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NOTE SUR LA GÉOMÉTRIE DU TRIANGLE
ET DU TÉTRAÈDRE

PAR

M.-Fr. Daniels (Fribourg, Suisse).

Nous développons dans cette note quelques théorèmes
bien simples, échappés à ce qu'il paraît à l'attention des
géomètres qui se sont occupés de la géométrie du triangle et
du tétraèdre.

1. — Lorsque aux droites sphériques ou grands cercles
p.(i 1, 2, 3) qui relient un point quelconque P(£0) de la surface

sphérique aux sommets A. (it) d'un triangle sphèrique on
élève en P même des normales qj, ces nouvelles droites
sphériques coupent les côtés correspondants du triangle en trois
points Q. qui sont collinéaires.

On peut remplacer la surface sphérique par un plan (fig. 1),
et les normales q.pardes droites conjuguées aux ppar
rapport à une conique G sphérique ou plane (fig. 2).

Ce théorème est une conséquence immédiate de l'identité
vectorielle :

VI,, t. t,t2(3+ VC2, t, t, t.h + V(3, ï, t, fjtj o
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où, pour plus de simplicité, les virgules remplacent encore
des Y, signes de la multiplication vectorielle ou externe. En
effet, nous trouvons, si les P. sont les vecteurs des côtés du

triangle, successivement pour le premier sommet A*, pour
la droite pi, pour la normale qi passant par P, et pour son
point d'intersection Q4 avec le premier côté les vecteurs
suivants 1

:

Aj vy3 Pl YX, i2t3 Vt,t,y3
Qi Vlltx,x>Uk

Ce dernier point2 donnant avec les deux autres qui s'en
déduisent par permutation cyclique des indices une somme
qui est identiquement nulle, les trois points Q. sont bien col-
linéaires, c. q. f. d.

2- — Lorsque aux droites pt qui relient un point quelconque
de l'espace P aux sommets A. d'un triangle plan, on construit

au point P même cles plans normaux nL, ces nouveaux
plans coupent les côtés correspondants clu triangle en trois
points Q. qui sont collinéaires.

On peut remplacer les plans normaux r.t par des plans
conjugués aux droites p. par rapport à une quadrique.

Pour démontrer ce théorème on peut se servir avec avantage

des méthodes de Grassmann. En effet, on a successivement

pour la droite p{, pour la droite conjuguée //, pour
le plan 7^ passant par cette dernière droite et le point P,
enfin pour l'intersection Q1 de ce plan avec le premier côté
du triangle

P! [AxP] p[= I [YP] L? I A,P]

Qi [A2A3 P Î AjP] (A3P AxP)A2 - [A2P I AjP)A3

Or ce dernier point, donnant avec les deux autres, qu'on
en déduit par permutation cyclique une somme qui est iden-

1 Voir CEnseignement Mathématique, VII, n° 3 : Les coordonnées projectiles sur la sphere
ou Essai de géométrie sphérique, Fribourg 1907.

2 En développant on trouve

Vr, (2(3 (tt3)f2 — (r.I2)(s ; Vt, r, (t-f3) Vtf2 — ;r- L vri;
vtlt r, ï, U [(t-OdiO ~ (t-O'COJt + - (CïHCï)*» •
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tiquement nulle, les trois points ÇL sont bien collinéaires.
G. q. f. d.

On arrive à une autre démonstration de ce théorème, dont
le premier constitue, au moins pour le plan, un cas spécial,
en prenant le point P comme centre d une sphère et en
considérant avec le triangle sphérique produit par les droites
PA. le trialatère polaire produit parles plans tt.. Nous nous
proposons de revenir dans une note ultérieure sur certains
théorèmes similaires, où le point est remplacé par une droite
quelconque ou un plan quelconque.

3. — Lorsqu'aux droites p. qui relient un point quelconque
P aux sommets A.(i 1, 2, 3, 4) d'un tétraèdre, on construit
au point P même les plans normaux rq, ces nouveaux plans
coupent les faces correspondantes du tétraèdre selon quatre
droites q., génératrices d'un Hyperboloide.

Au lieu des plans normaux n. on peut prendre des plans
conjugués aux droites p. par rapport à une quadrique.

Ici encore les méthodes de Grassmann fournissent une
démonstration bien simple. On trouve, en effet, successivement

pour la droite p±, pour la droite conjuguée //, pour le
plan Tt! et pour son intersection qi avec la première face du
tétraèdre :

Pi tAip] Pt I [AXP] ^ [P | Aj P]

T |A2AgA4 P I Ax P]

Or cette droite et les trois autres qui s'en déduisent par
permutation cyclique des indices peuvent s'écrire :

(Ai P I A2P)[A3AJ + (Aj P | A3P)[A4A2] + (A,P I A4P)[A2A3|

- (A2p | A3 P)[A4 AJ - (A2P A4Pj[A1A3] - (A2p I A, P)[A3 aj
(A3P I A4P)[Aj A2] + (A3p I A1P)[A2A4] -P (A3 P I A2P)[A4AJ

— (A4p I Aj P)[A2 A3] - (A4P I A2P)[A3AJ — (A4p I A3 P)[Aj a2]

Leur somme est nulle ; les quatre droites sont donc des
génératrices d'un hyperboloïde.

Fribourg, le 30 septembre 1917.
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