
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 19 (1917)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: NOTIONS D'ARITHMOGÉOMÉTRIE

Autor: Turrière, Emile

Kapitel: L'arithmotrigonométrie et les arithmotriangles héroniens.

DOI: https://doi.org/10.5169/seals-17324

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-17324
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


252 E. TURRIÈRE

pour paramètres, et si x eL £ sont pris pour coordonnées
dans un certain plan, cette quartique est la projection d'une
biquadratique gauche, intersection du paraboloïde, représenté

dans un espace (x, £, £) par l'équation

ç

et d'une quadrique rapportée à ses axes :

(r)2 + i)x2 + (y2 — l)?2 + Ç2 'f\2 — y2 — 1 — jV
82. — L'équation tang-0 G + G- Avant de passer à une

nouvelle question, quelques lignes s'imposent au sujet de

l'équation lang 9 G + 0L1 de l'équation équivalente
cotang 9 G + G-

Cette équation arithmotrigonométrique se traduit
algébriquement sous la forme

c'est-à-dire encore :

x2 — î 1= x (y2 -f- z2) ;

cette dernière équation représente, dans l'espace ordinaire,
une surface du troisième degré (voir paragraphe 36) sur
laquelle existent tous les arithmopoints qui correspondent
aux solutions des équations simultanées sin 9 G + G
cos 9 ~~ G + G • h>e sorte que la solution de l'équation
tang 9 G + Q dépend de celle du problème qui vient
d'être traité dans les paragraphes précédents.

L'arithmotrigonométrie et les arithmotriangles héroniens.

83. — Application de la notion d'aritiimodistance. J'ai
souvent utilisé dans les considérations antérieures la notion
d'arithmodistance et introduit le problème des arilhmodis-
tances, soit pour créer de nouveaux types d'équations
indéterminées, soit pour rattacher à une idée générale certaines
équations particulières.

En se bornant au cas de l'arithmocourbe plane (0), dont
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l'arithmopoint M est repéré par ses coordonnées x et y et

d'un arithmopoint fixe A de coordonnées a, b, le problème
des ari t h mod i s ta n c e s pour cet arithmopoint A et l'arithmo-
courbe (G) est résolu par l'équation générale (paragraphe 17)

(* - «)2 + (y - b)2 •

Pour les développements qui vont suivre et qui ont
toujours pour objet la constitution de l'arithmotrigonométrie, il
est avantageux d'observer que cette même équation est
entièrement équivalente à une équation arithmotrigonométrique
d'une espèce spéciale, que l'on peut mettre sous la forme

dans laquelle 9 est un azimut tel que tang^ est un nombre

rationnel. Cette même équation a d'ailleurs une signification
précise, puisqu'elle se présente tout, naturellement lorsque
le problème des arithmodistances est posé sous la forme
suivante.

Soient un arithmopoint connu A et une arithmocourbe (G)

dont Varithmopoint courant M est repéré par un paramètre
rationnel t. Quels sont ceux des arithmopoints M de
Varithmocourbe imposée (G) qui définissent avec Varithmopoint
donné A des droites arithmodirigées

Cette remarque est féconde en ce sens qu'un grand nombre
de cas spéciaux du problème des arithmodistances se laissent
traduire par des équations arithmotrigonométriques souvent
simples et, souvent aussi, de formes remarquables. Il en est
notamment ainsi lorsque la courbe imposée (G) est paramé-
triquement représentée par l'intermédiaire de fonctions tri-
gonométriques, comme pour l'ellipse.

Pour l'ellipse, dis-je, dans le cas de la représentation au

moyen des demi-axes a et ß supposés rationnels et de l'anomalie

excentrique <p. supposée telle que tang-| soit un
paramètre rationnel, il résulte des expressions des coordonnées

x a cos cp y — ß sin cp



254 E. TURETÈRE

que le problème des arithmodistances pour cette arithmo-
ellipse et un arithmopoint général de son plan se traduit par
l'équation

S sin cd — h
1 — tang 0 ;

a cos © — a

trois paramètres arbitraires, les rapports des quatre nombres
rationnels a, b, a et /3, assurent à cette équation arithmo-
trigonométriquê une assez grande généralité. Elle contient
en effet comme cas particulier deux de ceux qui vont faire
l'objet de considérations spéciales (paragraphe 86) et
auxquelles conduit la détermination de certaines espèces d'arith-
motriangles héroniens :

sin cp

tang cd

1—y — const.
tang 0

84. — Le problème des triangles télémétriques m'a tout
naturellement amené aux paragraphes 67 et 68 à rechercher
s'il existait ou non des arithmotriangles héroniens dont deux
côtés soient dans un rapport donné a priori.

Proposons-nous d'une manière générale de rechercher
tous Les arithmotriangles héroniens dont les côtés a, b, e

satisfont à une condition donnée :

f\a b c) — 0

D'après les formules du paragraphe 10, il faut donc déterminer

trois nombres ralionnels R, x, et y, satisfaisant aux
inégalités

R > 0 -4= > s > 0 V + -2 - > y «

V3

et reliés entre eux par la relation :

4R -———5 4R
~~ „1 0.

L ri+r)C + ;i i + r 1 + :"J

Cette dernière équation représente, dans un système de
coordonnées y, z et R, une certaine surface. D'où il résulte
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que le problème considéré de détermination d'arithmotri-
angles héroniens est équivalent à Vétude cirithmogéométrique
d'une surface de l'espace ordinaire.

11 n'est guère possible de s'étendre davantage sur un
problème aussi général; pour aller plus loin, il est nécessaire
de le particulariser.

Parmi les cas particuliers remarquables, il convient de

signaler en première ligne celui d'une condition homogène.
Lorsque la relation imposée

f[a b c) — 0

est homogène, le problème général, susceptible d'être associé

à l'étude d'une surface, dégénère en un problème d'arith-
mogéométrie autour d'une courbe plane. Les coordonnées
d'un certain plan étant x et zs celte courbe est celle que
représente l'équation

f[(r + z)(l —fz) jd+s2). z(\ +f)] 0

85. — Dans ce même cas d'une relation homogène entre
les côtés de Parithmotriangle héronien, cette relation
imposée peut être écrite sous la forme :

/'(sin À sin B sin C) — 0 ;

des cas particuliers intéressants s'obtiennent en se bornant
à des équations entre sin B et sin G, par exemple.

C'est ainsi que, si la condition imposée est une relation
homographique entre sin B et sin G, soit

a sin B sin G —J— 2ß sin B -J- 2y sin C -f- 48 — 0

cette condition se traduit par l'équation

aïz ßjd H~ z-2) y-(t + ï2) + ^(t + y2) (1 -j- ~-2) 0

représentative d'une quartique plane. Cette courbe est la
projection sur le plan Oyz de la biquadratique gauche,
intersection du paraboloïde hyperbolique d'équation

Y» — X — 0

avec une quadrique d'équation :

8(,x.2 _j_ j2 _j_ z2} _|_ ax _J_ cv _J_ v |o=0
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Le cas (a 0, § -- 0), c'est-à-dire celui de l'équation
arithmotrigonométrique

sin G

sin B
n

est précisément celui qui a fait l'objet des considérations du

paragraphe 68. Le problème dépend de l'équation

f + 2*v2 -f l

étudiée par L. Euler, A. Genocchi et Ed. Lucas (cf. § 51).
86. — Soit une équation du type précédent

j4 + W2 + i »

elle peut être mise sous les deux formes suivantes :

(r9+i)2 + 2(Ä-l)r2 D

(y_ i)2 + 2 {k + i )_ra o ^

dans le cas où 2(k — 1) est un carré parfait, soit

2 (k — 1) 4co2

l'expression
2wy

peut être égalée à la tangente d'un arc 9 tel que tang— soit
rationnel. Si donc on pose

y tang-

on a

to sin @ — tang

réciproquement, l'équation précédente dans laquelle &) est

un nombre rationnel et 0 et 9 deux arcs tels que tang® et
0

tang y soient rationnels est réductible à une équation

j4 + n-f + î

Si d'autre part 2(1 — k) est un carré, soit 4w2, l'expression

^2 peut être égalée à un sinus d'un arc 9 ; on est ainsi
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conduit à une équation
to sin © z= sin 6 ;

c'est précisément ce qui se produit au paragraphe 68.

Considérons de même l'équation

(^-4)» + 2(Ä + 1bJ,= D

'ay nt'pctiirtn i -r!Lorsque 2(A + 1) est de la forme —4g>2, l'expression ^ 2,

c'est-à-dire co tang 0 est égale à un sinus et l'on retombe sur
une équation

to tang © sin 0

déjà traitée.
Enfin lorsque 2(k + 1) est un carré 4gù2, l'équation n'est

autre que
to tang © — tang 0

Celle-ci n'est d'ailleurs pas essentiellement distincte de

l'équation
to sin © — sin 0 ;

cette dernière équation devient, en effet,

to/ tang ©' — tang 0'

en posant
© -t- 0 6) — 0 1 — to©'

2 ' w ~ 2 ' — 1 + to
*

En résumé, les équations arithmotrigonométriques

sin ©
t—r- — n

sin ©
n

tang 0

tang ©

tang 0

0 ©dans lesquelles n, tang - et tang — sont trois nombres rationnels

dont le premier est imposé, sont respectivement équivalentes

à trois équations eulériennes du type

X4 + 2kx2 + 1

L'Enseignement mathém., 19* année; 1917. 17
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87. ;— Parmi les équations de cette espèce se trouve l'équation

X-4 +14.** +1
qui mérite une mention spéciale, car elle intervient dans
l étude du problème des arithmotriangles télémétriques.

Reprenons, en effet, l'équation trouvée au paragraphe 67
de la quartique plane dont l'étude arithmotrigonométrique
est équivalente à l'étude des arithmotriangles télémétriques
généraux :

(X2 — y2) (X2 — 2r2) — .x2 + 2y2

La condition de rationalité en .r2 de cetle équation bicarrée
en x est précisément exprimée par l'équation

J4 + 14j2 + 1 ;

en l'écrivant sous la forme

(j2-l)2 + (4y)2 —

et en posant y tang®, elle équivaut à l'équation
arithmotrigonométrique

lang 6 — 2 tang ©

L'équation considérée admet des solutions banales
évidentes : y 0, 1 et i'x ; elle n'admet pas d'autre solution
rationnelle. L'impossibilité de cette équation particulière a

été primitivement établie par L. Euler en 17801. Par suite,
Il n'existe aucun triangle télémétrique dont les trois côtés

soient rationnels.
88. — Je profite de l'occasion qui m'est offerte pour indiquer

une transformation intéressante de ce type d'équation.
L. Euler considère l'équation particulière

x4 4- 14x2 4- 1 —

1 Cette impossibilité de l'équation
a;4 4- 14a;2 4- 1

est établie à la fin de la pièce De binis formulés speciei x2 my2 et x2 -f- n.ya inter se con-
cordibus et discordibus, datée de 1780 [Commentationes arithmetics?, t. 2, pp. 406-413] et
rappelée (p. 492) au début de celles des deux pièces du môme titre : De casibus quibus hanc
formulant x4 -}- kx2y2 -}- y4 ad quadratum reducere licet qui est datée de 1782 (t. 2, p. 492).

L'impossibilité de cette équation particulière est rappelée dans le travail déjà cité de
A. Genocchi (C. R., t. 78, p. 435).
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en même temps que Técpuation également impossible

_ x2 _|_ 1 — Q ;

toutes deux se présentent, en effet, suivant Tordre que l'on
adopte dans Tétude du système des deux équations

r2 _j_ __ Q 4j2 _ j-j _

Euleb établit l'impossibilité de toutes ces équations ainsi

que de celles qui peuvent en être déduites par transformation

: « Denique etiam formulae biquadraticae, quae se obtu-
« lerunt, sunt impossibiles. Ita cum ex theoremate sit
« pi — p2q2 -f- q* — Q impossibilis, impossibilis quoque
« erit haec forma pé + iAp2q2 + hincque etiam
« plures aliae formulae, quae per transformationem hinc force

mari possunt. » Il ne semble point qu'il ait aperçu la
possibilité de transformer Tune en l'autre par une transformation

simple ces deux équations

,x4 -f 14.x2 -p 1 -x ,x4 — .x2 flzzQ,
Cette transformation n'est autre que la transformation

homographique
1 — xf

x ~ ï _l_ x>
•

Soit généralement, en effet, une équation

.x4 -p 2/-.x2 + 1 ;

la transformation ci-dessus lui fait correspondre l'équation

x4 + ïk'x* + 1

et la correspondance est réciproque. Entre les nombres k
et k' existe la correspondance involutive

[k -j- 1) (k' -f- 1 4 — 0 ;

tout particulièrement pour k -f 7, on obtient h' —
89. — Arithmotriangles héroniens dont la somme des

carrés de deux cotés est un carré. — Il s'agit de rechercher

tous les arithmotriangles héroniens, généralisant les
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arithmotriangles pythagoriques, tels"*que la somme des carrés

de deux côtés, b et c par exemple, soit un carré :

b2 + c2

On a donc
sin2B -f- sin2C ~ []]

c'est-à-dire encore

A+.r'y. (1 + -Y
V yJ m - ;

Cette dernière équation a été rencontrée par L. Euler 1 qui
en a donné, en 1773, la solution

41 3*2 -f 1

7 ~~ t2 — 1 ' * ~ t[t2 + 3)
'

en fonction d'un paramètre rationnel t quelconque.
90. — Qu'il me soit permis, à ce sujet, de placer ici quelques

observations sur les Commentationes arithmetics.
Déjà en maintes occasions, j'ai mentionné le nom d'EuLER

parmi ceux des géomètres qui ont étudié certaines figures
simples sous le point de vue arithmogéométrique. Les questions

d'analyse indéterminée traitées dans les admirables
Commentationes arithmetics, dont la lecture est facile et
captivante, sont de deux espèces. Les unes sont de nature
géométrique : triangles héroniens. triangles à médianes
rationnelles, triangles rectangles dont l'hypoténuse est un carré
parfait ainsi que la somme des cathètes, parallélépipèdes
rectangles dont les arêtes et les diagonales des faces sont
commensurables, etc.

A côté de ces questions essentiellement arithmogéomé-
triques, résolues totalement ou partiellement par des
considérations purement arithmétiques, se placent des questions
de pure analyse indéterminée, telles que l'étude de l'équation

x4 -f- kx2 -J- 1

dont il a été question ci-dessus (aux paragraphes 51 et 71

notamment). Rien dans l'œuvre d'EuLER ne permet de détermi-

1 Commentationes arithmeticae, Miscellanea analytica, 15 novembre 1773, tomus posterior,
Petropoli, 1849, pp. 44-52. Le problème ci-dessus considéré est traité aux pp. 46-47.
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lier l'origine de ces questions : les a-t-il considérées comme
de simples généralisations de l'équation de Brahmagupta-
Fermat

ax2 bx -j- c — Q

ou les a-t-il rencontrées à l'occasion d'études relatives à des

problèmes géométriques du genre précédent, problèmes
auxquels il n'a pas cru devoir faire allusion dans sa rédaction
définitive 11 semble difficile de solutionner cette question
d'origine, car il insiste fréquemment sur le caractère
analytique de ces recherches qui constituent un prolongement
de l'analyse diopliantine.

11 semble pourtant difficile d'attribuer une origine de ce

genre à des équations telles que celie,

*s +1v + fti+jy -
de la pièce du 15 novembre 1773. Elle est peut-être née de
l'étude d'une figure géométrique dont il ne reste pas trace
dans le mémoire d'EuLER. 11 est fort possible que la généralisation

des triangles pythagoriques dont je viens de rattacher

l'étude à cette curieuse équation ait été envisagée par
le même géomètre qui consacrait plusieurs mémoires aux
équations

b- -f- c2 — 2er ~
des arithmotriangles à médianes rationnelles (voir § 98) et
aux équations

b2 -f- c2 — a2 — P] etc.

(voir § 100) dont la liaison avec les précédentes est évidente.
Il en est de même des équations du système

,r2 -f v2 —

x~ -f- 4 v2 ~ Q

dont il vient d'être question à propos des arithmotriangles
télémétriques (voir § 88) et qui sont manifestement celles qui
traduisent analyliquement le problème des arithmotriangles
pvthagoriques à deux médianes rationnelles (voir § 99).
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