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302 F. GONSETH

3. — Le plan non-euclidien a étudier se déduit du plan eucli-
dien par une simple polarité suivant le cercle imaginaire

22+ 24+ 1=0

ou par une antipolarité suivant le cercle de rayon unité. l.e centre
de ce cercle sera dit aussi centre de la transformation.

4. — La distance non-euclidienne de deux points P,, P, est évi-
demment égale a l'angle des rayons OP, et OP,.

La distance D d’une droite d, de coordonnées [u, ¢) 4 un point
P(x.y) est donnée par la formule suivante :
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Cette distance est donc égale au quotient de la distance eucli-
dienne d de P & d, par le produit des distances euclidiennes r de
OaP,etpdeOad.
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L’angle @ de deux droites d,, d,, de coordonnées (u,, u,) et
(v,, ¥,) (correspondant a la distance de deux points du plan eucli-
dien) s’obtient comme suit : ‘

Soit R le point d’intersection de d, et d,; une perpendiculaire
en O sur OR les coupe en M, et M,.

Or:
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D’ou il résulte :
b = - rt ! .
OM,  OM,
11
5. — Nous appliquons tout d’abord cette transformation au cas

le plus simple possible; les propriétés les plus connues des co-
niques vont se trouver étre les transformées de propriétés immé-
diates du cercle.

Un cercle, C, passe parles points cycliques; sa courbe correspon-
dante sera donc une conique y touchant les isotropes du point O ;
une conique dont O est par conséquent un foyer. O ayant été




précede :

a) Les droites projetant deux
points fixes d’un cercle depuis
un point variable de ce dernier,
forment un angle constant.

b) Les tangentes d’un cercle
sont également éloignées du
centre.

c¢) Les points d’un cercle sont
également éloignés du centre.

d) O est un point arbitraire;
M un point mobile sur un cercle
c; et P le pied de la perpendi-
culaire abaissée de P sur l'axe
radical de ¢ et du cercle point O
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choisi arbitrairement dans le plan du cercle, sa directrice sera la
correspondante du centre de C; le second foyer de y sera le trans-
formé de V'azxe radical de C et du cercle-point O.

6. — Nous écrivons maintenant, en face I’'un de 'autre, quelques
énoncés correspondants, dont I'identité est démontrée par ce qui

a') Les droites projetant de-
puis le foyer d’'une conique les
peints ou deux tangentes fixes
de celle-ci sont coupées par une
tangente mobile, forment un
angle constant.

b') Le rapport des distances
d’un point d’'une conique a un
foyer et a la directrice corres-
pondante est un nombre cons-
tant.

¢’/ D étant le point ou une
tangente a une conique coupe
une directrice, O le foyer cor-
respondant; et la perpendicu-
laire en O sur OD coupant la
tangente en M,, et la directrice
en M, :

est une constante.

d') Le produit des distances
des foyers d’'une conique a une
tangente variable est une cons-
tante.

K Lant
= constante .
MP
7. — La transformation que nous étudions fait correspondre &

la géométrie des cercles, celle des coniques ayant un foyer com-
mun. Tous les énoncés de la premiere se transporteront dans la
seconde, aussitdt qu’auront été donnés les équivalents de angle
de deux cercles; et de la puissance d’un point par rapport a un
cercle. .

Deux coniques qui ont un foyer commun possedent encore deux
tangentes communes. Soient T, et T,; T,/ et Iy’ les points de con-
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tact sur chacune d’elles : les angles T,OT, et T,/OT, sont égaux
et correspondent a l'angle de deux cercles.

Soit @ une droite arbitraire, et P un point de cette droite; ayant
mené les tangentes de P a une conique y, dont O est un foyer;
ayant enfin mené en O la perpendiculaire & OP, qui coupeaen M,
et les tangentes en M, et M, ; I’expression

/1 1 1 1
"= \oM ~ owm,/\OM ~ OMm,

est constante quel que soit P sur a, et correspond a la puissance
d’un point par rapport a un cercle.

Transformons par exemple le théoréme suivant di a M. Faure!:
Les cercles harmoniguement circonscrits a une conique en coupent
orthogonalement le cercle orthoptique.

Soit O un point arbitraire, qui sera comme plus haut le centre !
de la transformation; ety une conique quelconque. Soit ¢ la trans-
formée de y; les droites qui la coupent en deux points R, et R,

tels que 'angle R{(ER2 soit droit enveloppent une courbe qui est
évidemment la correspondante du cercle orthoptique de y. Clest
une conique dont O est un foyer, et suivant laquelle O a la méme |
polaire que suivant ¢. Convenons de la nommer la conique orthop- 7"
tiqgue de ¢, par rapport a O. Convenons de plus de dire que deux
coniques de méme foyer O sont orthogonales lorsque l'angle 1
T,0T,, dont il est question plus haut, est droit. L’énoncé de
Faure devient alors le suivant:

Toutes les comgues dont O est un foyer et qui sont har monzque-
ment inscrites a une conique c, sont orthogonales a la conique
orthoptique de c, par rapport a O.

8. — Un faisceau de coniques homofocales est transformé dans
le faisceau ponctuel déterminé par une conique arbitraire et par
le cercle-point O.

Dans ce faisceau se trouvent, en plus du cercle-point O, deux
paires de droites; 'une est réelle; les deux droites qui la com-
posent seront dites les directrices du point O.

Les propriétés suivantes sont la traduction de propriétés cor-
respondantes des coniques homofocales.

Une droite d est coupée par les courbes de ce faisceau en des
couples de points qui forment une involution; les points doubles de
celle-ci sont les points de contact des deux courbes du faisceau qui
touchent d; cette involution est projetée depuis O par les rayons
d’une involution symétrigue.

[L’énoncé a’) devient :

1 FAurg, Nouvelles Annales, t. XIX, p. 234,
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Ayant choist deux points fizes sur une conique, et les ayant pro-
jetés depuis un point mobile, soient N, et N, , les points o les rayons
projetants coupent lune et lautre directrices du point O; langle
N, ON, est constant,

et 'énoncé d') par exemple :

Le produit 4L
la courbe aw point O ; d, et d, les distances aux directrices de O),
est une constante.

Si O est un foyer, ses directrices coincident; et 'on retrouve
I'énoncé 5').

9. — Plus généralement, transformons ’ensemble des courbes
de n'*™° classe ayant les mémes foyers qu’une courbe donnée I,.
[Les courbes transformées sont du n'*»° ordre et forment un sys-
teme linéaire ponctuel. Parmi elles se trouve une courbe compre-
nant 2 droites réelles. Ces n droites seront les n directrices réelles
du point O, suivant C,, la transformée de I',.

Et les deux énoncés suivants de Laguerre :

Les n ‘tangentes menées a I'y depuis un point quelconque ont
meme orientation que le groupe des n droites allant aux foyers
reels de I, ; et

Les mu tangentes communes ¢ deux courbes I'y, et I'y ont méme
ortentation que le groupe des mn droites joignant tous les foyers
reels de Iy a tous les foyers réels de T'y

prennent la forme suivante :

Les n points d’intersection d’une droite arbitraire avec une
courbe Cn d’une part, et les n directrices d'un point quelcongque O
d'autre part sont projetées depuis O par deux groupes de rayons
ayant méme orientation.

Les mn points d’intersection de deux courbes Cy et Cy sont pro-
Jetees depuis un point arbitraire O suivant mn droites ayant méme
orientation que le groupe des mn droites projetant les mn intersec-
tions de toutes les directrices du point O suivant Cy avec toutes les
directrices du méme point suivant Cy.

On pourrait aisément multiplier les exemples. En régle géné-
rale toute propriété métrique se transforme en une nouvelle, d’es-
sence plus générale, si le centre de la transformation ne prend
pas quelque position spéciale.

fow ¢ est la distance d'un point arbitraire de

IT1

10. — On peut opérer une transformation semblable dans l'es-

pace. I espace transformé peut étre considéré comme non-ewcli-
dien, avec la quadriqgue absolue

a? 4?4 22 =20
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