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246 ' E. TURRIERE

’est donc actuellement le supplément d'un des angles aigus
de I'arithmotriangle dont la tangente trigonométrique est de
la forme spécifiée dans I'énoncé du probleme.

En posant alors

2
X4+4)\2f!;:<l2~2x+§> :

le probleme est ramené a l'étude d'une fonction . de
WEIERsTRASS dinvariants

8 80

By =2 — 3 et g o= 97

Arithmotriangles pythagoriques dont les trois cotés
sont sommes de deux carrés.

18. — Le TnorEME pE FrrmaT. — L’importance des nom-
bres sommes de deux carrés?! est assez grande; elle est
surtout due aux belles recherches qui ont été faites autour
d’un théoreme célebre de Fermat® C’esta l'occasion du pro-
bleme de la détermination du moindre nombre qui soit
autant de fois qu’on voudra et non plus la somme de deux
carrés, probléme proposé par FrenicLe, dans une lettre
adressée le 6 septembre 1641 a Fermart, que ce dernier
énonca le théoreme suivant : 57 un nombre p compris dans
la forme 4n + 1 est premier ou composé de facteurs premiers
de cette forme, p est la somme de deux carrés. En remar-
quant que les facteurs puissances de 2 n’alterent point cette
propriété, en vertu de I'identité

2002 4+ ¢*) = (b + ¢) 4+ (b — ¢)*

il est possible de présenter ce théoréme de Fermar sous la
forme générale et précise qui suit :

1 Initialement considérés par DioruanTE (I1, 8, 9 et 10), puis par VikTE (Zeteticorum libri,
1V, 2, 3). :

2 Euvres de Fermat, t. |, p. 293 ; t. 11, p. 213, 221, 403 et 432 ; t. ITI, p. 243, 315. — S. RitALIs :
Scolies pour un théorcme de Fermat, Nouvelles Annales de Mathématiques (3), t. 4, 1885, p.
367-372. — Le théoréme de FErMaT a été démontré par EULER (Nouveaux commentaires de
Pétersbourg, t. 1V, p. 3 et t. V, p. 3), LeguNnnrt et SMiTH. Edouard LucAs en a donné une
trés curieuse démonstration géométrique par les satins carres.
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St un nombre entier n’a que des facteurs 2® ou premiers de
la forme 4k 4+ 1, il est la somme de deux carrés.

Le théoreme s'étend immédiatement aux nombres ration-
nels ; en remarquant avec EULER que les diviseurs d’un
nombre somme de deux carrés jouissent de la méme pro-
priété, et en remplacant 'équation

A
EZD—'—D»

par I'équation équivalente
AB=0+0.

on obtient le théoréme général suivant :

La condition nécessaire et suffisante pour qu’un nombre
enlier ou fractionnaire soit somme de deux carrés est que cet
entier ou les deux lermes entiers de la fraction n'atent que
des facteurs des formes 20 et 4k 4 1.

79. — LE PROBLEME DES ARITHMOTRIANGLES PYTHAGORIQUES A
COTES SOMMES DE DEUX CARRES. — Les équations arithmotri-
gonométriques

sind =[], cosO0=1[], tangb=1[],

étant toutes trois séparément impossibles, il n’existe aucun
arithmotriangle pythagorique ayant plus d’un cété carré par-
fatt. Comme, parmi les nombres non carrés, les plus simples
sous le point de vue de la constitution par sommes de carrés,
sont les sommes de deux carrés, je me suis naturellement
posé la question suivante : Existe-t-il des arithmotriangles
pythagoriques dont les trois cotés sont sunultanément sommes
de deux carrés ?

La réponse a cette question est affirmative : il existe une
infinité de solutions, telles que celle qui correspond aux trois
cotés

g o= 9,
40 = 22 4 6°
41 = 4% 1 52

Dans cet exemple, la plus petite des cathétes est mesurée
par le nombre 9. D'une maniére générale, puisque 'hypo-
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ténuse d’un arithmotriangle pythagorique ne peut jamais
étre mesurée par un nombre multiple de 3, puisque, au con-
traire, I'un des cotés est toujours mesuré par un multiple
de 31, et puisque, enfin, ce nombre 3 ne saurait étre somme
de deux carrés, comme étant de la forme 4% — 1, une pre-
miere propriété des arithmotriangles pythagoriques spécia-
lement étudiés ici est que :

Dans tout arithmotriangle pythagorique dont les trois
cotés sont simultanément sommes de deux carrés, l'une des
deux cathéles est mesurée par un nombre divisible par 9 (ou
par une puissance paire de 3). 1l en est de méme des me-
sures de la lhauteur relative a U'hypoténuse et de Uaire du
triangle.

D’autre part, comme conséquences de la propriété d'in-
variance par multiplication entre eux des nombres sommes
de deux carrés, il est évident que :

L’aire (qui ne peul jamais étre un carré parfait) et la hau-
teur relative a Uhypoténuse d’un arithmotriangle pythago-
rique dont les colés sont tous trois sommes de deux carrés
sont ausst mesurées par des nombres de cette nature.

Ces propriétés générales établies, j'aborde la recherche
méme de ces triangles.

- . 0 .
80. — L'EQuarioN cos § = [[] + []. Soit tang = x; puis-

que le dénominateur 1 4 x? de la fraction rationnelle expri-
mant cos @, en fonction de x, est une somme de deux carrés,
il faut et il suffit qu’il en soit de méme du numérateur 1 — 22

Posant
1 — a2 =% 4 %,

on ramene le probleme a ’étude de 'arithmosphére d’équa-
P

tion
x4 9?42 =1

si &, y et z sont alors les coordonnées d'un arithmopoint
quelconque de cette arithmosphére, 'expression de cos 6 est :

I o) 2 Yz — a2

1 Ces deux théorémes sont dus a FrENicLE (loc. cit., p. 7T et 76 respectivement).
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Telle est I'élégante solution du probleme. Il suflit alors
d’exprimer, conformément au paragraphe 8, les trois coor-
données x, y et z en fonction de deux parameétres pour avoir
une expression de cos 6.

L’équation sin® — [ ] + [] n’est pas différente de la pré-
cédente. Pour la résoudre directement, il suffit d'observer
que la solution générale consiste a poser:

0
tang§ — a® + 2.

« el 5 étant deux nombres rationnels quelconques.

81. — Pour revenir au probléme posé, il suffit d’observer
que, par similitude, on peut rendre ’hypoténuse carré par-
fait ou somme de deux carrés parfaits. Le probleme se tra-
duit donc par les deux équations simullanées :

sin 0 =[] +[] et cosf =[]+ [] .

La premiére de ces équations est résolue par
6 L,
t:tax]g'§:a3+ﬁ I

la seconde équation donne alors la condition

ou
1::((7_2—}—{32)2—{—‘{2——{— 82_

Nous devons ainsi considérer I'arithmosphére de rayon
rationnel et choisir parmi son infinité double d’arithmopoints
ceux qui ont une coordonnée somme de deux carrés. Les
formules de représentation impropre étant
(1 — w?) (1 — ¢?) 1 — u? 2u

y = 2¢. :

TTUuranTe T T e N I

un choix est tout indiqué, en raison de la grande simplicité
de I'expression de z; il suffira de prendre pour u une sommnie
de deux carrés. D'ou le théoréme définitif:

Une famille d’arithmotriangles pythagoriques dont les trois
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cotés sont simultanément sommes de deux carrés est caracté-
risée et définie par U'équation
9 222 4 u?

T

tang

qut exprime la tangente trigonométrique de l'un des angles
aigus en fonction de deux nombres rationnels arbitraires }

et w.
4 :
Pour 2 == 1. » = 1, on obtient tang ) T i et, par suite,

. 40 32\2 24\2
S]l]e = ﬂ —— <ﬂ> "I" <§’i> »
9 12\? 15\?
cosﬁ:;—l___(a—?)—}—(,ﬂ) ,
40 2\2
tang 6 = 39— = .22 4 <§> ;

cette solution correspond précisément au triangle dont les
cOtés ont été initialement donnés a titre d’exemple.

Pour 1—=1, v.=2, il vient de méme tg—e— = % , sin @ :gig,
cos § — ;7, tgh = %7 I’ arlthmotmano e pythagorique corres-
pondant a pour cotés

65 — 12 + 82
72 = (% + 6%,
97 — 42 4 92 |

Une autre famille étendue de solutions particulieres est
donnée par l'expression de I'ordonnée ¥y

1 — u?

TEY T

il suffit manifestement de poser

vl — u2) = ¥ + {_Lz

pour obtenir (en remplacant « par v pour raison d’élégance
| dans 'aspect de la formule)

0 2(12 + v
tang

e (]
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une expression de tan en fonction de trois indéterminées

rationnelles 2. u et v.

Pour v =0 cette famille se réduit a la précédente. Nous
aurons donc obtenu une solution particuliére triplement
indéterminée.

Dans ces conditions, I'étude du probleme dans toute sa
généralité est abordable. Pour obtenir la solution générale,
il est indispensable d’avoir recours aux formules

9%

x — - , V= =3

R

PP —1

o 7H =1

(V3

[iv]
L

| O]
=

IV | VY
'

VY

soll il ol

de la représentation propre de l'arithmosphére de rayon
rationnel; Ja question se traduit par une équation

9. 9 9 b B
(2 2% gt a4 = 1 =0

JNY

'f

du quatrieme degré en ., y, £ et y. Pour éviter l'introduc-
tion de notions d'hypergéométrie, il suflit de prendre 'une
de ces indéterminées » pour parameétre et les trois autres
pour coordonnées dans I'espace a trois dimensions (x, y, &);
ie probleme se rattache donc a 1'étude arithmotrigonomé-
trique d'un faisceau de surfaces du quatrieme degré.

Il est aussi avantageux de ramener cette méme question a

U'étude d'une oo® de quartiques planes?. Si y et 5 sont pris

! Cette derniére considévation peut étre présentée sous une autre forme. La question est
équivalente a la recherche de deux des arithmopoints d'une arithmohvperbole équilatére,
représentée par l'équation

xy =« +y+1,

qui ont des coordonnées simultanément sommes de deux carrés telles que les suivantes :

5]
x = 9, Yy = —.
+
9
x = 17, = —
Y 3
65
x = 129 , Yy = —, ete.
=+

i T .

L’arithmogéométrie apparait de plus en plus comme capable de provoquer des recherches
sur des questions originales ressortissant de la théorie des nombres. Ieci, par exemple, se
pose une question. que je n’ai pas étudiée mais qui, de prime abord, semble avoir quelque
Intérét : Etant donnee une équation f(x , ... x ) = 0 a deux ou plusieurs indetermincées.
rechercher celles de ses solutions qui sont formeées par des nombres X ... Xp tous sommes de
deux carrés. C'est une sorte d’extension de l'équation

Axt 4 Bax? 4+ C = 942 |

qui traduit le probleme.de la détermination des arithmopoints d’une parabole y = Ax?®
+ Bx + € a coordonnées exprimées par deux carrés parfaits, et d'une maniére générale

2

des équations ftxz, x,

s e X0 = 0.
n .
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pour parametres, et si x el £ sont pris pour coordonnées
dans un certain plan, celte quartique est la projection d'une
biquadratique gauche, intersection du paraboloide, repré-
senté dans un espace (x, &, ¢) par I'équation

et d'une quadrique rapportée a ses axes :
(2 + ‘1)352 ' (3.2 R = —y — ] — )‘2.,1:1 ,

14 TAT ] » —_— vl
82. — L’EqQuarion tang # = [] 4 []. Avant de passer a une
nouvelle question, quelques lignes s’imposent au sujet de
I’équation tang 8 — [] -+ [], ou de l'équation équivalente
cotang # — [ ] + [].
Cette équation arithmotrigonométrique se traduit algébri-
quement sous la forme

i |

—=0+0.

c¢’est-a-dire encore :
x? — 1 = x(y? + 23 ;

cette derniere équation représente, dans l'espace ordinaire,
une surface du troisiéme degré (voir paragraphe 36) sur
laquelle existent tous les arithmopoints qui correspondent
aux solulions des équations stmultanées sin® — [] 4+ [] et
cos @ — [] + [J. De sorte que la solution de l'équation
tang ® — [] 4+ [] dépend de celle du probleme qni vient
d’étre traité dans les paragraphes précédents.

L’arithmotrigonométrie et les arithmotriangles héroniens.

83. — APPLICATION DE LA NOTION D ARITHMODISTANCE. J'ai
souvent utilisé dans les considérations antérieures la notion
d’arithmodistance et introduit le probleme des arithmodis-
tances, soit pour créer de nouveaux types d'équations indé-
terminées, soit pour rattacher a une idée générale certaines
équations particulieres.

En se bornant au cas de l'arithmocourbe plane (C), dont
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