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NOTIONS D'ARITHMOGÉOMÉTRIE

PAR

Emile Turrière (Montpellier).
(4e article) 1

L'arithmotrigonométrie.

70. — C' est dans une pièce en date du 1er mai 1780, De

ccisibus quibusdam maxime memorabilibus in analysi inde-
terminata, ubi imprimis insignis usus calculi angulorum in
analysi Diophantea ostenditur2, que L. Euler a introduit
l'usage des nombres trigonométriques pour l'étude de
certaines équations de l'analyse diophantine.

Ce mémoire traite de deux problèmes; chacun d'eux est
résolu d'abord par la méthode algébrique; Euler montre
ensuite combien est avantageux l'usage des rapports
trigonométriques de certains angles auxiliaires pour la résolution
de chacun de ces deux problèmes.

Le premier problème est relatif à la résolution de l'équation

du quatrième degré à quatre variables :

x4 + J4 + s4 + ^'4 — 2 [x2r2 -f- y2c2 -f- z2 a2) -f- 2 v2 (x2 + y2 -f z.2) 0

admettant entre autres solutions entières les trois systèmes
qui suivent :

X 20 y 17 3 17, p 12 ;

39 2.5 20 12 ;

78 65 29 24

1 Voir Y Enseignement mathématique, 18e année, 15 mars 1916, pp. 81-110, et 15 novembre
1916, pp. 397-428; 19e année, 15 mai 1917, pp. 159-191.

2 Commentationes arithmeticse, tomus posterior, pp. 366-379.
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En posant
ocy xz— — s m a — sin p
vz n-

Euler montre que toute la question revient à déterminer
deux arcs a et ß dont les nombres trigonométriques sont
rationnels et qui sont en outre tels que le produit de sin a

et de sin ß soit un carré.
Le second problème, qui consiste de même à résoudre

l'équation

+ ï4 + v4 4- V4 — 2,rV — 2.r2 -2 — 2*V — 2y2z2 - 2r2v2 — 2sV - 0

douée de solutions telles que

14 y= 8 5 r= 5 c 3

72 35 33 14

165 99 56 32

se traite d'une manière analogue, en posant

xr xz— cotang a — — cotang |t f

et en déterminant des angles a et ß, à rapports trigonométriques

rationnels, tels que

cotang a cotang ß — [~]

A la même date, c'est-à-dire encore le 1er mai 1780, nous
trouvons une autre pièce d'Euler consacrée aux angles d'un
quadrilatère tels que leurs sinus soient proportionnels à des
nombres rationnels donnés : Investigatio quadrilateri in quo
singulorum angulorum sinus datam inter se tenéant ratio-
nem; ubi artificia prorsus singularia in analysi Diopliantea
occurrunt1.

Si, par exemple, les nombres donnés sont 15, 14, 11 et 6,
les angles demandés sont :

A 92° 23' 16"

B 111° 10' 06"
' C 132° 53' 14"

D 23° 33'24"

1 Cornrnentationes arithmetics?, t. II. pp. 380-391.
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dont la somme est bien 360° et dont les nombres trigono-
métriques sont :

5 /— ,1
'

sin A — V 23 cos A ~ — —
24 24

7 4 - 13
sin B — — V 23 cos B — — —

36 3o

11 — 49
sin C — A 23 cos C — —

y 2 ' il
1 — 11

sin D — V23 cos 1) — — —

La solution de ce problème peut être obtenue d'une
manière très rapide en introduisant le rapport commun de

sin A, sin B, sin G et sin D aux nombres donnés c/, b, c et cl.

Si, en effet, on pose

sin A ~ ax sin B — bx sin C — ex sin D — dx

la condition A + B + G + D 2rr se traduit par une équation

du premier degré en x2 ; d'une manière générale, les

expressions des quatre sinus sont irrationnelles, les nombres
a, 6, c, d étant multipliés par la racine carrée d'un même
nombre rationnel3: c'est ce qui se produit pour les trois
exemples numériques traités complètement par Euler.

71. — Cette introduction des rapports trigonométriques
de certains angles dans des recherches arithmétiques, cette
confrontation de la trigonométrie plane (et peut-être aussi
de la trigonométrie sphérique) et de l'analyse diophantine
semblent devoir présenter un intérêt comparable à celui de

rarithmogéométrie, dont le fondement n'est autre que la
confrontation des grandeurs de la géométrie et des nombres
rationnels.

Indépendamment des considérations d'EuLER sur l'avantage

que peut présenter l'introduction des angles dans l'étude
de certains problèmes diophantins, j'avais rencontré — dans
les derniers paragraphes de mon examen du Problème de
Jean de Palerme et de Léonard de Pise — des équations tri-

1 II serait intéressant de rechercher, à ce propos, si, pour un choix convenable des données
a, b, c, d, les quatre sinus peuvent être rationnels.
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gonométriques particulières h Les théorèmes de Fermât et de
Frénicle relatifs à l'inexistence d'arithmotriangles pylhago-
riques, dont l'aire soit un carré parfait ou le double d'un tel
carré, se traduisent par des équations

sin 20

2sin 26 Q

0

impossibles si tangy doit être un nombre rationnel.

Ces exemples simples suffisent pour permettre d'introduire

avec clarté et précision la notion d'équation arithmo-
trigonométrique. Par définition, une telle équation est une
équation à coefficients rationnels dans laquelle un certain
nombre d'inconnues x,, x2, xn sont engagées par leurs
seuls rapports trigonométriques et dont les solutions sont

telles que tang^, tang^, tang ff soient des nombres

rationnels. En d'autres termes, ces angles xi, xn dont
la présence dans l'équation trigonométrique, au s.ens habi-

1 Lorsque j'écrivais, en septembre 1915, les remarques sur le problème de Léonard de Pise
et de Jean de Palerme, ou même les premieres pages des Notions d'arithmogèomètrie, je me
trouvais dans l'absolue impossibilité de faire la moindre recherche bibliographique. C'était
donc de mémoire que je citais Fermât à l'occasion de l'impossibilité de certaines équations.

Voici maintenant les renseignements historiques nécessaires. C'est à propos du problème
20 de Bachiît [trouver un arithmotriangle pythagorique dont l'aire soit égale à un nombre
donné"], qui se rattache lui-même à la 26e question du VIe livre de YArithmétique de Diophante?
que Fermât observa que l'aire d'un triangle rectangle en nombres ne peut être un carré.

Cette même proposition négative se trouve aussi dans la lettre de Fermât à Carcavi,
d'août 1659, dont une copie par Huygkns nous a été transmise (œuvres de Fermât, t. 2, p. 431).

Frénicle (Traité des triangles rectangles en nombres, dans lequel plusieurs belles
propriétés sont démontrées par de nouveaux principes, Paris, 1676) donne ce même théorème
à la page 100.

A noter aussi une pièce du 29 décembre 1678, Invenire triangulum in numeris cujus area
sit quadratus (Leibnizens mathematische Schriften, Gerhardt, III, p. 120-125) dans laquelle
Leibniz retrouve cette même impossibilité.

Leibniz établit aussi l'impossibilité de chacune des équations

x3 — x ]_]

- y" ;
la première est équivalente à

2 tang 0

La seconde a été considérée par Fermât (Observations sur Diophante, VI, 26).
En ce qui concerne d'autre part Yinexistence d'arithmotriangles pythagoriques dont l'aire

soit le double d'un nombre carré, c'est à la page 101 du Traité de Frénicle qu'elle est énoncée

et établie. Plus loin d'ailleurs (p. 111), Frénicle indique l'impossibilité de l'équation
équivalente ;

que Fermât a de son côté mentionnée comme impossible dans son observation VI, 32.
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tuel de cette expression, en fait une équation arithmotrigo-
nométrique, sont des angles d'une espèce toute particulière
que nous connaissons bien déjà : ce sont les angles des

arithmotriangles pythagoriques. Dans ces conditions, l Arith-
motrigonométrie, c'est-à-dire l'ensemble des propriétés de

toutes les équations arithmotrigonométriques, n'offre aucune

originalité, mais c'est une nouvelle forme avantageuse
d'exposition des faits qui constituent la « Géométrie des triangles
rectangles en nombres» telle que la concevaient Diophante,
Fermât ou Frénicle.

L'arithmotrigonométrie mérite d'être étudiée ici. Ce qui
fait, en effet, le plus défaut dans la théorie des nombres, ce

n'est pas une théorie générale ; ce n'est pas non plus une
base métaphysique solide; ce qui fait défaut, dis-je, c'est
une méthode de résolution des équations en nombres rationnels

ou entiers. Toute considération qui peut conduire à des

moyens pratiques de détermination des solutions est la
bienvenue dans le monde mystérieux des nombres. C'est ce qui
me décida à consacrer tant de pages aux présentes notions
d'arithmogéométrie, dès que je reconnus que l'intuition
géométrique pouvait apporter quelques perfectionnements à

l'analyse diophantine. C'est encore pour une raison identique

que je crois devoir donner un tel développement à ces
principes d'arithmotrigonométrie.

72. -— Les équations qui viennent d'être rappelées ci-
dessus et qui sont étroitement liées aux deux théorèmes de
Fermât et de Frénicle sur l'aire d'un arithmotriangle pytha-
gorique sont évidemment équivalentes aux équations

tang 0 et 2 tang 0 — ;

celles-ci sont donc impossibles du point de vue arithmo-
trigonométrique. Cette impossibilité des équations
arithmotrigonométriques

lang 0 2 tang 0 — []
et des équations qui en dérivent manifestement, telles que
les équations arithmotrigonométriques

sin 20 2 sin 20 z=
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ou encore des équations algébriques remarquables qui leur
sont équivalentes, présente une grande importance dans la
théorie des nombres et dans l'histoire de son développement.
Nombreuses sont, en effet, les propositions trouvées et
retrouvées sur ces différentes équations ou sur les figures
géométriques (les arithmotriangles pythagoriques notamment)

qui leur sont liées. En réalité, il s'agit d'une unique
propriété de la théorie des nombres. Tout d'abord, il faut
observer que les équations

tang 0 — Q 2 sin 29 Q

sont identiques entre elles et qu'il en est de même des équations

:

2 tang 9 — Q sin 29 ~ Q

Reste à prouver que les équations sin 29 — et 2sin 29

sont équivalentes par changement de variable. Il suffit de

remarquer que l'équation impossible

Xy{X4 _ j4) — Q f

considérée par Euler1 devient

2XY (X4 — Y4)

au moyen de la transformation affine définie par les équations

X + y Z=z X X — y Y

En posant alors
9

y x tang ~

dans l'une et l'autre des deux équations impossibles
équivalentes :

xy(x4 — y4) — 2xy(x4 — y4)

il vient :

sin 29 — [J et 2 sin 29 Q

L'impossibilité de l'une des équations entraîne donc celle
de l'autre. Et, par suite, il y a équivalence entre les deux
propositions négatives de Fermât et de Frénicle relatives à

1 Investigatio binorum numerorum formse xy (x4 — y4), quorum productnrn, sive quotus sit
quadratum (14, août 1780). Comme,ntationes urithmeticae, tomus posterior, pp. 438-446.
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l'inexistence d'arithmotriangles pythagoriques dont l'aire
soit un carré ou le double d'un carré.

73. — Impossibilité de sin# et de cos# de

2sin# et de 2cos# —
Je viens de dire que les équations arithmotrigonomé-

triques
tang 0 — Q et 2tang ô — Q

étaient séparément impossibles, comme attachées aux
problèmes des arithmotriangles pythagoriques dont l'aire est
un carré parfait ou le double d'un carré.

Les quatre équations suivantes

sin 0 2 sin 0 —

cos 0 [] 2 cos 0 —

sont de même séparément impossibles, pour les raisons qui
vont être données. Il y a lieu d'exposer tout d'abord que les
deux équations de la seconde ligne, c'est-à-dire les équations
en cosinus, sont respectivement équivalentes aux deux équations

en sinus de la première ligne.
Des deux équations irréductibles l'une à l'autre qu'il

convient de considérer maintenant, l'une d'elles cos# est
équivalente à l'équation

*4 — J4

reconnue impossible par Fermât à l'occasion du 26e
problème du VIe livre de Diophante. De même, de l'impossibilité

de l'équation
2 (X4 — Y4) —

établie par Euler, ou encore de celle de l'équation
1

x H—~ — CD >

X

considérée par Leibniz1, il résulte que les équations, équi-

1 Exercitium ad promovendnm scientiam mimerorum, Leibnizens mathematische Schriften
Gerhardt, [2], III, 1863, p. 111-119.

Dans cette pièce, Lkibniz s'occupe de l'équation

x+^=D,
qui peut être rattachée à l'étude arithmogéométrique d'une cubique, la cubique harmonique
d'équation :

y2 x2 -f- ax
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valentes par changement de variable 9,

2 cos ö r: [] et 2 sin 6 — Q

sont elles aussi impossibles.
74. — Les théorèmes qui précèdent présentent, en plus

de leur intérêt historique, celui d'être fondamentaux dans
l'étude d'un nombre respectable d'équations impossibles
déjà connues. Il semble, en outre, que cette source féconde
de propositions négatives soit encore loin d'être tarie.

Voici quelques nouveaux exemples de leur utilité
incontestable.

Soit, en premier lieu, l'équation arithmotrigonométrique à

deux indéterminées :

sin u -(- sin v =z i ;

elle peut être transformée en l'équation équivalente :

wsin u — 2 cos2 —

c'est-à-dire :

2 sin u — \ |

Il est donc impossible de satisfaire à l'équation

sin u -)- sin c 1

avec des angles tels que tang^- et tang-^ soient deux nombres

rationnels.
Soit, en second lieu, a résoudre le problème de la

détermination de quatre carrés en progression arithmétique.
M. E. H^entschel vient de rappeler que ce problème avait
été considéré, dans le cas de trois carrés, par Diophante et

que le Problème de Jean de Palerme et de Léonard de Pise
en était un cas particulier (voir paragraphe 76). J'ajouterai
que ce même problème de trois carrés en progression
arithmétique a été considéré aussi par Fermât1 et par Frénicle2
et que sa solution générale au moyen d'une représentation

1 Œuvres, t. II, p. 65 et 234.
2 Traité des triangles rectangles en nombres..., p. 27-28. Frénicle donne la solution

simple 49, 169, 289.
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arithmotrigonométrique a été donnée plus haut (paragraphe 6:

arithmotriangles automédians).
Le problème de quatre carrés en progression arithmétique

se traduit par les équations

qui deviennent
;r2 + s2 2r2 +

Conformément aux conclusions du paragraphe 6, je poserai
donc

x — j(cos a — sin a)

s — y (cos a -f- sin a)

y ^ (cos ß -f- sin ß)

t — z (cos ß — sin ß) ;

d'où il résulte que les angles a et ß doivent satisfaire à l'équation

arithmotrigonométrique

(cos a -J- sin a) (cos ß -|- sin ß) — 1

ou encore
cos (a — ß) + sin (oc —(— ß) 1

Celle-ci est impossible d'après le résultat qui vient d'être
obtenu à l'instant. IL est donc impossible de déterminer quatre
carrés en progression arithmétique.

Sur certains arithmotriangles pythagoriques.

75. — L'examen du plus célèbre des arithmotriangles
pythagoriques, celui des harpedonaptes égyptiens, donne
l'idée de former des équations arithmotrigonométriques fort
simples que je vais étudier. Les sinus et cosinus des angles
aigus de ce triangle sont :

L'Enseignement mathérn., 19e année; 1917. 16
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Quels sont d'une manière générale les arithmotriangles
pythagoriques tels que

La solution générale de cette équation arithmotrigonomé-
trique s'obtient aisément par considération d'une arithmo-
cubique unicursale ; on doit poser

De même l'équation

cos 6 TJ_,

qui n'est d'ailleurs pas essentiellement distincte de la

précédente, se laisse résoudre en toute généralité en posant :

0 2À2 — 1

tang 2 2Â^fT '

Il convient de noter que cette question fournit des solutions

particulières des deux équations

sin 0 — -f
COS 0 — -j- »

qui seront étudiées quelques pages plus loin (paragraphe 80).
76. — Le théorème de Fermât sur le nombre 7. — Pour le

3
même arithmotriangle pythagorique (3, 4, 5), on a tang 9 —

— 1 — ; cette dernière relation donne naissance à une

question intéressante en elle-même, qui se rattache à une
fort belle proposition de Fermât :

Quelle est la solution générale de l'équation

tang 6 1 — X2

en nombres rationnels l et À

tang — 2a2

et, par suite :

sin 0 —
1
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Celte équation se transforme immédiatement en la

suivante :

représentative d'une cubique plane. Considérée comme une
équation du second degré en y, cette équation dépend du

point de vue arithmogéométrique d'une équation

.r4 _ 2x-2 -I- 2 n
de Brahmagupta-Fermat généralisée. A cette même équation,

ou d'une manière plus précise à l'équation équivalente

2.x'4 - • 2x2 +!=:,
se ramène d'ailleurs le problème des arithmodistances pour
l'origine et l'hyperbole équilatère y •

Mais ce qui est encore plus digne de retenir notre attention

c'est que la question envisagée n'est point distincte
d'un problème qui a son histoire : l'étude d'une propriété
caractéristique du nombre entier 7. Fermât1, en effet, a

remarqué le premier que, seul clans la suite des entiers, le
nombre 7 jouit de la propriété d'être, ainsi que son carré, de
la forme 2a2— 1 ; en d'autres termes, les équations simultanées

2 — 1 m
2s2 — 1 x2

n'admettent, en nombres entiers, que l'unique solution :

x — 1 y ~ 2 c — 5

Je n'insisterai guère sur ce problème de Fermât, qui se
rattache encore à la théorie des arithmopoints d'une biqua-
dratique gauche ; je me bornerai à mettre en lumière sa

1 Sur ce problème de Fbkmat, cf. t. 2 des Œuvres de Fermât, pp. 434-446 et d'autre part :

Ch. Hk.nry, Recherches sur les manuscrits de Fermât, p. 176.
T. Pépin, Sur un théorème de Fermât (Atti delC Accademia pontificia dei nuovi Lincei, t.

36, 1883, p. 23-33.
A. Gpnocchi, Démonstration d'un théorème de Fermât, Nouvelles Annales de Mathématiques,

3e série, t. 2, 1883, p. 306-310.
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liaison avec l'équation précédente ; cette liaison résultant de

l'équation
,2 2Ja _ 2j* + i

de l'une des projections de la biquadratique de l'espace,
domine nouvelle solution simple de cette équation, j'ai
trouvé :

31 3 41 6 4 40
* -49' r j. * 49' t»°&2=T' 6 ~ y- '

La solution primitive de Fermât correspond précisément à

l'angle de l'arithmotriangle pythagorique de côtés 3, 4 et 5.

Celle que j'en ai déduite met en évidence deux nombres,

31 41
et

49 49 '

qui ont une grande signification, si l'on se reporte a mon
article sur le problème cle Jean de Palermo et de Léonard de
Pise1 ou à la lettre de M. Haentzchel2 sur ce même travail :

la solution de Diophante, pour le problème des trois nombres
carrés en progression arithmétique,

4Ï2 _ 720 3î2, 4Ï2 et 4Ï2 + 720 492,

et la solution équivalente de Léonard de Pise

pour le problème qui constituait la première des trois questions

de Jean de Palerme, mettent précisément en évidence
les trois nombres 31, 41 et 49. Simple coïncidence, mais
coïncidence bien curieuse

77. — Dans les paragraphes précédents, les relations

4 3
cos d — ~ tans; 6 — —

o ° 4

1 L'Enseignement Mathématique. 17e année 1915, pp. 315-324.
2 Ibid., 19e année, 1917, pp. 199-201.
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m'ont amené à étudier séparément les deux équations arith-
m o tr igo n o m é tr iq u e s

1
cos ô — — tang 1 — [H

1 + ^ ^

Il y a lieu maintenant de rechercher ceux des arithmotri-
angdes pythagoriques qui, comme celui dont les côtés sont
3, 4 et 5, satisfait simultanément à ces deux équations.

Partant de la première des équations,

cos G

1 +

dont la solution générale est donnée par les formules

0 2 — X2 4 Xs
tang - — COsOrr

2 ~ 2 + X2 ' ^ J - X4 + 4 '

il faut égaler à une quantité indéterminée 1 — u.2 l'expression

4 — V
lang (j — ———— •

4 A2

d'où l'équation
4 —
—prs— — 1 — o." ;

elle s'écrit encore
X* + 4X2 — 4 (2gX)2

Le problème étudié se ramène donc à l'équation

V + 4X2 - 4

qui admet pour solution A go A I. (arithmotriangle 3, 4,

5), A ~ y 5 à cette dernière solution correspond un arithmotriangle

pythagorique de côtés 400, 561 et 689, pour lequel

1 400
cos 0

_17_V 689 '

20,
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c'est donc actuellement le supplément d'un des angles aigus
de l'arithmotriangle dont la tangente trigonométrique est de
la forme spécifiée dans l'énoncé du problème.

En posant alors

X4 + 4X2 — 4 ^X2 — +

le problème est ramené à l'étude d'une fonction jt de

Weierstrass d'invariants

_ __
_8 — _

80
Ö2 — — -3

et g3 — — 2;r »

Arithmotriangles pythagoriques dont les trois côtés

sont sommes de deux carrés.

78. — Le théorème de Fermât. — L'importance des nombres

sommes de deux carrés1 est assez grande; elle est
surtout due aux belles recherches qui ont été faites autour
d'un théorème célèbre de Fermât2. C'est à l'occasion du
problème de la détermination du moindre nombre qui soit
autant de lois qu'on voudra et non plus la somme de deux
carrés, problème proposé par Frénicle, dans une lettre
adressée le 6 septembre 1641 à Fermât, que ce dernier
énonça le théorème suivant : Si un nombre p compris dans
la forme Sn -f- 1 est premier ou composé de facteurs premiers
de cette forme, p est la somme de deux carrés. En remarquant

que les facteurs puissances de 2 n'altèrent point cette
propriété, en vertu de l'identité

2 (b2 + c2) (b -j- c)2 -f (h — c)2

il est possible de présenter ce théorème de Fermât sous la

forme générale et précise qui suit :

1 Initialement considérés par Diophante (II, 8, 9 et 10), puis par Vikti<: (Zeteticorum libri,
IV, 2, 3).

2 Œuvres de Fermât, t. I, p. 293 ; t. II, p. 213, 221, 403 et 432 ; t. Ill, p. 243, 315. — S. Réalis :

Scolies pour un théorème de Fermât, Nouvelles Annales de Mathématiques (3), t. 4, 1885, p.
367-372. — Le théorème de Fermât a été démontré par Euler (Nouveaux commentaires de

Pètershourg, t. IV, p. 3 et t. V, p. 3), Lkgkndre et Smith. Edouard Lucas en a donné une
très curieuse démonstration géométrique par les satins carrés.
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Si un nombre entier n'a que des facteurs 2n ou premiers cle

la forme 4k + 1, il est la somme de deux carrés.
Le théorème s'étend immédiatement aux nombres rationnels

; en remarquant avec Euler que les diviseurs d un
nombre somme de deux carrés jouissent de la meme

propriété, et en remplaçant l'équation

par l'équation équivalente

AB +

on obtient le théorème général suivant :

La condition nécessaire et suffisante pour qu'un nombre
entier ou fractionnaire soit somme de cleux carrés est que cet
entier ou les deux termes entiers de la fraction n'aient que
des facteurs des formes 2n et 4k + 1.

79. — Le problème des arithmotriangles pythagoriques a

cotés sommes de deux carres. — Les équations arithmotri-
gonopiétriques

sin 0 [H cos 0 — [~] lang 0 [Ç]

étant toutes trois séparément impossibles, il n'existe aucun
arithmo triangle pythagorique ayant plus d'un côté carréparfait.

Gomme, parmi les nombres non carrés, les plus simples
sous le point de vue de la constitution par sommes de carrés,
sont les sommes de deux carrés, je me suis naturellement
posé la question suivante : Existe-t-il des arithmotriangles
pythagoriques dont les trois côtés sont simultanément sommes
cle cleux carrés

La réponse à cette question est affirmative : il existe une
infinité de solutions, telles que celle qui correspond aux trois
côtés

9 — 32

40 22 -f 62

41 42 52

Dans cet exemple, la plus petite des cathètes est mesurée
par le nombre 9. D'une manière générale, puisque l'hypo-
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ténuse d'un arithmotriangle pythagorique ne peut jamais
être mesurée par un nombre multiple de 3, puisque, au
contraire, l'un des côtés est toujours mesuré par un multiple
de 3 *, et puisque, enfin, ce nombre 3 ne saurait être somme
de deux carrés, comme étant de la forme 4k — 1, une
première propriété des arithmotriangles pythagoriques spécialement

étudiés ici est que :

Dans tout arithmotriangle pythagorique dont les trois
côtés sont simultanément sommes de deux carrés, l'une cles

deux cathètes est mesurée par un nombre divisible par 9 (ou
par une puissance paire de 3), Il en est de même des

mesures de la hauteur relative à l'hypoténuse et cle l'aire du
triangle.

D'autre part, comme conséquences de la propriété
d'invariance par multiplication entre eux des nombres sommes
de deux carrés, il est évident que :

L'aire (qui ne peut jamais être un carré parfait) et let hauteur

relative à l'hypoténuse d'un arithmotriangle pythagorique

dont les côtés sont tous trois sommes cle deux carrés
sont aussi mesurées par des nombres de cette nature.

Ces propriétés générales établies, j'aborde la recherche
même de ces triangles.

Q

80. — L'équation cos 9 Q + Soit tang— x ; puisque

le dénominateur 1 + x2 de la fraction rationnelle exprimant

cos#, en fonction de x, est une somme de deux carrés,
il faut et il suffit qu'il en soit de même du numérateur 1 — x2.

Posant
1 — x2 — r2 + -2

on ramène le problème à l'étude de l'arithmosphère d'équation

.r2 + j2 + ;2 1 ;

si x, y et z sont alors les coordonnées d'un arithmopoint
quelconque de cette arithmosphère, l'expression de cos 9 est :

•Tz -j- y +1 4- x2)
1

V1 + x

1 Ces deux théorèmes sont dus à Fréniclh {loc. cit., p. 77 et 76 respectivement)
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Telle est l'élégante solution du problème. Il suffit alors
d'exprimer, conformément au paragraphe 8, les trois
coordonnées x, y et z en fonction de deux paramètres pour avoir
une expression de cos0.

L'équation sin 9 G + G n'est pas différente de la
précédente. Pour la résoudre directement, il suffit d'observer
que la solution générale consiste à poser :

tang Y — a2 + •

a el ß étant deux nombres rationnels quelconques.
81. — Pour revenir au problème posé, il suffit d'observer

que, par similitude, on peut rendre l'hypoténuse carré parfait

ou somme de deux carrés parfaits. Le problème se
traduit donc par les deux équations simultanées :

sin 6 — TO et cos 6 G T G •

La première de ces équations est résolue par

6
t t=i tang— — a2 + ß2 ;

la seconde équation donne alors la condition

t -- t~ — G T G '

ou
1 (a2 -f- ß2)2 -f Y2 -f 82

Nous devons ainsi considérer l'arithmosphère de rayon
rationnel et choisir parmi son infinité double d'arithmopoints
ceux qui ont une coordonnée somme de deux carrés. Les
formules de représentation impropre étant

r _ (t — u-) (1 — c2)
t

1 — u2 2u
(1 -f a2) (1 -(- c2)

' * (t -p u2) (1 -f- c2) ' "
1 -j- u2 5

un choix est tout indiqué, en raison de la grande simplicité
de 1 expression de z ; il suffira de prendre pour u une somme
de deux carrés. D'où le théorème définitif:

Une famille d'arithmo triangles pythagoriqaes dont les trois
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côtés sont simultanément sommes de deux carrés est caractérisée

et définie par l'équation
0 2(X2 + U2)

tans;- — — i + (X2 + a2

qui exprime la tangente trigonométrique de l'un des angles
aigus en fonction de deux nombres rationnels arbitraires a

et a.
6 4

Pour X 1, p. 1, on obtient tang «~ et, par suite,

40 /32V2 m
Sln

41 Ç4Î \ii
9 (Î2Y / J 5\2

COS 0
l ~~ \4 1

1

\41,

40 /2 V2

lang 0
-g-

2- +

cette solution correspond précisément au triangle dont les
côtés ont été initialement donnés à titre d'exemple.

Pour X — 1, g — 2, il vient de même tg~ |j sin 9 ~
72 65

cos 0 — tg 0 — ; l'arithmotriangle pythagorique

correspondant a pour côtés
65 l2 + 82

72 — 62 + 62

97 ^ 42 + 92

Une autre famille étendue de solutions particulières est
donnée par l'expression de l'ordonnée y

o
^ 1(23'~"'(I+ «2)(1 + f2)

;

il suffit manifestement de poser

r(l - «2) À3 + [P

pour obtenir (en remplaçant u par y pour raison d'élégance
dans l'aspect de la formule)

A 2 (X2 + ;j.2|
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6

une expression de tang-^- en fonction de trois indéterminées
rationnelles A, y et y.

Pour v — 0 cette famille se réduit à la précédente. Nous
aurons donc obtenu une solution particulière triplement
indéterminée.

Dans ces conditions, l'étude du problème dans toute sa

généralité est abordable. Pour obtenir la solution générale,
il est indispensable d'avoir recours aux formules

2; 2r, ^2 -f rf — 1

* ~ F+T2T J-
' *r ~ ?2 + r,2 + i '

" ~ r2 + v7 + i '

de la représentation propre de l'arithmosphère de rayon
rationnel; la question se traduit par une équation

i.r2 -j- r2) ,;2 -}- r,2! -f- .v# r2 — ç2 — rj2 -J- 1 — 0

du quatrième degré en .r, j/, f et y?. Pour éviter l'introduction
de notions d'hypergéométrie, il suffît de prendre l'une

de ces indéterminées 77 pour paramètre et les trois autres
pour coordonnées dans l'espace à trois dimensions (pc, y, £) ;

le problème se rattache donc à l'étude arithmotrigonomé-
trique d'un faisceau de surfaces du quatrième degré.

Il est aussi avantageux de ramener cette môme question à

l'étude d'une gc2 de quartiques planes1. Si y et T, sont pris

1 Cette dernière considération peut être présentée sous une autre forme. La question est
équivalente à la recherche de deux des arithmopoints d'une arithmohyperbole équilatère.
représentée par l'équation

xy x -f y + t
qui ont des coordonnées simultanément sommes de deux carrés telles que les suivantes :

ar 9 y ~
9

X 1 i y —y 8 '

65
a: sa 129 y — etc.

L'arithmogéométrie apparaît de plus en plus comme capable de provoquer des recherches
sur des questions originales ressortissant de la théorie des nombres. Ici, par exemple, se
pose une question, que je n'ai pas étudiée mais qui. de prime abord, semble avoir quelqueintérêt: Etant donnée une équation f(x1, xn) 0 a deux ou plusieurs indéterminées.
rechercher celles de ses solutions qui sont formées par des nombres x xn tous sommes de
deux carrés. C'est une sorte d'extension de l'équation

AxJ + Bx* -f C y2

qui traduit le problème.de la détermination des arithmopoints d'une parabole y Axs
4- Bx + C à coordonnées exprimées par deux carrés parfaits, et d'une manière générale
des équations f \x2, x2, x2f 0.
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pour paramètres, et si x eL £ sont pris pour coordonnées
dans un certain plan, cette quartique est la projection d'une
biquadratique gauche, intersection du paraboloïde, représenté

dans un espace (x, £, £) par l'équation

ç

et d'une quadrique rapportée à ses axes :

(r)2 + i)x2 + (y2 — l)?2 + Ç2 'f\2 — y2 — 1 — jV
82. — L'équation tang-0 G + G- Avant de passer à une

nouvelle question, quelques lignes s'imposent au sujet de

l'équation lang 9 G + 0L1 de l'équation équivalente
cotang 9 G + G-

Cette équation arithmotrigonométrique se traduit
algébriquement sous la forme

c'est-à-dire encore :

x2 — î 1= x (y2 -f- z2) ;

cette dernière équation représente, dans l'espace ordinaire,
une surface du troisième degré (voir paragraphe 36) sur
laquelle existent tous les arithmopoints qui correspondent
aux solutions des équations simultanées sin 9 G + G
cos 9 ~~ G + G • h>e sorte que la solution de l'équation
tang 9 G + Q dépend de celle du problème qui vient
d'être traité dans les paragraphes précédents.

L'arithmotrigonométrie et les arithmotriangles héroniens.

83. — Application de la notion d'aritiimodistance. J'ai
souvent utilisé dans les considérations antérieures la notion
d'arithmodistance et introduit le problème des arilhmodis-
tances, soit pour créer de nouveaux types d'équations
indéterminées, soit pour rattacher à une idée générale certaines
équations particulières.

En se bornant au cas de l'arithmocourbe plane (0), dont
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l'arithmopoint M est repéré par ses coordonnées x et y et

d'un arithmopoint fixe A de coordonnées a, b, le problème
des ari t h mod i s ta n c e s pour cet arithmopoint A et l'arithmo-
courbe (G) est résolu par l'équation générale (paragraphe 17)

(* - «)2 + (y - b)2 •

Pour les développements qui vont suivre et qui ont
toujours pour objet la constitution de l'arithmotrigonométrie, il
est avantageux d'observer que cette même équation est
entièrement équivalente à une équation arithmotrigonométrique
d'une espèce spéciale, que l'on peut mettre sous la forme

dans laquelle 9 est un azimut tel que tang^ est un nombre

rationnel. Cette même équation a d'ailleurs une signification
précise, puisqu'elle se présente tout, naturellement lorsque
le problème des arithmodistances est posé sous la forme
suivante.

Soient un arithmopoint connu A et une arithmocourbe (G)

dont Varithmopoint courant M est repéré par un paramètre
rationnel t. Quels sont ceux des arithmopoints M de
Varithmocourbe imposée (G) qui définissent avec Varithmopoint
donné A des droites arithmodirigées

Cette remarque est féconde en ce sens qu'un grand nombre
de cas spéciaux du problème des arithmodistances se laissent
traduire par des équations arithmotrigonométriques souvent
simples et, souvent aussi, de formes remarquables. Il en est
notamment ainsi lorsque la courbe imposée (G) est paramé-
triquement représentée par l'intermédiaire de fonctions tri-
gonométriques, comme pour l'ellipse.

Pour l'ellipse, dis-je, dans le cas de la représentation au

moyen des demi-axes a et ß supposés rationnels et de l'anomalie

excentrique <p. supposée telle que tang-| soit un
paramètre rationnel, il résulte des expressions des coordonnées

x a cos cp y — ß sin cp
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que le problème des arithmodistances pour cette arithmo-
ellipse et un arithmopoint général de son plan se traduit par
l'équation

S sin cd — h
1 — tang 0 ;

a cos © — a

trois paramètres arbitraires, les rapports des quatre nombres
rationnels a, b, a et /3, assurent à cette équation arithmo-
trigonométriquê une assez grande généralité. Elle contient
en effet comme cas particulier deux de ceux qui vont faire
l'objet de considérations spéciales (paragraphe 86) et
auxquelles conduit la détermination de certaines espèces d'arith-
motriangles héroniens :

sin cp

tang cd

1—y — const.
tang 0

84. — Le problème des triangles télémétriques m'a tout
naturellement amené aux paragraphes 67 et 68 à rechercher
s'il existait ou non des arithmotriangles héroniens dont deux
côtés soient dans un rapport donné a priori.

Proposons-nous d'une manière générale de rechercher
tous Les arithmotriangles héroniens dont les côtés a, b, e

satisfont à une condition donnée :

f\a b c) — 0

D'après les formules du paragraphe 10, il faut donc déterminer

trois nombres ralionnels R, x, et y, satisfaisant aux
inégalités

R > 0 -4= > s > 0 V + -2 - > y «

V3

et reliés entre eux par la relation :

4R -———5 4R
~~ „1 0.

L ri+r)C + ;i i + r 1 + :"J

Cette dernière équation représente, dans un système de
coordonnées y, z et R, une certaine surface. D'où il résulte
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que le problème considéré de détermination d'arithmotri-
angles héroniens est équivalent à Vétude cirithmogéométrique
d'une surface de l'espace ordinaire.

11 n'est guère possible de s'étendre davantage sur un
problème aussi général; pour aller plus loin, il est nécessaire
de le particulariser.

Parmi les cas particuliers remarquables, il convient de

signaler en première ligne celui d'une condition homogène.
Lorsque la relation imposée

f[a b c) — 0

est homogène, le problème général, susceptible d'être associé

à l'étude d'une surface, dégénère en un problème d'arith-
mogéométrie autour d'une courbe plane. Les coordonnées
d'un certain plan étant x et zs celte courbe est celle que
représente l'équation

f[(r + z)(l —fz) jd+s2). z(\ +f)] 0

85. — Dans ce même cas d'une relation homogène entre
les côtés de Parithmotriangle héronien, cette relation
imposée peut être écrite sous la forme :

/'(sin À sin B sin C) — 0 ;

des cas particuliers intéressants s'obtiennent en se bornant
à des équations entre sin B et sin G, par exemple.

C'est ainsi que, si la condition imposée est une relation
homographique entre sin B et sin G, soit

a sin B sin G —J— 2ß sin B -J- 2y sin C -f- 48 — 0

cette condition se traduit par l'équation

aïz ßjd H~ z-2) y-(t + ï2) + ^(t + y2) (1 -j- ~-2) 0

représentative d'une quartique plane. Cette courbe est la
projection sur le plan Oyz de la biquadratique gauche,
intersection du paraboloïde hyperbolique d'équation

Y» — X — 0

avec une quadrique d'équation :

8(,x.2 _j_ j2 _j_ z2} _|_ ax _J_ cv _J_ v |o=0
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Le cas (a 0, § -- 0), c'est-à-dire celui de l'équation
arithmotrigonométrique

sin G

sin B
n

est précisément celui qui a fait l'objet des considérations du

paragraphe 68. Le problème dépend de l'équation

f + 2*v2 -f l

étudiée par L. Euler, A. Genocchi et Ed. Lucas (cf. § 51).
86. — Soit une équation du type précédent

j4 + W2 + i »

elle peut être mise sous les deux formes suivantes :

(r9+i)2 + 2(Ä-l)r2 D

(y_ i)2 + 2 {k + i )_ra o ^

dans le cas où 2(k — 1) est un carré parfait, soit

2 (k — 1) 4co2

l'expression
2wy

peut être égalée à la tangente d'un arc 9 tel que tang— soit
rationnel. Si donc on pose

y tang-

on a

to sin @ — tang

réciproquement, l'équation précédente dans laquelle &) est

un nombre rationnel et 0 et 9 deux arcs tels que tang® et
0

tang y soient rationnels est réductible à une équation

j4 + n-f + î

Si d'autre part 2(1 — k) est un carré, soit 4w2, l'expression

^2 peut être égalée à un sinus d'un arc 9 ; on est ainsi
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conduit à une équation
to sin © z= sin 6 ;

c'est précisément ce qui se produit au paragraphe 68.

Considérons de même l'équation

(^-4)» + 2(Ä + 1bJ,= D

'ay nt'pctiirtn i -r!Lorsque 2(A + 1) est de la forme —4g>2, l'expression ^ 2,

c'est-à-dire co tang 0 est égale à un sinus et l'on retombe sur
une équation

to tang © sin 0

déjà traitée.
Enfin lorsque 2(k + 1) est un carré 4gù2, l'équation n'est

autre que
to tang © — tang 0

Celle-ci n'est d'ailleurs pas essentiellement distincte de

l'équation
to sin © — sin 0 ;

cette dernière équation devient, en effet,

to/ tang ©' — tang 0'

en posant
© -t- 0 6) — 0 1 — to©'

2 ' w ~ 2 ' — 1 + to
*

En résumé, les équations arithmotrigonométriques

sin ©
t—r- — n

sin ©
n

tang 0

tang ©

tang 0

0 ©dans lesquelles n, tang - et tang — sont trois nombres rationnels

dont le premier est imposé, sont respectivement équivalentes

à trois équations eulériennes du type

X4 + 2kx2 + 1

L'Enseignement mathém., 19* année; 1917. 17
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87. ;— Parmi les équations de cette espèce se trouve l'équation

X-4 +14.** +1
qui mérite une mention spéciale, car elle intervient dans
l étude du problème des arithmotriangles télémétriques.

Reprenons, en effet, l'équation trouvée au paragraphe 67
de la quartique plane dont l'étude arithmotrigonométrique
est équivalente à l'étude des arithmotriangles télémétriques
généraux :

(X2 — y2) (X2 — 2r2) — .x2 + 2y2

La condition de rationalité en .r2 de cetle équation bicarrée
en x est précisément exprimée par l'équation

J4 + 14j2 + 1 ;

en l'écrivant sous la forme

(j2-l)2 + (4y)2 —

et en posant y tang®, elle équivaut à l'équation
arithmotrigonométrique

lang 6 — 2 tang ©

L'équation considérée admet des solutions banales
évidentes : y 0, 1 et i'x ; elle n'admet pas d'autre solution
rationnelle. L'impossibilité de cette équation particulière a

été primitivement établie par L. Euler en 17801. Par suite,
Il n'existe aucun triangle télémétrique dont les trois côtés

soient rationnels.
88. — Je profite de l'occasion qui m'est offerte pour indiquer

une transformation intéressante de ce type d'équation.
L. Euler considère l'équation particulière

x4 4- 14x2 4- 1 —

1 Cette impossibilité de l'équation
a;4 4- 14a;2 4- 1

est établie à la fin de la pièce De binis formulés speciei x2 my2 et x2 -f- n.ya inter se con-
cordibus et discordibus, datée de 1780 [Commentationes arithmetics?, t. 2, pp. 406-413] et
rappelée (p. 492) au début de celles des deux pièces du môme titre : De casibus quibus hanc
formulant x4 -}- kx2y2 -}- y4 ad quadratum reducere licet qui est datée de 1782 (t. 2, p. 492).

L'impossibilité de cette équation particulière est rappelée dans le travail déjà cité de
A. Genocchi (C. R., t. 78, p. 435).
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en même temps que Técpuation également impossible

_ x2 _|_ 1 — Q ;

toutes deux se présentent, en effet, suivant Tordre que l'on
adopte dans Tétude du système des deux équations

r2 _j_ __ Q 4j2 _ j-j _

Euleb établit l'impossibilité de toutes ces équations ainsi

que de celles qui peuvent en être déduites par transformation

: « Denique etiam formulae biquadraticae, quae se obtu-
« lerunt, sunt impossibiles. Ita cum ex theoremate sit
« pi — p2q2 -f- q* — Q impossibilis, impossibilis quoque
« erit haec forma pé + iAp2q2 + hincque etiam
« plures aliae formulae, quae per transformationem hinc force

mari possunt. » Il ne semble point qu'il ait aperçu la
possibilité de transformer Tune en l'autre par une transformation

simple ces deux équations

,x4 -f 14.x2 -p 1 -x ,x4 — .x2 flzzQ,
Cette transformation n'est autre que la transformation

homographique
1 — xf

x ~ ï _l_ x>
•

Soit généralement, en effet, une équation

.x4 -p 2/-.x2 + 1 ;

la transformation ci-dessus lui fait correspondre l'équation

x4 + ïk'x* + 1

et la correspondance est réciproque. Entre les nombres k
et k' existe la correspondance involutive

[k -j- 1) (k' -f- 1 4 — 0 ;

tout particulièrement pour k -f 7, on obtient h' —
89. — Arithmotriangles héroniens dont la somme des

carrés de deux cotés est un carré. — Il s'agit de rechercher

tous les arithmotriangles héroniens, généralisant les
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arithmotriangles pythagoriques, tels"*que la somme des carrés

de deux côtés, b et c par exemple, soit un carré :

b2 + c2

On a donc
sin2B -f- sin2C ~ []]

c'est-à-dire encore

A+.r'y. (1 + -Y
V yJ m - ;

Cette dernière équation a été rencontrée par L. Euler 1 qui
en a donné, en 1773, la solution

41 3*2 -f 1

7 ~~ t2 — 1 ' * ~ t[t2 + 3)
'

en fonction d'un paramètre rationnel t quelconque.
90. — Qu'il me soit permis, à ce sujet, de placer ici quelques

observations sur les Commentationes arithmetics.
Déjà en maintes occasions, j'ai mentionné le nom d'EuLER

parmi ceux des géomètres qui ont étudié certaines figures
simples sous le point de vue arithmogéométrique. Les questions

d'analyse indéterminée traitées dans les admirables
Commentationes arithmetics, dont la lecture est facile et
captivante, sont de deux espèces. Les unes sont de nature
géométrique : triangles héroniens. triangles à médianes
rationnelles, triangles rectangles dont l'hypoténuse est un carré
parfait ainsi que la somme des cathètes, parallélépipèdes
rectangles dont les arêtes et les diagonales des faces sont
commensurables, etc.

A côté de ces questions essentiellement arithmogéomé-
triques, résolues totalement ou partiellement par des
considérations purement arithmétiques, se placent des questions
de pure analyse indéterminée, telles que l'étude de l'équation

x4 -f- kx2 -J- 1

dont il a été question ci-dessus (aux paragraphes 51 et 71

notamment). Rien dans l'œuvre d'EuLER ne permet de détermi-

1 Commentationes arithmeticae, Miscellanea analytica, 15 novembre 1773, tomus posterior,
Petropoli, 1849, pp. 44-52. Le problème ci-dessus considéré est traité aux pp. 46-47.
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lier l'origine de ces questions : les a-t-il considérées comme
de simples généralisations de l'équation de Brahmagupta-
Fermat

ax2 bx -j- c — Q

ou les a-t-il rencontrées à l'occasion d'études relatives à des

problèmes géométriques du genre précédent, problèmes
auxquels il n'a pas cru devoir faire allusion dans sa rédaction
définitive 11 semble difficile de solutionner cette question
d'origine, car il insiste fréquemment sur le caractère
analytique de ces recherches qui constituent un prolongement
de l'analyse diopliantine.

11 semble pourtant difficile d'attribuer une origine de ce

genre à des équations telles que celie,

*s +1v + fti+jy -
de la pièce du 15 novembre 1773. Elle est peut-être née de
l'étude d'une figure géométrique dont il ne reste pas trace
dans le mémoire d'EuLER. 11 est fort possible que la généralisation

des triangles pythagoriques dont je viens de rattacher

l'étude à cette curieuse équation ait été envisagée par
le même géomètre qui consacrait plusieurs mémoires aux
équations

b- -f- c2 — 2er ~
des arithmotriangles à médianes rationnelles (voir § 98) et
aux équations

b2 -f- c2 — a2 — P] etc.

(voir § 100) dont la liaison avec les précédentes est évidente.
Il en est de même des équations du système

,r2 -f v2 —

x~ -f- 4 v2 ~ Q

dont il vient d'être question à propos des arithmotriangles
télémétriques (voir § 88) et qui sont manifestement celles qui
traduisent analyliquement le problème des arithmotriangles
pvthagoriques à deux médianes rationnelles (voir § 99).
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Le problème des arithmodistances

pour un arithmotriangle donné.

91. — L es côtés d'un triangle étant mesurés rationnelle-
ment, s'il existe dans le plan du triangle un seul point dont
les trois distances aux côtés soient rationnelles, ce triangle
est de toute nécessité un arithmotriangle héronien.

Si, conformément aux conclusions du paragraphe 20,

Farithmotriangle héronien est défini par trois arithmodiri-
gées quelconques du plan, tout arithmopoint du plan est
alors à des distances rationnelles des côtés du triangle.

Voilà donc un problème d'arithmogéométrie simplement
et complètement résolu. Il y a lieu de se poser d'une
manière analogue le problème suivant que j'appellerai par la
suite problème des arithmodistances pour un arithmotriangle

:

Etant donné un arithmotriangle quelconque, c est-à-dire un
triangle à côtés commensurcibles, déterminer les points de

son plan qui sont situés à des distances rationnelles de ses
trois sommets.

92. — Le quadrilatère rationnel. — Ce problème important

doit être rattaché au problème du quadrilatère rationnel,
c'est-à-dire du quadrilatère à côtés et à diagonales commen-
surables. Dans le cas actuel, trois sommets du quadrilatère
rationnel sont imposés.

Le premier quadrilatère rationnel considéré fut celui de

Brahmagupta (paragraphe 30) ; ce quadrilatère rationnel est
inscriptible dans un cercle.

L'étude du quadrilatère rationnel le plus général semble
avoir été faite pour la première fois en 1848, par E.-E. Kummer

1 qui a démontré que :

Dans tout quadrilatère à côtés et à diagonales rationnels
les diagonales se coupent en parties rationnelles.

Ce résultat essentiel pour la théorie des quadrilatères ra-

1 E.-E. Kummer. Ueber die Vierecke deren Seifen und Diagonalen rational sind, Journal

für die reine und angewandte Mathematik (Grelle), 37* B., 1848, S. 1-20.
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tionnels avait d'ailleurs-été déjà signalé parL.-N.-M. Carnot1
dès 1803 ; le géomètre français forme les expressions des

segments des diagonales etil insiste sur le fait que chacun
des quatre segments des diagonales s'obtient par une équation

du premier degré. 11 en est de même, ajoute Carnot, des

segments formés sur les côtés par les prolongements
d'autres côtés.

La théorie des quadrilatères rationnels, fondée sur le
théorème précédent, a été ramenée par Kummer à l'étude
d'une équation

[A,r2 — 2 c (a *]>+ r\ k - y2 ,r2 :

dans laquelle a, y, c, k sont des constantes, et par suite aux
fonctions elliptiques, comme application d'un mémoire de
Jacobi2 sur les équations

a bx -p ex2 -j- dx2 -f- exé — Q

93. — Ces résultats relatifs aux quadrilatères rationnels
rappelés, je reprends l'étude du problème des arithmodis-
tances aux sommets d'un quadrilatère et vais réduire ce
problème aux fonctions elliptiques par une voie plus géométrique.

Si ß, b et c sont les côtés de l'arithmotriangle ABC et si

x, y et s sont les distances aux trois sommets respectifs A,
B et C d'un point M quelconque du plan, ces six longueurs

a relation

0 1 1 1 1

î 0 c2 b2 X2

î c2 0 a2 T
î b2 a2 0 -2

î X2 J2 ,2 0

ou encore après développement du déterminant :

a2(x2 — y2) (x2 — -.2) + b2{y2 — z2) (y2 — x2) + c2{z2 — x2) (z2 — y2)

-j- a2 (a2 — b2 — c2) x2 -f- b2(b2 — c2 — a2)y2 -{- c2(c2 — a2 — b2) z2

-p a2 b2 c2 —r 0

1 Géométrie de position, Paris, 1803, p. 391-393 (non citée par Kummer),
2 Jacobi. De usu théorisé integralium ellipticorum et abelianorum in Analysi Diophantea,

Journal für die reine und angewandte Mathematik, 13e B, 1835, S. 353-355.
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Celte condition, nécessaire et suffisante pour que quatre
points dont les distances mutuelles sont données, soient
situés dans un même plan1, montre que le problème posé
est équivalent à l'étude arithmogéométrique d'une surface du
quatrième degré.

Avant de pousser plus loin l'étude du problème dans toute
sa généralité, il convient de mettre en évidence les solutions
particulières dont la connaissance sera ensuite précieuse,
puisqu'elle assurera aux biquadratiques gauches génératrices
de cette surface l'existence d'arithmopoints particuliers.

94. — Le problème des arilhmodistances pour un arithmo-
triangle quelconque admet une infinité de solutions
particulières qu'il est possible de déterminer simplement. Ce

problème esty en effet, résoluble dans le cas le plus général
sur le périmètre du triangle.

Soient a, 6, c les côtés du triangle ABC et un point M de
l'un des côtés, BC par exemple, situé à des distances rationnelles

BM — X

CM — X — a

des sommets; À étant un nombre algébrique quelconque,
tous les cas possibles de figure correspondent à ces
formules. Le point M sera une solution particulière du
problème des arithmodistances si sa distance au point A est

rationnelle; celle-ci est fournie par la relation de Stewart:

c2. MC + b2. BM — a AM2 a BM CM

qui se traduit algébriquement par l'équation

b2\ -J- c2(a — X) — aX(a — À) — a AM2

c'est-à-dire une équation de Brahmagupta-Fermat du second

degré :

f/A /> 2 £-2 ~

c2 + - ~X + X2 am'

1 Cette relation doit être connue depuis fort longtemps. Elle est formée dans la Géométrie
de position de Carnot (1803, p 387-389), rappelée par Förstkmann (Umkehrung des Ptolo-
mäischen Satzes, Journal de Crelle, 13e tome, 1835, p. 233-236) d'après l'édition allemande
de Schumackkr de l'ouvrage précédent et formée encore par Salmon (Traité de Géométrie

analytique à trois dimensions, 1882, p. 50-51).
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Elle admet trois solutions 1 — go A 0 (point B), a a

(point G) connues a priori; elle est donc résoluble et sa

solution générale en fonction d'un paramètre est:

c2 — tl
^1+^L!2 + 2*

95. — Le problème des ariihmodistances pour un arithmo-
triangle quelconque est de même toujours résoluble sur la
circonférence du cercle circonscrit au triangle.

Soient, en effet, x, y et z les distances d'un point M de

cette circonférence aux sommets ABC de l'arithmotriangle.
Les deux théorèmes de Ptolémée relatifs au quadrilatère
inseriptible ABCM se traduisent par les relations

cz — ax -j- by

c bx -f- ay
z xy -}- ab

par multiplication membre à membre de ces deux relations,
on obtient

2 {ax -f- by) {bx -f- ay)

c'est-à-dire

ou encore

xy -j- ah

c2
a*4 -j- b

x2 + xyab

x2 -f- 2cos A xy -f- y2

Si x et y sont regardées comme des coordonnées
ordinaires, cette dernière équation est celle d'une ellipse passant

par un certain nombre d'arithmopoints simples :

(x zhc, y 0), x — 0, y — =fc c), (x — dza, y q= 6),
(x — + b, y q= a). Il en résulte que cette ellipse est une
arithmoconique et que, par suite, x et y peuvent être exprimés

rationnellement en fonction d'un paramètre rationnel
arbitraire; la formule

cz — ax -f- by

donne ensuite la troisième distance. Telle est la solution
simple et complète du problème sur la circonférence
circonscrite.
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96. — Les résultats qui précèdent sont d'ailleurs liés entre
eux d'une manière très simple. Soit tout d'abord une solution

D du problème des arithmodistances sur la circonférence

circonscrite au triangle ABC. Les segments AB, BC,
CA, AD, BD, CD sont, par définition, mesurés par des
nombres rationnels. Si E est alors le point de concours des

diagonales, AD et. BC pour fixer les idées, du quadrilatère
inscriptible ABCD, les divers triangles semblables de la

figure fournissent des relations qui permettent d'évaluer
très simplement les segments de diagonales et de vérifier,
pour ce quadrilatère inscriptible, le théorème de Carnot-
Kummer. De toute solution du problème des arithmodistances

sur la circonférence inscrite au triangle, les alignements

avec les sommets A, B et C permettent donc de déduire
trois nouvelles solutions situées sur le périmètre du triangle.

Réciproquement d'ailleurs, les mêmes relations simples
prouvent que, d'une solution E située sur le périmètre du

triangle, il est possible, par alignement avec l'un des
sommets, d'en déduire une autre solution D située sur la
circonférence circonscrite.

97. — A quels points de la surface du quatrième degré
correspondent les solutions particulières dont il vient d'être
question

Soit tout d'abord une solution sur le côté BC. Les
coordonnées x. y, z satisfont alors à l'une des équations

+ j' i : n i
correspondant aux trois segments formés par les points B

et C sur la droite illimitée qui porte le côté BC et à l'équation

qui traduit le théorème de Stewart; cette dernière est
du second degré en x, y et z. Il en résulte qu'aux côtés
du triangle correspondent trois coniques de la surface du

quatrième ordre et les coniques symétriques de celles-ci

par rapport aux plans coordonnés.
Ce sont des arithmoconiques d'après le résultat du

paragraphe 95. Il en est de même des courbes qui correspondent
aux trois arcs AB, BC et CA de la circonférence circonscrite,
d'après les relations qui traduisent les deux théorèmes de

Ptolémée.
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La solution du problème général des arithmodistances aux
sommets d'un arithmotriangle résulte alors des considérations
qui précèdent. Soit, en effet, une droite issue d'un sommet,
A par exemple, et contenant les deux solutions particulières
mais dépendant d'un paramètre arbitraire. D sur le cercle
circonscrit et E sur le côté BC. Sur cette droite ADE le
problème des arithmodistances s'exprime par les deux équations

:

/ V- — b- -j- X2 — 2l)X COS [j

l z2 c2 --f- x2 — 2ex cos V J

ß et y étant les angles de la droite ADE avec les deux côtés

partant du sommet A ; les cosinus de ces angles sont rationnels

puisque les côtés des triangles ABE et AGE sont rationnels.

Les deux équations qui précèdent représentent deux
cylindres du second ordre et, par suite, sur la droite considérée

ADE, le problème des arithmodistances aux sommets
de ABC se rattache à l'étude d'une biquadratique gauche.
Cette biquadratique gauche engendre évidemment la surface
du quatrième degré, lorsque xADE pivote autour de A.

Sur la surface du quatrième degré attachée ctu problème
des arithmodistances ceux sommets d'un triangle, il existe
donc une triple infinité (a un paramètre) cle biquadratiqiies
gauches. Chacune de ces biquad,ratiques gauches admet des

arithmopoints connus, situés sur les arithmpconiques de la
surface.

Arithmotriangles à médianes rationnelles.

98. — Arithmotriangles a médianes rationnelles. D'une
manière générale, le centre de gravité de l'aire d'un arith-
motriangle n'est pas une solution particulière du problème
des arithmodistances attaché cà ce triangle, car les médianes
ne sont pas généralement mesurées rationnellement. Le
difficile problème qui consiste à déterminer les triangles dont
les côtés et les médianes sont rationnellement mesurés a

été l'objet de toute une série de Mémoires de L. Euler :

a) Solutio problematis de inveniendo triangulo in quo rectae
ex singulis angiitis latera opposita bisecantes sint rationales
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(1772), [Leonhardi Euleri Gommentationes arithmeticae col-
lectae, to mus prior, Petropoli, 1849, pp. 507-515],

b) hwestigatio triangali, in quo distantix angulorum ctb

ejus centro gravitatis ration aliter exprimanlur (1778) [ibid.,
tomus posterior, Petropoli, 1849, pp. 294-301].

c) Solutio facilior problematis Diophantei circa triangu-
lam, in quo rectse ex angulis latera opposita bisecantes
rationalité!' exprimantur (1779) [ibid., tomus posterior, pp. 362-
365].

d) Problème de géométrie, résolu par l'analyse de Dio-
pliante (1782) [ibid., tomus posterior, pp. 488 491].

Comme solutions simples, Euler donne dans ces divers
mémoires les suivantes :

a — 68

159

477

b 87

825

277

c 85

314

446

m — 158
a

619

569

mh ~ 127

377

861

mc 131

404

640

<2, è, c étant les côtés et ma% mb, mc les médianes des

triangles considérés.
e) Il faut en outre mentionner un fragment relatif à ces

mêmes triangles : Fragmenta commentationis cujusdam ma-
joris, de invendenda. relatione inter latera triangu loruni quorum

area rationaliter exprimi possit (ibid., tomus posterior,
pp. 648-651). La pièce débute par quelques considérations
sur les triangles que nous nommons actuellement les arith-
motriangles liéroniens (pp. 648-649); puis Euler étudie, au

titre de problème analogue, celui des arithmotriangles à

médianes rationnelles (pp. 649-650) : « quod autem illo difïï-
« cilius est judicandum quoniam non generaliter solvi pati-
a tur

Ce problème consiste donc à résoudre ie système suivant
de trois équations

2 ((E g c2)

2(c2 + a2) - b2=

2(tf2+ b2)~c2 0

J'observerai que le problème qui consiste à déterminer un
arithmotriangle (a, b, c) admettant une médiane rationnelle
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(sans se préoccuper de la nature des deux autres) est résoluble

de la manière suivante. L'équation du problème

2(b2 + c2 "2 >

mise sous la forme
2 (b2 + c2) a2 +

est susceptible d'être mise sous la nouvelle forme

(b + c)2 + (b - c)2 «» +

il résulte de la théorie de l'arithmocercle que cette dernière
équation admet pour solution générale

a — (b -j- c) cos a + (^ — c) sin a ;

b et c restent arbitraires, a est déterminé par cette équation,
dans laquelle a est un arc tel que tangy est rationnel (je ne

discute pas les conditions d'existence du triangle).
Il résulte de la remarque qui précède que, dans tout arith-

motriangde à médianes rationnelles, les trois côtés a, b, c
sont liés entre eux par trois relations linéaires et homogènes

a — (b -j- c) cos a -j- (b — c) sin a

h — (c -f- a) cos ;3 (c — a) sin ß

c — (a + kl cos y -J- (a — b) sin y

dans lesquelles tang-~, tang|-, tang^- sont trois nombres

rationnels algébriques

Ung- m x tang - ta«g \ ••

ces trois nombres sont assujettis à vérifier certaines inéga-
lités assurant l'existence effective du triangle et une relation
de compatibilité que je retiendrai seule :

— 1 cos a -j- sin a cos a — sin a

cos ß — sin ß — 1 cos ß f sin ß

cos y -j- sin Y cosy — sin y — 1

rrr 0
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En posant, pour abréger l'écriture

2X — j2 — 1 2Y r2 — 1 2Z -.2

cette condition prend la forme :

X -f î X — x X -f- x

Y + y Y + 1 Y-j
Z — z Z + z Z-fl

— 0 ;

par développement du déterminant, cette équation se réduit
finalement à celle

Sxyzix q- r -f z) + x(f - z2) + y(z2 - x2) + *(** — f)
-f- x2 -j- j2 -|- z2 — rz — zx — xy — 1

d'une surface algébrique du quatrième ordre dépourvue de
ligne double.

Il y a, d'après ce qui précède, équivalence entre le
problème d'EuLER et l'étude arithmogéométrique de la surface
précédente. A tout arithmotriangle à médianes simultanément

rationnelles correspondent des arithmopoints de la

surface, puisque les équations en a, /3, y sont du second degré
en ,r, en y et en z. Inversement à tout arithmopoint de la
surface correspond une solution (a, &, c) définie à un même
facteur près, dont l'existence correspond à une similitude
arbitraire des triangles solutions.

Quant à l'étude arithmogéométrique de la surface mise en
évidence, elle est immédiate, si l'on observe que c'est une
surface du quatrième degré, admettant d'ailleurs quatre
séries de sections planes simples (x — const., y const.,
^ m const., x + y + s const.) qui sont des cubiques
planes. De tout arithmopoint connu a priori ou par un
procédé quelconque, se déduisent donc immédiatement quatre
cubiques non complanés douées d'arithmopoints.

99. — Il est intéressant de noter en passant que dans tout
arithmotriangle pythagorique la médiane relative ci l'hypoténuse

est seule rationnelle. Cette question n'est point traitée
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dans les Commentationes arithmetics, mais elle conduit à

l'étude des équations simultanées

xl _|_ y4 __ |—j ^

ir2 _|_ 4y2 _ f-j f

entre tes cathètes d'un triangle, ces équations exprimant
respectivement que le triangle est rectangle et que l'une des

médianes relatives à l'une des cathètes est rationnelle. Ce

système impossible a été considéré par Euler, dans le
supplément de la pièce du 5 juin 1780, citée au paragraphe 87,
à l'occasion de l'inexistence d'arithmotriangles télémétriques.

100. — Le problème traité par Euler dans son Mémoire
qui a pour titre Recherches sur le problème de trois nombres
carrés tels que la somme de deux quelconques? moins le
troisièmey fasse un nombre carré (Leonhardi Euleri, Commentationes

a rith me item collecta?, tomus posterior, Petropoli,
1849, pp. 603-616) se rattache manifestement par analogie au
problème des arithmotriangles à médianes rationnelles. Les
équations sont ici

h- -j- c2 — a2 p2

c2 -{- a2 — b2 z=z Q — q2

a2 -j- b2 — c2 Q 7'2 ;

Euler en signale toute une série de solutions particulières,
telles que

I ii ni IV V

a =: 241 397 425 595 493

b 269 593 373 769 797

c 149 707 205 965 937

auxquelles correspondent respectivement les nombres :

i ii in IV V

P 191 833 23 1081 1127

(l — 89 553 289 833 697

r — 329 97 527 119 289
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Ici encore, en posant

a — h cos a —{- c sin a

b — c cos ß -f- a sin ß

c — a cos y -f- b sin y

avec tang x, tang|-=?/, tangX — 5 le problème se

ramène à l'étude arithmogéométrique d'une surface dont le

premier membre de l'équation est le développement du
déterminant exprimant la compatibilité entre les relations
qui précèdent :

— 1 cos a sin a

sin ß — 1 cos ß 1= 0

cos y sin y — 1

cette surface est représentée par l'équation du sixième degré :

x2yz2 -j- 3Fi'zt& + r + z) — irys — — y) (y — z) (z — x)

-f- x2 4- r2 z2 — x — r — z — 0

Quoique le degré de cette surface soit aussi élevé, il se

trouve qu'en raison de la nature de sa courbe à l'infini, une
grande simplification se produit ici. Les sections par les

plans parallèles à l'un quelconque des plans coordonnés sont,
en effet, des quartiques planes. En outre, une telle quar-
tique se présente manifestement comme étant la projection
d'une biquadratique gauche. Si l'on considère, en effet, la

quartique située dans le plan de cote c0 et si l'on pose

xy — t

la quartique considérée n'est autre que la projection de la

biquadratique gauche, intersection du paraboloïde
hyperbolique représenté par cette dernière équation en x, y et t

par une autre quadrique dont l'équation est moins simple.
De la connaissance d'une solution particulière du problème
il est donc possible de déduire une infinité de nouvelles
solutions, comme application de la théorie des fonctions
elliptiques.

(A suivre)
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