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246 E. TURRIÈRE

c'est donc actuellement le supplément d'un des angles aigus
de l'arithmotriangle dont la tangente trigonométrique est de
la forme spécifiée dans l'énoncé du problème.

En posant alors

X4 + 4X2 — 4 ^X2 — +

le problème est ramené à l'étude d'une fonction jt de

Weierstrass d'invariants

_ __
_8 — _
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Ö2 — — -3

et g3 — — 2;r »

Arithmotriangles pythagoriques dont les trois côtés

sont sommes de deux carrés.

78. — Le théorème de Fermât. — L'importance des nombres

sommes de deux carrés1 est assez grande; elle est
surtout due aux belles recherches qui ont été faites autour
d'un théorème célèbre de Fermât2. C'est à l'occasion du
problème de la détermination du moindre nombre qui soit
autant de lois qu'on voudra et non plus la somme de deux
carrés, problème proposé par Frénicle, dans une lettre
adressée le 6 septembre 1641 à Fermât, que ce dernier
énonça le théorème suivant : Si un nombre p compris dans
la forme Sn -f- 1 est premier ou composé de facteurs premiers
de cette forme, p est la somme de deux carrés. En remarquant

que les facteurs puissances de 2 n'altèrent point cette
propriété, en vertu de l'identité

2 (b2 + c2) (b -j- c)2 -f (h — c)2

il est possible de présenter ce théorème de Fermât sous la

forme générale et précise qui suit :

1 Initialement considérés par Diophante (II, 8, 9 et 10), puis par Vikti<: (Zeteticorum libri,
IV, 2, 3).

2 Œuvres de Fermât, t. I, p. 293 ; t. II, p. 213, 221, 403 et 432 ; t. Ill, p. 243, 315. — S. Réalis :

Scolies pour un théorème de Fermât, Nouvelles Annales de Mathématiques (3), t. 4, 1885, p.
367-372. — Le théorème de Fermât a été démontré par Euler (Nouveaux commentaires de

Pètershourg, t. IV, p. 3 et t. V, p. 3), Lkgkndre et Smith. Edouard Lucas en a donné une
très curieuse démonstration géométrique par les satins carrés.
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Si un nombre entier n'a que des facteurs 2n ou premiers cle

la forme 4k + 1, il est la somme de deux carrés.
Le théorème s'étend immédiatement aux nombres rationnels

; en remarquant avec Euler que les diviseurs d un
nombre somme de deux carrés jouissent de la meme

propriété, et en remplaçant l'équation

par l'équation équivalente

AB +

on obtient le théorème général suivant :

La condition nécessaire et suffisante pour qu'un nombre
entier ou fractionnaire soit somme de cleux carrés est que cet
entier ou les deux termes entiers de la fraction n'aient que
des facteurs des formes 2n et 4k + 1.

79. — Le problème des arithmotriangles pythagoriques a

cotés sommes de deux carres. — Les équations arithmotri-
gonopiétriques

sin 0 [H cos 0 — [~] lang 0 [Ç]

étant toutes trois séparément impossibles, il n'existe aucun
arithmo triangle pythagorique ayant plus d'un côté carréparfait.

Gomme, parmi les nombres non carrés, les plus simples
sous le point de vue de la constitution par sommes de carrés,
sont les sommes de deux carrés, je me suis naturellement
posé la question suivante : Existe-t-il des arithmotriangles
pythagoriques dont les trois côtés sont simultanément sommes
cle cleux carrés

La réponse à cette question est affirmative : il existe une
infinité de solutions, telles que celle qui correspond aux trois
côtés

9 — 32

40 22 -f 62

41 42 52

Dans cet exemple, la plus petite des cathètes est mesurée
par le nombre 9. D'une manière générale, puisque l'hypo-
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ténuse d'un arithmotriangle pythagorique ne peut jamais
être mesurée par un nombre multiple de 3, puisque, au
contraire, l'un des côtés est toujours mesuré par un multiple
de 3 *, et puisque, enfin, ce nombre 3 ne saurait être somme
de deux carrés, comme étant de la forme 4k — 1, une
première propriété des arithmotriangles pythagoriques spécialement

étudiés ici est que :

Dans tout arithmotriangle pythagorique dont les trois
côtés sont simultanément sommes de deux carrés, l'une cles

deux cathètes est mesurée par un nombre divisible par 9 (ou
par une puissance paire de 3), Il en est de même des

mesures de la hauteur relative à l'hypoténuse et cle l'aire du
triangle.

D'autre part, comme conséquences de la propriété
d'invariance par multiplication entre eux des nombres sommes
de deux carrés, il est évident que :

L'aire (qui ne peut jamais être un carré parfait) et let hauteur

relative à l'hypoténuse d'un arithmotriangle pythagorique

dont les côtés sont tous trois sommes cle deux carrés
sont aussi mesurées par des nombres de cette nature.

Ces propriétés générales établies, j'aborde la recherche
même de ces triangles.

Q

80. — L'équation cos 9 Q + Soit tang— x ; puisque

le dénominateur 1 + x2 de la fraction rationnelle exprimant

cos#, en fonction de x, est une somme de deux carrés,
il faut et il suffit qu'il en soit de même du numérateur 1 — x2.

Posant
1 — x2 — r2 + -2

on ramène le problème à l'étude de l'arithmosphère d'équation

.r2 + j2 + ;2 1 ;

si x, y et z sont alors les coordonnées d'un arithmopoint
quelconque de cette arithmosphère, l'expression de cos 9 est :

•Tz -j- y +1 4- x2)
1

V1 + x

1 Ces deux théorèmes sont dus à Fréniclh {loc. cit., p. 77 et 76 respectivement)
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Telle est l'élégante solution du problème. Il suffit alors
d'exprimer, conformément au paragraphe 8, les trois
coordonnées x, y et z en fonction de deux paramètres pour avoir
une expression de cos0.

L'équation sin 9 G + G n'est pas différente de la
précédente. Pour la résoudre directement, il suffit d'observer
que la solution générale consiste à poser :

tang Y — a2 + •

a el ß étant deux nombres rationnels quelconques.
81. — Pour revenir au problème posé, il suffit d'observer

que, par similitude, on peut rendre l'hypoténuse carré parfait

ou somme de deux carrés parfaits. Le problème se
traduit donc par les deux équations simultanées :

sin 6 — TO et cos 6 G T G •

La première de ces équations est résolue par

6
t t=i tang— — a2 + ß2 ;

la seconde équation donne alors la condition

t -- t~ — G T G '

ou
1 (a2 -f- ß2)2 -f Y2 -f 82

Nous devons ainsi considérer l'arithmosphère de rayon
rationnel et choisir parmi son infinité double d'arithmopoints
ceux qui ont une coordonnée somme de deux carrés. Les
formules de représentation impropre étant

r _ (t — u-) (1 — c2)
t

1 — u2 2u
(1 -f a2) (1 -(- c2)

' * (t -p u2) (1 -f- c2) ' "
1 -j- u2 5

un choix est tout indiqué, en raison de la grande simplicité
de 1 expression de z ; il suffira de prendre pour u une somme
de deux carrés. D'où le théorème définitif:

Une famille d'arithmo triangles pythagoriqaes dont les trois
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côtés sont simultanément sommes de deux carrés est caractérisée

et définie par l'équation
0 2(X2 + U2)

tans;- — — i + (X2 + a2

qui exprime la tangente trigonométrique de l'un des angles
aigus en fonction de deux nombres rationnels arbitraires a

et a.
6 4

Pour X 1, p. 1, on obtient tang «~ et, par suite,

40 /32V2 m
Sln

41 Ç4Î \ii
9 (Î2Y / J 5\2

COS 0
l ~~ \4 1

1

\41,

40 /2 V2

lang 0
-g-

2- +

cette solution correspond précisément au triangle dont les
côtés ont été initialement donnés à titre d'exemple.

Pour X — 1, g — 2, il vient de même tg~ |j sin 9 ~
72 65

cos 0 — tg 0 — ; l'arithmotriangle pythagorique

correspondant a pour côtés
65 l2 + 82

72 — 62 + 62

97 ^ 42 + 92

Une autre famille étendue de solutions particulières est
donnée par l'expression de l'ordonnée y

o
^ 1(23'~"'(I+ «2)(1 + f2)

;

il suffit manifestement de poser

r(l - «2) À3 + [P

pour obtenir (en remplaçant u par y pour raison d'élégance
dans l'aspect de la formule)

A 2 (X2 + ;j.2|



A RIT HMO GÉOMÉTRIE251

6

une expression de tang-^- en fonction de trois indéterminées
rationnelles A, y et y.

Pour v — 0 cette famille se réduit à la précédente. Nous
aurons donc obtenu une solution particulière triplement
indéterminée.

Dans ces conditions, l'étude du problème dans toute sa

généralité est abordable. Pour obtenir la solution générale,
il est indispensable d'avoir recours aux formules

2; 2r, ^2 -f rf — 1

* ~ F+T2T J-
' *r ~ ?2 + r,2 + i '

" ~ r2 + v7 + i '

de la représentation propre de l'arithmosphère de rayon
rationnel; la question se traduit par une équation

i.r2 -j- r2) ,;2 -}- r,2! -f- .v# r2 — ç2 — rj2 -J- 1 — 0

du quatrième degré en .r, j/, f et y?. Pour éviter l'introduction
de notions d'hypergéométrie, il suffît de prendre l'une

de ces indéterminées 77 pour paramètre et les trois autres
pour coordonnées dans l'espace à trois dimensions (pc, y, £) ;

le problème se rattache donc à l'étude arithmotrigonomé-
trique d'un faisceau de surfaces du quatrième degré.

Il est aussi avantageux de ramener cette môme question à

l'étude d'une gc2 de quartiques planes1. Si y et T, sont pris

1 Cette dernière considération peut être présentée sous une autre forme. La question est
équivalente à la recherche de deux des arithmopoints d'une arithmohyperbole équilatère.
représentée par l'équation

xy x -f y + t
qui ont des coordonnées simultanément sommes de deux carrés telles que les suivantes :

ar 9 y ~
9

X 1 i y —y 8 '

65
a: sa 129 y — etc.

L'arithmogéométrie apparaît de plus en plus comme capable de provoquer des recherches
sur des questions originales ressortissant de la théorie des nombres. Ici, par exemple, se
pose une question, que je n'ai pas étudiée mais qui. de prime abord, semble avoir quelqueintérêt: Etant donnée une équation f(x1, xn) 0 a deux ou plusieurs indéterminées.
rechercher celles de ses solutions qui sont formées par des nombres x xn tous sommes de
deux carrés. C'est une sorte d'extension de l'équation

AxJ + Bx* -f C y2

qui traduit le problème.de la détermination des arithmopoints d'une parabole y Axs
4- Bx + C à coordonnées exprimées par deux carrés parfaits, et d'une manière générale
des équations f \x2, x2, x2f 0.
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pour paramètres, et si x eL £ sont pris pour coordonnées
dans un certain plan, cette quartique est la projection d'une
biquadratique gauche, intersection du paraboloïde, représenté

dans un espace (x, £, £) par l'équation

ç

et d'une quadrique rapportée à ses axes :

(r)2 + i)x2 + (y2 — l)?2 + Ç2 'f\2 — y2 — 1 — jV
82. — L'équation tang-0 G + G- Avant de passer à une

nouvelle question, quelques lignes s'imposent au sujet de

l'équation lang 9 G + 0L1 de l'équation équivalente
cotang 9 G + G-

Cette équation arithmotrigonométrique se traduit
algébriquement sous la forme

c'est-à-dire encore :

x2 — î 1= x (y2 -f- z2) ;

cette dernière équation représente, dans l'espace ordinaire,
une surface du troisième degré (voir paragraphe 36) sur
laquelle existent tous les arithmopoints qui correspondent
aux solutions des équations simultanées sin 9 G + G
cos 9 ~~ G + G • h>e sorte que la solution de l'équation
tang 9 G + Q dépend de celle du problème qui vient
d'être traité dans les paragraphes précédents.

L'arithmotrigonométrie et les arithmotriangles héroniens.

83. — Application de la notion d'aritiimodistance. J'ai
souvent utilisé dans les considérations antérieures la notion
d'arithmodistance et introduit le problème des arilhmodis-
tances, soit pour créer de nouveaux types d'équations
indéterminées, soit pour rattacher à une idée générale certaines
équations particulières.

En se bornant au cas de l'arithmocourbe plane (0), dont
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