descente correspond ‘ainsi un nombre entier n déterminé,
mais cette correspondance n’est pas biunivoque en général,
et les nombres 1 bien que finis, ne sont pas nécessairement
bornés dans leur ensemble.

Les propriétés des ensembles de premiére sorte dont nous
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avons fait usage dans le paragraphe précédent subsistent
pour les ensembles ordinaires; notre lemme reste vrai et
s'énonce de la maniere suivante : '

Un ensemble densembles ordinaires est un ensemble
ordinaire.

Envisageons maintenant 'ensemble V de Zous les ensem-
bles ordinaires existants. On démontre, comme dans les
paragraphes 1 et 2, que I'’ensemble V ne saurait exister.

Introduisons a présent une restriction.

Soit E un ensemble ordinaire. Par définition, toutes les
descentes de E sont finies et aboutissent a des éléments
indécomposables qui, bien entendu, ne sont pas en général
des éléments de E. Pour éviter la confusion, je les appellerai
noyaux de E.

Envisageons les ensembles ordinaires dont les noyaux
e, f» g,... lont partie d'un ensemble existant donné
N=/le.f, g...). Soit V' I'ensemble-de tous ces ensembles.
On démontre immédiatement que cet ensemble, qui est un
sous-ensemble de V n’existe pas non plus.

En particulier, 'ensemble de tous les ensembles ordi-
naires a un seul noyau e n'existe pas. Dans le paragraphe 7
nous serons amené a définir des ensembles a un noyau
d'une forme particuliéere.

En partant des ensembles déja introduits, on peut définir
des ensembles non-existants d'une nature différente.

Soit, par exemple, E un ensemble de premiere sorte au
sens nouveau, et & l'ensemble de tous les ensembles isomor-
phes a E. A tout E correspond un &, et si un ensemble E’
estnon-isomorphe a E,’ensemble correspondant &’ est diffé-
rent de &. Prenons dans chacun des ensembles & un repreé-
sentant quelconque E,. L'ensemble de tous ces E,, qui est
un sous-ensemble de R’, n’existe pas. Des sous-ensembles
analogues peuvent étre définis en partant des ensembles
VetV

Dans les paragraphes suivants, jJaurai a m'appuver sur une
propriété des ensembles existants qui est loin d'étre évi-
dente, mais que je 1’e‘garderai comme vraie, du moins pour

*9

les ensembles que j'envisage dans ce travail.
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Propriété I. — L'existence d'un ensemble entraine celle
de tous ses sous-ensembles?.

En vertu de cette propriété, il suffit de montrer que V'
n'existe pas pour en conclure immédiatement qu'il doit en
étre de méme des ensembles V, R’ et R.

Antinomie de Burali-Fortt.

4. — Burali-Forli arrive, comme on le sait, 4 'antinomie
qui porte son nom? par la considéralion des types d'ordre
d’ensembles bien ordonnés (nombres ordinaux de Cantor).
Je rappelle que ces nombres se succedent suivant une loi
déterminée, et forment une sorte de chaine dont les pre-
miers chainons sont les suites finies de 1 (suite ou ensemble
impropre), 2,... n,... éléments, puis la suite w, et les types
d'ordre oo +1,w +2,... o + n, elc.

Les propriétés des ensembles bien ordonnés sont treés
bien connues. Je me bornerai a en rappeler les deux sui-
vantes qui nous seront particulierement utiles :

a@) Tout ensemble bien ordonné infini est semblable a
I’ensemble de tous ses segments. Celte propriélé est encore
vraie pour les ensembles finis et, par conséquent, pour tous
les ensembles bien ordonnés, si I'on adjoint a I'ensemble
des segments un segment fictif dont le type d'ordre est 0,
par définition. Je le désignerai par la letlre e. Il en résulte
que tout nombre ordinal = est le type d'ordre de I'ensemble
des nombres ordinaux « < 7. y compris 0.

0) Un ensemble bien ordonné n'est semblable a aucun de
ses segments.'

Ceci rappelé, envisageons avec Burali-1‘orti 'ensemble W
de tous les nombres ordinaux de Cantor.

I’ensemble W ainsi défini n’existe pas. En effet, si W
existait, il serait bien ordonné et aurait un type d'ordre =
(¢f. introduction); or, tout nombre = est un élément de W,
et 'ensemble des nombres ordinaux « << m est un segment

1 Cf. J. Kon1G ¢ loc. cit., chap. VI, § 16.
2 BuraALI-ForTi : Una questione suil numert transfiniti, Rendiconti del Circolo Matematico
di Palermo, vol. 11 (1897), p. 154.
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de W. L’ensemble de Burali-Forti serait donc, en vertu de
(a), semblable 2 'un de ses segments; conclusion absurde,
en vertu de (D).

Telle est 'antinomie de Burali-Forti, la plus ancienne et
peut-étre la plus importante des anlinomies cantoriennes
connues.

Il semblerait 4 premiére vue qu’on s’appuie implicitement,
dans I'antinomie de Burali-Forti, sur le postulat suivant:
tous les nombres ordinaux de Cantor existenl. En réalité,
I'antinomie signalée par Burali-Forti est indépendante de ce
postulat; pour s’en assurer, il suflit d’envisager 'ensemble
de tous les nombres ordinaux existants. En effet, si un nom-
bre ordinal 7 existe, il en est de méme, en vertu de la
propriété 1, de tous les nombres ordinaux « <=, et, par
conséquent, tout nombre existant n est le type d’ordre de
I’ensemble des nombres ordinaux existants inférieurs a .
Le raisonnement de Burali-Forti s’applique sans modifica-
tion, et 'on retombe sur la méme antinomie qu'auparavant.
Nous désignerons par W l'ensemble de tous les nombres
ordinaux existants.

Je ferai remarquer que l'antinomie de Burali-Forti ne
dépend que des relations d’ordre de W. Or les relations
d’ordre d’'un ensemble sont transmises a tout ensemble
équivalent. D’ou cette propriété.

Propriéte II. — Un ensemble n’existe pas, s'il est équiva-
lent a I’ensemble W de Burali-Forti.

Et, d’une maniere plus générale (en vertn de la pro-
priété I): Un ensemble n’existe pas s’il contient un sous-
ensemble équivalent a W.

Je vais maintenant donner une forme un peu différente a
I'exemple de Burali-Forti que je viens de rappeler.

5. — Soit E un ensemble bien ordonné quelconque, et E’
'ensemble de tous ses segments, y compris le segment e
(voir le paragraphe précédent). En vertu de la propriété (a),
L’ est semblable a E. Remplacons les segments dont se
compose I’ parles ensembles des segments de ces segments,
et appliquons une transformation analogue aux segments
introduits de cette maniere, et ainsi de suite. A chaque
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ensemble bien ordonné E correspond ainsi un ensemble
d’une forme particuliére que jappellerai ensemble S (lettre
initiale du mot segment, pour rappeler le réle joué par les
segments dans cette transformation).

Le segment fictif e subsiste seul apres cette transforma-
tion. On voit qu'un méme ensemble S correspond a tous les
ensembles bien ordonnés du méme type d'ordre «. Je le
désignerai par o« , et je dirai que le nombre ordinal o est le
rang de 'ensemble « .

Par exemple les ensembles S qui dérivent des ensembles
bien ordonnés des types 1, 2 et 3 s’écrivent

(e); (e, (e)); (e, (e), (e le])).

L’élément e sera considéré comme indécomposable.

Il résulte de la définition précédente que les éléments
d’'un ensemble S sont également des ensembles S.

Je dis maintenant que tout ensemble S est un ensemble
ordinaire a un seul noyau e. En effet, dans les descentes
auxquelles donne lieu un ensemble S, on parcourt une suite
de segments s’emboitant les uns dans les autres, et 'on sait
que les suites de ce genre sont toujours finies.

Toute descente prend nécessairement fin et aboutit a 1’élé-
ment e.

Les ensembles S sont donc bien des ensemnbles ordinaires.
Il en résulte entre autres qu’un ensemble S ne saurait étre
isomorphe a I'un de ses éléments.

Soient maintenant deux ensembles bien ordonnés quelcon-
ques, E et I, et soient E_, F_les ensembles S correspondants.
Deux cas sont possibles: ou bien les ensembles E et E'sont
semblables, ou bien ’'un d’eux (par exemple E) est semblable
a un segment de 'autre (ensemble F).

Nous avons vu que dans le premier cas B, = F_; dans le
deuxieme cas, i est isomorphe et méme égal a un élément F .

Cec1 établi, revenons a l'antinomie de Burali-Forti. Soit
W'T'ensemble de tous les «_ existants. Je dis que 'ensemble
W' n’existe pas.

Premiére hypothése : A tout nombre existant « correspond
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un ensemble existant « . L’ensemble W’ est alors équivalent
a W ; il n’existe pas, en vertu de la propriété II.

Deuxiéme hypothése : L'existence d'unnombre « n’entraine
pas nécessairement celle de I'ensemble « . Soit alors = le
plus petit nombre tel que = n’existe pas. Aucun « n’existe
pour « > m, car l'existence d’'un ensemble « pour «>m=
entrainerait celle de n_, qui est un élément de « ; par consé-
quent, W’est 'ensemble des « de rangs inférieurs a n; donc
W’ ==x . W’ n'existe pas, puisque =, n’existe pas.

Il est facile maintenant de rapprocher I'’exemple de Burali-
Forti de celui de Russell. En effet, 'ensemble R est relié a
W par l'intermédiaire des ensembles R, V, V' et W'. Or
I'ensemble R’ est un sous-ensemble de R; 'ensemble V, un
sous-ensemble de R’; tout ensemble V', un sous-ensemble
de V: et, enfin, 'ensemble W', un sous-ensemble d'un V'.
Les ensembles R, R’,... W’ forment donc une suite d’en-
sembles s’emboitant les uns dans les autres. Il en résulte
qu’il suffit de montrer que 'ensemble de Burali-Forti n'existe
pas pour en conclure qu’il doit en étre de méme de chacun
des ensembles R, R’,... W'. Cela est vrai, comme nous
Pavons vu, de I'ensemble W', et, en vertu de la propriété I,
cela est vrai encore de chacun des ensembles R, R’, Vet V.
Il n’est donc pas nécessaire d’appliquer a ces ensembles le
raisonnement de Russell ; chacun des résultats partiels que
nous avons obtenus d’une maniére directe peut étre consi-
déré comme une conséquence de 'antinomie de Burali-Forti.

6. — Je ferai remarquer encore qu’on peut définir les
ensembles S sans passer par l'intermédiaire des ensembles
bien ordonnés. Soit E un ensemble S. Nous avons vu que :

1. L’ensemble E est un ensemble ordinaire a un noyau

(le noyau e).

2. Six ety sont deux éléments quelconques de E, I'un

d’eux est un élément de 'autre.

En outre :

3. St est un élément de E, tout élément de . est un

élément de E. |

Ces propriétés sont caractéristiques des ensembles S, et
peuvent servir a les définir. On démontre immédiatement

;
8
£
i
&
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que les ensembles E ainsi définis sont bien les ensembles S
du paragraphe précédent. A tout ensemble E correspond un
type d’ordre déterminé, et l'ensemble de tous les ensembles

E ne differe pas de I'ensemble W'.

Solution du probléme fondamental dans le cas
d’ensembles ordinaires.

7. — L’étude des différentes antinomies que nous avons
rencontrées jusqu'icl a mis en évidence les fails suivants :
dans chacun de nos exemples, il est possible de former des
ensembles de plus en plus vastes, mais I'ensemble de fous
les individus n’existe pas; quel que soil I'’ensemble qu’on
envisage (pourvu qu'il existe), des individus nouveaux sur-
gissent, et un ensemble plus vastle apparait nécessairement;
on est bien en présence d’une extension indéfinie qui ne
comporte pas d'arrét ou borne. En traitant le probléme fon-
damental, je serai amené a préciser cette notion un peu
vague de borne et d’absence de borne.

Rappelons a ce propos qu’on trouve dans les ouvrages
cités au commencement de ce travail une analyse logique et
psychologique approfondie des antinomies cantoriennes et
de la notion d'ensemble; je n’en aurai pas besoin pour le
but que j'ai en vue.

Nous supposerons que les ensembles ordinaires E que nous
aurons a envisager dans I'étude du probléme fondamental
vérifient les deux conditions suivantes :

Condition (a). — Les éléments de E sont distincts; il en
est de méme des éléments de chacun de ces éléments, et
ainsi de suite. ‘Par cette condilion je n'écarte pas les ensem-
bles E qui ont des éléments isomorphes ni ceux dont les
éléments-ensembles contiennent des éléments isomorphes,
etc. I’identité seule est exclue.

Condition (b). — Les noyaux e, f, g,... de tout ensemble
E font partie d’'un ensemble N={e, £, g,...) que nous consi-
dérerons comme donné ou connu (cf. paragraphe 3).

Nous avons donc a résoudre le probléeme suivant :

Quelles sont les conditions nécessaires et suffisantes pour
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qu'un ensemble d’ensembles ordinaires distincts, vérifiant
les conditions (a) et (b), existe ?

Je partirai des trois postulats suivants :

Postulat 1. — Si un ensemble d’ensembles ordinaires
existe, il en est de méme de l'’ensemble de tous ses sous-
ensembles distincts (Potenzmenge).

Postulat 2. — Si un ensemble (E, F,...), ot les éléments
E, F,... sont des ensembles ordinaires, existe, il en est de
méme de la somme des ensembles E, F,... (Vereinigungs-
menge) .

Postulat 3. — Si un ensemble («, b, ¢, ...) existe, il en est

de méme de tout ensemble équivalent (E, F, G,...), ou
E, F,... sont des ensembles ordinaires existants.

Commencons l'étude du probleme fondamental par le cas
particulierement simple d’ensembles S.

Nous avons appelé rang d’'un ensemble «_son type d’ordre
«. Je dis qu'en vertu du postulat 3, a tout nombre ordinal
existant o correspond un ensemble existant «_; la deuxiéme
hypothése du paragraphe 5 doit donc étre rejetée. En effet,
un o_est'ensemble de tous les ensembles S de rangs infé-
rieurs a «. Soit 7w le plus petit nombre existant tel que
n, n’existe pas; tous les éléments de = existent; d'autre
part, = _est équivalent & un ensemble bien ordonné existant;
il devrait donc exister, en vertu du postulat 3, contrairement
a notre supposition.

Il en résulte que 'ensemble W' de tous les «, est équiva-
lent a I'ensemble W de Burali-Forti.

Je dirai que les ensembles S ou leurs rangs ont une borne
cantorienne s'il existe un nombre ordinal supérieur au rang
de chacun de ses ensembles. Dans le cas contraire, les
ensembles S envisagés n’ont pas de borne cantorienne. On
a alors le critéere suivant: pour qu’un ensemble d’ensembles
S non-isomorphes existe, il faut et il suffit que ces ensem-
bles aient une borne cantorienne.

Supposons d’abord que les ensembles S envisagés n’aient
pas de borne cantorienne. Je dis que ’ensemble de ces

L J. KOntG @ loc. cit. chap. VI, par. 16.

L’Enseignement mathém., 19¢ annde; 1917, 4
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ensembles, que je désignerai par & ne saurait exister. Sup-
posons le contraire, et soit #_’'un des ensembles S envisagés.
Jappelle A (n) I'ensemble des éléments de & dont les rangs
sont inférieurs a n, et par B () I’ensemble des ensembles S
dont les rangs sont supérieurs a ceux des éléments de A,
mais ne dépassent pas n. L’ensemble B (n) qui ne contient
qu'un seul élément de & (I'’ensemble =) estun sous-ensemble
de (m 4 1) ; il existe donc, en vertu de la propriété I.

A tout élément z de & correspond un ensemble déterminé

().

Si 'ensemble & existait, 1l en serait de méme, en vertn
des postulats 3 et 2, de la somme des ensembles B (7)
étendue a tous les éléments 7 de &; mais ce dernier ensem-
ble n’est autre que I'ensemble W', et nous savons que W’
n’existe pas; donc ’ensemble & n’existe pas non plus.

La premiere partie de notre critere est établie.

Supposons maintenant que les ensembles S envisagés
ont une borne cantorienne. Je dis que '’ensemble & de tous
ces ensembles existe. Soit, en effet, =, un ensemble S dont
le rang soit supérieur aux rangs de nos ensembles; I'en-
semble & est un sous-ensemble de n_; il existe donc, en vertu
de la propriéié I.

Notre critére est établi.

Avant de passer a I’étude du cas général, je ferai quelques
remarques pour préciser le probleme.

8. — Faisons remarquer d’abord que le critére du paragra-
phe précédent reste vrai si, au lieu des ensembles S, on envi-
sage les nombres ordinaux de Cantor.

Soit maintenant &= (E,, Eg....) un ensemble quelconque
équivalent a un ensemble de nombres ordinaux «, 8,... Si
les nombres «, 5,... n’ont pas de borne cantorienne, l'en-
semble (« , 8 ,...) n'existe pas. Par conséquent, & ne saurait
exister, en vertu du postulat 3, car son existence entrainerait
celle de («,. 3, .. .); d’ott ce lemme :

Lemme. — Un ensemble (E,, Eg,...) n'existe pas, si les
nombres «, 3,... n'ont pas de borne cantorienne. Il en est
de méme, en vertu de la propriété I, de tout ensemble qui
contient un sous-ensemble de cette nature.
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Nous pouvons maintenant étendre la notion de rang au cas
d’un ensemble ordinaire queleonque (existant).

Définition (r). — Le rang d’un ensemble ordinaire est le
plus petit nombre ordinal supérieur aux rangs de ses élé-
ments. Le rang d’un noyau est zéro.

Cette définition fournit un rang déterminé a tout ensemble
ordinaire E. Supposons en effet que chacun des éléments de
E ait un rang déterminé, en vertu de () ; je dis qu’il devra
en étre de méme de I'ensemble E, puisque les rangs des
éléments de E ont une borne cantorienne, en vertu du der-
nier lemme. Si donc E n’avait pas de rang déterminé, il
existerait au moins un élément E’ de E ayant la méme pro-
priété ; de méme E’ contiendrait au moins un élément
E”n’ayant pas de rang déterminé, et ainsi de suite, — résultat
absurde, puisque toute descente telle que E, E’| E, ...
aboutit a un noyau dont le rang est zéro. Tout ensemble E a
donc un rang déterminé, en vertu de (7).

9. — On a alors le critere suivant :

Pour qu'un ensemble d'ensembles ordinaires distincts
vérifiant les conditions (@) et (b) existe, il faut et il suffit que
les rangs de ces ensembles aient une borne cantorienne.

Je vais d’abord démontrer un lemme.

Lemme. — L'ensemble O, de tous les ensembles ordi-
naires distincts de rang « vérifiant les conditions (@) et (b)
existe, quel que soit le nombre ordinal .

Pour démontrer ce lemme, je me servirai d’'un raisonne-
ment que j'ai déja employé dans le paragraphe précédent, et
qui n’est qu’un transformé du principe d’induction compléte.

Supposons que le lemme soit vrai pour tous les o« infé-
rieurs a un nombre 7. Je dis qu’il sera vrai pour =.

Soit, en effet, = la somme des ensembles O,, pour tous les
o <_ =. Get ensemble existe, en vertu des postulats 3 et 2.
Or, ’ensemble O_, est un ensemble de sous-ensembles de 3;
1l existe donc, en vertu du postulat 1.

Le lemme s’en déduit immédiatement. En effet, si un
ensemble O, n’existait pas, il en serait de méme d’une suite
d’ensembles O,/ Oyr...., 00 a>a' >a". .., résultat absurde,
cette suite devant aboutir a l'ensemble O, c’est-a-dire a
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'ensemble N qui existe par hypothése. Donc O, existe, quel
que soit «, C. Q. F. D.

Revenons maintenant a notre critére, et soit & 'ensemble
des ensembles ordinaires envisagés E.

Supposons d’abord que les rangs des ensembles E n’aient
pas de borne cantorienne. Dans ce cas, 'ensemble & n’existe
pas, en vertu du lemme du paragraphe 8.

Supposons maintenant que les rangs des ensembles E ont
une borne cantorienne, et soit r un nombre ordinal supérieur
a tous ces rangs. Envisageons l'ensemble 2, somme des
O, relatifs a tous les « << n. Cet ensemble existe, en vertu
du dernier lemme et des postulats 3 et 2. Mais l'ensemble &
est un sous-ensemble de 3. Il existe donc en vertu de la
propriété 1.

Notre critére est démontré.

Tels sont les principaux résultats que je voulais établir
dans ce travail.

En résumé, dans les paragraphes consacrés aux antino-
mies de Russell et de Burali-Forti, je me suis attaché sur-
tout a décrire et a coordonner d'une maniére nouvelle des
faits en partie connus. J'ai passé ensuite au probléme fon-
damental dont j’ai donné une solution dans le cas d’ensem-
bles ordinaires, en m’appuyant d’'une part sur 'antinomie de
Burali-Forti et, d’autre part, sur plusieurs postulats. Bien
que ces postulats soient fréquemment employés dans I'étude
des problemes de la théorie des ensembles, ils sont loin
d’étre évidents, et auraient besoin d’étre examinés de prés
et discutés.

Jaurai l'occasion de revenir sur ces questions dans un
autre travail que je consacrerai aux antinomies cantoriennes
et a la théorie de J. Konig .

Genéve, mai-septembre 1916.

1 Il m’a été impossible, & mon grand regret, de prendre connaissance des publications
parues depuis le commencement de la guerre.
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