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NOTIONS D’ARITHMOGEOMETRIE

PAR

Emile Turriere (Montpellier).

(4e article)!

L’arithmotrigonométrie.

70. — C'est dans une piece en date du 1°" mai 1780, De
castbus quibusdam maxime memorabilibus in analysi inde-
terminata, ubt imprimis insignis usus calculi angulorum in
analyst Diophantea ostenditur? que L. EUuLER a introduit
usage des nombres trigonométriques pour ’étude de cer-
taines équations de l'analyse diophantine.

Ce mémoire traite de deux problémes; chacun d’eux est
résolu d’abord par la méthode algébrique; EvLeEr montre
ensuite combien est avantageux 'usage des rapports trigo-
nométriques de certains angles auxiliaires pour la résolution
de chacun de ces deux problémes.

Le premier probléme est relatif a la résolution de I'équa-
tion du quatrieme degré a quatre variables:

.1‘4 _’_)4 + 2.4 + ‘.4 _ 2(%232 + 3.2:2 _1___ :2J2) + 2\’2(,172 + ).2 + ;2) — 0 )

admettant entre autres solutions entiéres les trois systemes
qui suivent :

x = 20 , y =17, s =17 , g = 12 ;
39 . 25 20 12
78, 65 , 29 24

! Voir VEnseignement mathématique, i8¢ année, 15 mars 1916, pp. 81-110, et 15 novembre
1916, pp. 397-428 ; 19¢ année, 15 mai 1917, pp. 159-191.
* Commentationes arithmetice, tomus posterior, pp. 366-379.
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En posant
xy

— =— sina
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xXs .
, — = sinf5 ,

$3 4l

EvLer montre que toute la question revient a déterminer
deux arcs « et 8 dont les nombres trigonométriques sont
rationnels et qui sont en outre tels que le produit de sin «
et de sin 3 soit un carré.

Le second probléme, qui consiste de méme & résoudre
I'équation
at oyt 4o e et — 202y 2722 20202 — 2y - 2% 2222 = 0,

douée de solutions telles que

x = 14 , L 3= 3, = 3,
72, 35 33 , 14
165 99 56 , 32

se traite d'une maniére analogue, en posant

xy xz .
— == cotang « , — — cotang 3 ,
73 vy

et en déterminant des angles « et 8, & rapports trigonomé-
triques rationnels, tels que

cotang a . cotang  =— [] .

A la méme date, c’est-a-dire encore le 1°" mai 1780, nous
trouvons une auire piece d’Euler consacrée aux angles d'un
quadrilatére tels que leurs sinus soient proportionnels a des
nombres rationnels donnés : /nvestigatio quadrilateri in quo
singulorum angulorum sinus datam inter se teneant ratio-
nem; ubi artificia prorsus singularia in analysi Diophantea
occurrunt?. _ |

Si, par exemple, les nombres donnés sont 15, 14, 11 et 6,
les angles demandés sont: -

A= 92023 16" ,
B = 111° 107 06" ,
~ C 1320 53’ 14"
D= 23933 24",

I

1 Commentationes arithmetice,t. 11, pp. 380-391.
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dont la somme est bien 360° et dont les nombres trigono-
métriques sont: |

sinA:%\/ﬁ, cosA:—‘_z%,
SinB:g%Aﬁ, cosB:—i—g,
sinC:%-; \/Z ,. cos C-:'%) ,.
sinD_:/l/l2 V—Q_S , cosl):—;—;

La solution de ce probléme peut étre obtenue d'une ma-
niere trés rapide en introduisant le rapport commun de
sin A, sin B, sin C et sin D aux nombres donnés «, b, ¢ et d.
Si, en effet, on pose | |

sin A == ax , sin B = bx , sin C = ¢z , sin D = dx ,

la condition A + B 4+ C 4+ D = 2r se traduit par une équa-
tion du premier degré en x?; d’une maniére générale, les
expressions des quatre sinus sont irrationnelles, les nombres
a, b, ¢, d étant multipliés par la racine carrée d'un méme
nombre rationnel!: c’est ce qui se produit pour les trois
exemples numériques traités compléetement par EuLER.

74. -— Cette introduction des rapports trigonométriques
de certains angles dans des recherches arithmétiques, cette
confrontation de la trigonométrie plane (et peut-étre aussi
de la trigonomélirie sphérique) et de l'analyse diophantine
semblent devoir présenter un intérét comparable a celui de
Parithmogéométirie, dont le fondement n’est autre que la
confrontation des grandeurs de la géométrie et des nombres
rationnels.

Indépendamment des considérations d'Eurer sur l’'avan-
tage que peut présenter I'introduction des angles dans I'étude
de certains problemes diophantins, j'avais rencontré — dans
les derniers paragraphes de mon examen du Probléeme de
Jean de Palerme et de Léonard de Pise — des équations tri-

1 I1 serait intéressant de rechercher, a ce propos, si, pour un choix convenable des données
a, b, ¢, d, les quatre sinus peuvent étre rationnels.
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gonométriques particuliéres . Les théorémes de Fermar et de
FreENIcLE relatifs a I'inexistence d’arithmotriangles pythago-
riques, dont I'aire soit un carré parfait ou le double d'un tel
carré, se traduisent par des équations

sin 20 =[] ,
2sin 20 =[],

. ; . 6 v .
1mposs1bles si tang§ doit étre un nombre rationnel.

Ces exemples simples suffisent pour permettre d’intro-
duire avec clarté et précision la notion d'éguation arithmo-
trigonométrique. Par définition, une telle équation est une
équation a coefficients rationnels dans laquelle un certain
nombre d’inconnues x,, X,, ..., Xq Sont engagées par leurs
seuls rapports trigonométriques et dont les soluiions sont

X

telles que tang =, tan

XQ R xn § . >
g 5y - tang - solent des nombres ra-

o
le]
tionnels. En d’autres termes, ces angles x,, ..., x, dont

la présence dans ’équation trigonométrique, au sens habi-

1 Lorsque j’écrivais, en septembre 1913, les remarques sur le probléme de Léonard de Pise
et de Jean de Palerme, ou méme les premieres pages des Notions d’arithmogéométrie, je me
trouvais dans l'absolue impossibilité de faire la moindre recherche bibliographique. C’était
donc de mémoire que je citais FrrMAT & U'occasion de 'impossibilité de certaines équations.

Voici maintenant les renseignements historiques nécessaires. C’est a propos du probléme
20 de BacuET [trouver un arithmotriangle pythagorique dont l'aire soit égale & un nombre
donné], qui se rattache lui-méme a la 26 question du Ve livre deVArithmétique de DIOPHANTE,
que FerMAT observa que l'aire d’'un triangle rectangle en nombres ne peut €tre un carre.

Cette méme proposition négative se trouve aussi dans la lettre de Frrmat & CarcAvi,
d’aont 1659, dont une copie par HuycuNs nous a été iransmise (ceuvres de Fermat, t. 2, p. 431).

FRENICLE (Traité des triangles rectangles en nombres, dans lequel plusieurs belles pro-
priétés sont démontrées par de nouveaux principes, Paris, 1676) donne ce méme théoreme
ala page 100.

A noter aussi une picce du 29 décembre 1678, Invenire triangulum in numeris cujus area
sit quadratus (Leibnizens mathematische Schriften, Gerhardt, 111, p. 120-125) dans laquelle
LEiBNIZ retrouve cette méme impossibilité.

LeiBNiz établit aussi 'impossibilité de chacune des équations

28 — x = L] 5

M=yt =0;
la premiére est équivalente a

2tang 0 =7 .

La seconde a été considérée par’ FErMAT (Observations sur Diophante, VI, 26).

En ce qui concerne d’autre part 'inexistence d’arithmotriangles pythagoriques dont Uaire
soit le double d’un nombre carré, c’est a la page 101 du Traité de FRENICLE qu’elle est énoncée
et établie. Plus loin d’ailleurs (p. 111), FrENicLE indique I'impossibilité de I'équation équi-
valente ;

at 4+ yt =[]

que FerMAT a de son cOté mentionnée comme impossible dans son observation VI, 32.
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tuel de cette expression, en fait une équation arithmotrigo-
nométrique, sont des angles d’une espeéce toute particuliere
que nous connaissons bien déja: ce sont les angles des
arithmotriangles pythagoriques. Dans ces conditions, I'Arith-
motrigonométrie, c'est-a-dire 'ensemble des propriétés de
toutes les équations arithmotrigonométriques, n’offre aucune
originalité, mais c’est une nouvelle forme avantageuse d’ex-
position des faits qui constituent la « Géométrie des triangles
rectangles en nombres» telle que la concevaient DIOPHANTE,
FERMAT ou FRENICLE.

L’arithmotrigonométrie mérite d’étre étudiée ici. Ge qui
fait, en effet, le plus défaut dans la théorie des nombres, ce
n’est pas une théorie générale; ce n'est pas non plus une
base mélaphysique solide; ce qui fait défaut, dis-je, c’est
une méthode de résolution des équations en nombres ration-
nels ou entiers. Toute considération qui peut conduire a des
moyens praliques de détermination des solutions est la bien-
venue dans le monde mystérieux des nombres. Cest ce qui
me décida a consacrer tant de pages aux présentes notions
d’arithmogéométrie, dés que je reconnus que l'intuition
géométrique pouvait apporter quelques perfectionnements &
I'analyse diophantine. C'est encore pour une raison iden-
tique que je crois devoir donner un tel développement a ces
principes d’arithmotrigonoméirie.

12. — Les équations qui viennent d’étre rappelées ci-
dessus et qui sont étroitement liées aux deux théorémes de
Fermat et de FrénicLe sur aire d'un arithmotriangle pytha-
gorique sont évidemment équivalentes aux équations

tang 0 = [] et 2tang 0 = ] ;

celles-ci sont donc impossibles du point de vue arithmo-
trigonométrique. Cette impossibilité des équations arithmo-
trigonométriques

tang 6 = [ , 2tang 6 =[] ,

et des équations qui en dérivent manifestement, telles que
les équations arithmotrigonométriques

sin20 =[], 2sin20 =[] ,




238 E. TURRIERE

ou encore des équations algébriques remarquables qui leur
sont équivalentes, présente une grande importance dans la
théorie des nombres et dans I'histoire de son développement.
Nombreuses sont, en effet, les propositions trouvées et
retrouvées sur ces différentes équations ou sur les figures
géométriques (les arithmotriangles pythagoriques notam-
ment) qui leur sont liées. En réalité, il s’agit d’'une unique
propriété de la théorie des nombres. Tout d’abord, il faut
observer que les équations

tang 6 = [] . 2sin26:[j,

sont identiques entre elles et qu’il en est de méme des équa-
tions : :
2tang 6 = [ , sin20 =[] .

Reste a prouver que les équations sin 20 =[] et 2sin 26 = []
sont équivalentes par changement de variable. Il suffit de
remarquer que l’équation impossible

xy‘(x“,— =0,
considérée par EuLEr?® devient

2XY (X4 — Y4 =[],
au moyen de la transformation affine définie par les équations
x4+yr=X, xx—y=1Y.

En posant alors

0
¥y = xtang~2~

dans 'une et 'autre des deux équations impossibles équi-

valentes :
aylat -y =0, 2ar@@—))=0,
il vient :
sin 26 — [] et 2sin 20 = ] .

L'impossibilité de I'une des équations entraine donc celle
de l'autre. Et, par suite, il y a équivalence entre les deux
propositions négatives de Fermat et de Frénicle relatives a

1 Inyestigatio binorum numerorum forme Xy (xX* — y4), quorum productnm, Sive quotus sit
quadratum (14, aott 1780). Commentationes urithmetice, tomus posterior, pp. 438-446.
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Utnexistence d’arithmotriangles thlza coriques dont laire
soit un carré ou le double d’un carré.
73. — IMPOSSIBILITE DE sinf — [ ] ET DE cosf — [ ], DE
2sin® — [ ] ET DE 2co0sf — [].
.Je viens de dire que les équations arithmotrigonomé-
triques
tang 6 =— [ et 2tang 6 — []
étaient séparément impossibles, comme attachées aux pro-
blémes des arithmotriangles pythagoriques dont l'aire est
un carré parfait ou le double d’un carré.
Les quatre équations suivantes
sinf =[], 2sin0=[],
cosh =[], 2c0s 0 =[] ,

sont de méme séparément impossibles, pour les raisons qui
vont étre données. Il y a lieu d’exposer tout d’abord que les
deux équations de la seconde ligne, c’est-a-dire les équations
en cosinus, sont respectivement équivalentes aux deux équa-
tions en sinus de la premiére ligne.

Des deux équations irréductibles 'une a 'autre qu'’il con-
vient de considérer maintenant, I'une d’elles cos =— [ ] est
équivalente a I'équation

xt — 3.4 =[]
reconnue impossible par Fermar & l'occasion du 26° pro-
bléme du VI° livre de DiopuanteE. De méme, de 'impossi-
bilité de I’équation
2(Xf—YY =[] .
établie par EULER, ou encore de celle de 1’équation
1

considérée par Leisniz?, il résulte que les équations, équi-

1 Exercitium ad promovendam scientiam numerorum, Leibnizens mai thematische Schriften
Gerhardt, [2], III, 1863, p. 114-119.
Dans cette piéce, LuiBNiz s’occupe de I'équation

. a
X + - = D ’
qui peut &tre rattachée a I’étude amthmo«reometuque d’une cubique, la cublque harmonique

d’équation :
y? = 2% 4 ax .
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valentes par changement de variable 0,
2cos § = [] et 2sin b =[],

sont elles aussi impossibles.

14. — Les théorémes qui préceédent présentent, en plus
de leur intérét historique, celui d’étre fondamentaux dans
'étude d’'un nombre respectable d’équations impossibles
déja connues. Il semble, en outre, que cette source féconde
de propositions négatives soit encore loin d’étre tarie.

Voici quelques nouveaux exemples de leur utilité incon-
testable.

Soit, en premier lieu, I’équation arithmotrigonométrique a
deux indéterminées :

sinu + siny —= 1 ;
elle peut étre transformée en I’équation équivalente :

. w
sin u == 2cos? — |

2
c’est-a-dire :
2sinu =[] .

Il est donc impossible de satisfaire a U'équation

sinu 4+ siny =1,

u v .
avec des angles tels que tang 5 et tang 5 solent deux nombres

rationnels.

Soit, en second lieu, a résoudre le probleme de la déter-
mination de quatre carrés en progression arithmétique.
M. E. HENrscHEL vient de rappeler que ce probléme avait
été considéré, dans le cas de trois carrés, par DIOPHANTE et
que le Probléme de Jean de Palerme et de Léonard de Pise
en était un cas particulier (voir paragraphe 76). J'ajouterai
que ce méme probléme de trois carrés en progression arith-
métique a été considéré aussi par FErmar! et par FRENICLE 2
et que sa solution générale au moyen d’une représentation

1 Buvres, t. 11, p. 65 et 234.
2 Traité des triangles rectangles en nombres..., p. 27-28. FrENicLE donne la solution
simple 49, 169, 289.
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arithmotrigonométrique a été donnée plus haut (paragraphe 6:
arithmotriangles automédians).

Le probleme de quatre carrés en progression arithmé-
tique se traduit par les équations

2 2

9
x? —) 2 2 2—-——t2,

—_— —~l — -
__’) —_— L 5

qui deviennent |
x? 4 2= 2%, 2 4 17 = 227 .

Conformément aux conclusions du paragraphe 6, je poserat
donc

x = y({cosa — sina) ,
z = y(cos & 4 sina) ,
y = z(cos § + sinf3) ,
t = z(cos 3 — sin ) ;

d’ou il résulte que les angles « et 3 doivent satisfaire a I’équa-
tion arithmotrigonométrique

(cos @ 4+ sina)(cos f + sinf3j = 1 ,

ou encore
cos (¢ — B) 4+ sin(a + B) =1 .

Celle-ci est impossible d'apres le résultat qui vient d’étre
obtenu a l'instant. I{ est donc impossible de déterminer quatre
carrés en progression arithmétique.

Sur certains arithmotriangles pythagoriques.

75. — L’examen du plus célébre des arithmotriangles
pythagoriques, celui des harpedonaptes égyptiens, donne
I'idée de former des équations arithmotrigonométriques fort
simples que je vais étudier. Les sinus et cosinus des angles
aigus de ce triangle sont :

3 4 1

- et R s

) )

L’Enseignement mathém., 19¢ année; 1917, 16
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Quels sont d’'une maniére génerale les arithmotriangles

pythagoriques tels que

sin ) — —— 1
1 4 »*

La solution générale de cette équation arithmotrigonomé-
trique s’obtient aisément par considération d'une arithmo-
cubique unicursale ; on doit poser

tang 7 — 232,
et, par suite :
. 1
sin 0 = — 5
1 205 — 1\*
+ 2A
De méme 1'équation
1
cos § = e

qui n'est d’ailleurs pas essentiellement distincte de la pré-
cédente, se laisse résoudre en toute généralité en posant :

6 221
T TC Iy

Il convient de noter que cette question fournit des solu-
tions particulieres des deux équations

sin 0 =[] + [] .
cosh =[] + [,

qui seront étudiées quelques pages plus loin (paragraphe 80).
75. — LE THEOREME DE FERMAT SUR LE NOMBRE 7. — Pour le

9
. . . . (3]
méme arithmotriangle pythagorique (3, 4, 5), on a tang § = %

1\2 . : . :
— 1 — <7> : cetle derniére relation donne naissance a une

question intéressante en elle-méme. qui se rattache a une
fort belle proposition de FErMAT :
Quelle est la solution'générale de 'équation

tang § = 1 — g8

. U R
en nombres rationnels o5 CL A ?




ARITHMOGEOMETRIE 243

Celte équation se transforme immédiatement en la sui-

vante :

1 __ A2
1 ’) —_— 1 . xfz
- b

2y
représentative d’une cubique plane. Considérée comme une
équation du second degré en y, celte équation dépend du
point de vue arithmogéométrique d’'une équation

at — 22?2 + 2 =[]

de Brahmagupta-Fermat généralisée. A cette méme équa-
tion, ou d’une maniére plus précise a l'équation équiva-

lente
22 - 222 4+ 1 =[],

se raméne d’ailleurs le probleme des arithmodistances pour
I'origine et 'hyperbole équilatére y — %} :

Mais ce qui est encore plus digne de relenir notre atten-
tion c'est que la question ecnvisagée n'est point distincte
d’un probléme qui a son histoire : l'étude d'une propriété
caractéristique du nombre entier 7. FErmar?, en effet, a re-
marqué le premier que, seul dans la suite des entiers, le
nombre 7 jouit de la propriéié d’étre, ainst que son carré, de
la forme 2u® — 1; en d’autres termes, les équations simul-
tanées

22— 1=,

2ef — 1 = a*

n’admettent, en nombres entiers, que 'unique solution :
x=7, y=2, z=25§.

Je n'insisterai guere sur ce probléme de FermarT, qui se
rattache encore & la théorie des arithmopoints d’une biqua-
dratique gauche ; je me bornerai 4 mettre en lumiére sa

1 Sur ce probleme de Fermar, cf. t. 2 des uvres de Fermat, pp. 434-446 et d’autre part :
Cn. Hesry, Recherches sur les manuscrits de Fermat, p. 176.
T. PpiN, Sur un théoréme de Fermat (Atti dell’ Accademia pontificia dei nuovi Lincei, t.
36, 1883, p. 23-33.
A. GeNoccHi, Démonstration d’'un théoréme de Fermat, Nowvelles Annales de Mathéma~—
tiques, 3¢ série, t. 2, 1883, p. 306-310.
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liaison avec I'équation précédente ; cette liaison résultant de
I'équation
32 — 2:}.4 . 2)‘2 _l— 1 ,

de 1'une des projections de la biquadratique de l'espace.
(lomme nouvelle solution simple de celte équation, j'ai
trouvé :

40

, tang@:———g—.

o
g
\]l (V)
H_\
e
SIS

. tang;:

TR
N

La solution primitive de Fermat correspond précisément a
l”angle de 'arithmotriangle pythagoriqne de cotés 3. 4 et 5.
Celle que j'en a1 déduite met en évidence deux nombres,

qui ont une grande signification, si I’on se reporte & mon
article sur le probléme de Jean de Palerme et de Léonard de
Pise! ou a la lettre de M. HaENTZCHEL? sur ce méme travail :
la solution de DropuaNTE, pour le probléme destroisnombres
carrés en progression arithmétique,

w
»

—9 —_—
)

17— 720 = 317, 41° et 417 4 720 —

H-\l

et la solution équivalente de LEoNarDp DE PIsE

N\ L /A9 SN /31
) T°=\1z)  \g) —°=\;@m)

pour le probléeme qui constituait la premiere des trois ques-
tions de JEAN DE PALERME, mettent précisément en évidence
les trois nombres 31, 41 et 49. Simple coincidence, mais
coincidence bien curieuse !

77. — Dans les paragraphes précédents, les relations
4 3
0056:3, tangﬁ:z,

Y D’Enseignement Mathématique, 17¢ année 1915, pp. 315-324.
2 I1bid., 19¢ année, 1917, pp. 199-201.




4

ARITHMOGEOMETRIE 245

m’ont amené a étudier séparément les deux équations arith-
motrigonomeétriques

1

T-T—T:) , tang=1—1[7.

cos § =
Il y a lieu maintenant de rechercher ceux des arithmotri-
angles pythagoriques qui, comme celui dont les cotés sont
3, & et b, salisfait simultanément a ces deux équations.
Partant de la premiere des équations,

cos § — :
g =130

dont la solution générale est donnée par les formules

i) 2 — A% 402
tangT‘z_—:m , COSO:m )

1l faut égaler & une quantilé indéterminée 1 — 2 'expres-

sion
tang § = : ;2/\4 ;
d’ou I'équation
AT )
S = 1 — v
elle s’écrit encore
4 42— b = (2u0)?

Le probléme étudié se rameéne donce a l’équation
MR k=[],

qui admet pour solution x = o0, 1 — | (arithmotriangle 3, &,
. ) . . . .
5), A =5 ; & cetle derniére solution correspond un arithmo-

triangle pythagorique de cotés 400, 561 et 689, pour lequel

1 400
I'7 % 689 ’
t+ (o)

— tang 0 = il =1 — <L>~ :

cos  —

I

400 20
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’est donc actuellement le supplément d'un des angles aigus
de I'arithmotriangle dont la tangente trigonométrique est de
la forme spécifiée dans I'énoncé du probleme.

En posant alors

2
X4+4)\2f!;:<l2~2x+§> :

le probleme est ramené a l'étude d'une fonction . de
WEIERsTRASS dinvariants

8 80

By =2 — 3 et g o= 97

Arithmotriangles pythagoriques dont les trois cotés
sont sommes de deux carrés.

18. — Le TnorEME pE FrrmaT. — L’importance des nom-
bres sommes de deux carrés?! est assez grande; elle est
surtout due aux belles recherches qui ont été faites autour
d’un théoreme célebre de Fermat® C’esta l'occasion du pro-
bleme de la détermination du moindre nombre qui soit
autant de fois qu’on voudra et non plus la somme de deux
carrés, probléme proposé par FrenicLe, dans une lettre
adressée le 6 septembre 1641 a Fermart, que ce dernier
énonca le théoreme suivant : 57 un nombre p compris dans
la forme 4n + 1 est premier ou composé de facteurs premiers
de cette forme, p est la somme de deux carrés. En remar-
quant que les facteurs puissances de 2 n’alterent point cette
propriété, en vertu de I'identité

2002 4+ ¢*) = (b + ¢) 4+ (b — ¢)*

il est possible de présenter ce théoréme de Fermar sous la
forme générale et précise qui suit :

1 Initialement considérés par DioruanTE (I1, 8, 9 et 10), puis par VikTE (Zeteticorum libri,
1V, 2, 3). :

2 Euvres de Fermat, t. |, p. 293 ; t. 11, p. 213, 221, 403 et 432 ; t. ITI, p. 243, 315. — S. RitALIs :
Scolies pour un théorcme de Fermat, Nouvelles Annales de Mathématiques (3), t. 4, 1885, p.
367-372. — Le théoréme de FErMaT a été démontré par EULER (Nouveaux commentaires de
Pétersbourg, t. 1V, p. 3 et t. V, p. 3), LeguNnnrt et SMiTH. Edouard LucAs en a donné une
trés curieuse démonstration géométrique par les satins carres.
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St un nombre entier n’a que des facteurs 2® ou premiers de
la forme 4k 4+ 1, il est la somme de deux carrés.

Le théoreme s'étend immédiatement aux nombres ration-
nels ; en remarquant avec EULER que les diviseurs d’un
nombre somme de deux carrés jouissent de la méme pro-
priété, et en remplacant 'équation

A
EZD—'—D»

par I'équation équivalente
AB=0+0.

on obtient le théoréme général suivant :

La condition nécessaire et suffisante pour qu’un nombre
enlier ou fractionnaire soit somme de deux carrés est que cet
entier ou les deux lermes entiers de la fraction n'atent que
des facteurs des formes 20 et 4k 4 1.

79. — LE PROBLEME DES ARITHMOTRIANGLES PYTHAGORIQUES A
COTES SOMMES DE DEUX CARRES. — Les équations arithmotri-
gonométriques

sind =[], cosO0=1[], tangb=1[],

étant toutes trois séparément impossibles, il n’existe aucun
arithmotriangle pythagorique ayant plus d’un cété carré par-
fatt. Comme, parmi les nombres non carrés, les plus simples
sous le point de vue de la constitution par sommes de carrés,
sont les sommes de deux carrés, je me suis naturellement
posé la question suivante : Existe-t-il des arithmotriangles
pythagoriques dont les trois cotés sont sunultanément sommes
de deux carrés ?

La réponse a cette question est affirmative : il existe une
infinité de solutions, telles que celle qui correspond aux trois
cotés

g o= 9,
40 = 22 4 6°
41 = 4% 1 52

Dans cet exemple, la plus petite des cathétes est mesurée
par le nombre 9. D'une maniére générale, puisque 'hypo-




248 E. TURRIERE

ténuse d’un arithmotriangle pythagorique ne peut jamais
étre mesurée par un nombre multiple de 3, puisque, au con-
traire, I'un des cotés est toujours mesuré par un multiple
de 31, et puisque, enfin, ce nombre 3 ne saurait étre somme
de deux carrés, comme étant de la forme 4% — 1, une pre-
miere propriété des arithmotriangles pythagoriques spécia-
lement étudiés ici est que :

Dans tout arithmotriangle pythagorique dont les trois
cotés sont simultanément sommes de deux carrés, l'une des
deux cathéles est mesurée par un nombre divisible par 9 (ou
par une puissance paire de 3). 1l en est de méme des me-
sures de la lhauteur relative a U'hypoténuse et de Uaire du
triangle.

D’autre part, comme conséquences de la propriété d'in-
variance par multiplication entre eux des nombres sommes
de deux carrés, il est évident que :

L’aire (qui ne peul jamais étre un carré parfait) et la hau-
teur relative a Uhypoténuse d’un arithmotriangle pythago-
rique dont les colés sont tous trois sommes de deux carrés
sont ausst mesurées par des nombres de cette nature.

Ces propriétés générales établies, j'aborde la recherche
méme de ces triangles.

- . 0 .
80. — L'EQuarioN cos § = [[] + []. Soit tang = x; puis-

que le dénominateur 1 4 x? de la fraction rationnelle expri-
mant cos @, en fonction de x, est une somme de deux carrés,
il faut et il suffit qu’il en soit de méme du numérateur 1 — 22

Posant
1 — a2 =% 4 %,

on ramene le probleme a ’étude de 'arithmosphére d’équa-
P

tion
x4 9?42 =1

si &, y et z sont alors les coordonnées d'un arithmopoint
quelconque de cette arithmosphére, 'expression de cos 6 est :

I o) 2 Yz — a2

1 Ces deux théorémes sont dus a FrENicLE (loc. cit., p. 7T et 76 respectivement).
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Telle est I'élégante solution du probleme. Il suflit alors
d’exprimer, conformément au paragraphe 8, les trois coor-
données x, y et z en fonction de deux parameétres pour avoir
une expression de cos 6.

L’équation sin® — [ ] + [] n’est pas différente de la pré-
cédente. Pour la résoudre directement, il suffit d'observer
que la solution générale consiste a poser:

0
tang§ — a® + 2.

« el 5 étant deux nombres rationnels quelconques.

81. — Pour revenir au probléme posé, il suffit d’observer
que, par similitude, on peut rendre ’hypoténuse carré par-
fait ou somme de deux carrés parfaits. Le probleme se tra-
duit donc par les deux équations simullanées :

sin 0 =[] +[] et cosf =[]+ [] .

La premiére de ces équations est résolue par
6 L,
t:tax]g'§:a3+ﬁ I

la seconde équation donne alors la condition

ou
1::((7_2—}—{32)2—{—‘{2——{— 82_

Nous devons ainsi considérer I'arithmosphére de rayon
rationnel et choisir parmi son infinité double d’arithmopoints
ceux qui ont une coordonnée somme de deux carrés. Les
formules de représentation impropre étant
(1 — w?) (1 — ¢?) 1 — u? 2u

y = 2¢. :

TTUuranTe T T e N I

un choix est tout indiqué, en raison de la grande simplicité
de I'expression de z; il suffira de prendre pour u une sommnie
de deux carrés. D'ou le théoréme définitif:

Une famille d’arithmotriangles pythagoriques dont les trois
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cotés sont simultanément sommes de deux carrés est caracté-
risée et définie par U'équation
9 222 4 u?

T

tang

qut exprime la tangente trigonométrique de l'un des angles
aigus en fonction de deux nombres rationnels arbitraires }

et w.
4 :
Pour 2 == 1. » = 1, on obtient tang ) T i et, par suite,

. 40 32\2 24\2
S]l]e = ﬂ —— <ﬂ> "I" <§’i> »
9 12\? 15\?
cosﬁ:;—l___(a—?)—}—(,ﬂ) ,
40 2\2
tang 6 = 39— = .22 4 <§> ;

cette solution correspond précisément au triangle dont les
cOtés ont été initialement donnés a titre d’exemple.

Pour 1—=1, v.=2, il vient de méme tg—e— = % , sin @ :gig,
cos § — ;7, tgh = %7 I’ arlthmotmano e pythagorique corres-
pondant a pour cotés

65 — 12 + 82
72 = (% + 6%,
97 — 42 4 92 |

Une autre famille étendue de solutions particulieres est
donnée par l'expression de I'ordonnée ¥y

1 — u?

TEY T

il suffit manifestement de poser

vl — u2) = ¥ + {_Lz

pour obtenir (en remplacant « par v pour raison d’élégance
| dans 'aspect de la formule)

0 2(12 + v
tang

e (]
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une expression de tan en fonction de trois indéterminées

rationnelles 2. u et v.

Pour v =0 cette famille se réduit a la précédente. Nous
aurons donc obtenu une solution particuliére triplement
indéterminée.

Dans ces conditions, I'étude du probleme dans toute sa
généralité est abordable. Pour obtenir la solution générale,
il est indispensable d’avoir recours aux formules

9%

x — - , V= =3

R

PP —1

o 7H =1

(V3

[iv]
L

| O]
=

IV | VY
'

VY

soll il ol

de la représentation propre de l'arithmosphére de rayon
rationnel; Ja question se traduit par une équation

9. 9 9 b B
(2 2% gt a4 = 1 =0

JNY

'f

du quatrieme degré en ., y, £ et y. Pour éviter l'introduc-
tion de notions d'hypergéométrie, il suflit de prendre 'une
de ces indéterminées » pour parameétre et les trois autres
pour coordonnées dans I'espace a trois dimensions (x, y, &);
ie probleme se rattache donc a 1'étude arithmotrigonomé-
trique d'un faisceau de surfaces du quatrieme degré.

Il est aussi avantageux de ramener cette méme question a

U'étude d'une oo® de quartiques planes?. Si y et 5 sont pris

! Cette derniére considévation peut étre présentée sous une autre forme. La question est
équivalente a la recherche de deux des arithmopoints d'une arithmohvperbole équilatére,
représentée par l'équation

xy =« +y+1,

qui ont des coordonnées simultanément sommes de deux carrés telles que les suivantes :

5]
x = 9, Yy = —.
+
9
x = 17, = —
Y 3
65
x = 129 , Yy = —, ete.
=+

i T .

L’arithmogéométrie apparait de plus en plus comme capable de provoquer des recherches
sur des questions originales ressortissant de la théorie des nombres. Ieci, par exemple, se
pose une question. que je n’ai pas étudiée mais qui, de prime abord, semble avoir quelque
Intérét : Etant donnee une équation f(x , ... x ) = 0 a deux ou plusieurs indetermincées.
rechercher celles de ses solutions qui sont formeées par des nombres X ... Xp tous sommes de
deux carrés. C'est une sorte d’extension de l'équation

Axt 4 Bax? 4+ C = 942 |

qui traduit le probleme.de la détermination des arithmopoints d’une parabole y = Ax?®
+ Bx + € a coordonnées exprimées par deux carrés parfaits, et d'une maniére générale

2

des équations ftxz, x,

s e X0 = 0.
n .
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pour parametres, et si x el £ sont pris pour coordonnées
dans un certain plan, celte quartique est la projection d'une
biquadratique gauche, intersection du paraboloide, repré-
senté dans un espace (x, &, ¢) par I'équation

et d'une quadrique rapportée a ses axes :
(2 + ‘1)352 ' (3.2 R = —y — ] — )‘2.,1:1 ,

14 TAT ] » —_— vl
82. — L’EqQuarion tang # = [] 4 []. Avant de passer a une
nouvelle question, quelques lignes s’imposent au sujet de
I’équation tang 8 — [] -+ [], ou de l'équation équivalente
cotang # — [ ] + [].
Cette équation arithmotrigonométrique se traduit algébri-
quement sous la forme

i |

—=0+0.

c¢’est-a-dire encore :
x? — 1 = x(y? + 23 ;

cette derniere équation représente, dans l'espace ordinaire,
une surface du troisiéme degré (voir paragraphe 36) sur
laquelle existent tous les arithmopoints qui correspondent
aux solulions des équations stmultanées sin® — [] 4+ [] et
cos @ — [] + [J. De sorte que la solution de l'équation
tang ® — [] 4+ [] dépend de celle du probleme qni vient
d’étre traité dans les paragraphes précédents.

L’arithmotrigonométrie et les arithmotriangles héroniens.

83. — APPLICATION DE LA NOTION D ARITHMODISTANCE. J'ai
souvent utilisé dans les considérations antérieures la notion
d’arithmodistance et introduit le probleme des arithmodis-
tances, soit pour créer de nouveaux types d'équations indé-
terminées, soit pour rattacher a une idée générale certaines
équations particulieres.

En se bornant au cas de l'arithmocourbe plane (C), dont
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'arithmopoint M est repéré par ses coordonnées x et y et
d’un arithmopoint fixe.A de coordonnées a, b, le probléme
des arithmodistances pour cet arithmopoint A et l'arithmo-
courbe (C) est résolu par 1'équation générale (paragraphe 17)

(x—aft + (y — b2 =0 -

Pour les développements qui vont suivre et qui ont tou-
jours pour objet la constitution de I'arithmotrigonomsétrie, il
est avantageux d’observer que cette méme équation est entie-
rement équivalente & une équation arithmotrigonométrique
d’une espéce spéciale, que I'on peut mettre sous la forme

y—b

x_a_—_'lange )

. b
dans laquelle 6 est un azimut tel que tang 5 est un nombre

rationnel. Cette méme équation a d’ailleurs une signification
précise, puisqu’elle se présente tout naturellement lorsque
e probléme des arithmodistances est posé sous la forme
suivante. ,

Sotent un arithmopoint connu A et une arithmocourbe (C)
dont Uarithmopoint courant M est repéré par un paramétre
rationnel t. Quels sont ceux des arithmopoints M de Uarith-
mocourbe imposce (C) qui définissent avec ['arithmopoint
donné A des droites arithmodirigées?

Cette remarque est féconde en ce sens qu'un grand nombre
de cas spéciaux du probleme des arithmodistances se laissent
traduire par des équations arithmotrigonométriques souvent
simples et, souvenl aussi, de formes remarquables. 1l en est
notamment ainsi lorsque la courbe imposée (C) est paramé-
triquement représentée par l'intermédiaire de fonctions tri-
gonométriques, comme pour l'ellipse.

Pour lellipse, dis-je, dans le cas de la représentation au
moyen des demi-axes o et 3 supposés rationnels et de I'ano-

malie excentrique . supposée telle que tang% soit un para-

metre rationnel, il résulte des expressions des coordonnées

X — aCcoso , y = Bsino ,
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que le probléeme des arithmodistances pour cette arithmo-
ellipse et un arithmopoint général de son plan se traduit par
'équation

Bsing — b

% CcOS @ — a:tang@ ;

trois parametres arbitraires, les rapports des quatre nombres
rationnels @, b, « et 3, assurent a cette équation arithmo-
trigonométrique une assez grande généralité. Elle contient
en effet comme cas particulier deux de ceux qui vont faire
I'objet de considérations spéciales (paragraphe 86) et aux-
quelles conduit la détermination de certaines especes d’arith-
motriangles héroniens:

sin o
— — const.
tang 0
tan
i — const.
tang
84. — Le probléme des triangles télémétriques m’a tout

naturellement amené aux paragraphes 67 et 68 a rechercher
s’il existait ou non des arithmotriangles héroniens dont deux
cOtés solent dans un rapport donné a priort.

Proposons-nous d’une maniére générale de rechercher
tous les arithmotriangles héroniens dont les cétés a, b, ¢
satisfont a une condition donnée :

fla, b, ¢) = 0.

D’apres les formules du paragraphe 10, 1l faut donc déter-
miner trois nombres ralionnels R, x, et y, satisfaisant aux
inégalités

<

1 - 5
R>0, Jﬁ>z~>o, VEidz2—z3>y >3,

et reliés entre eux par la relation :

. gl ({l — ¥= : z
aglr =t —=os R = | =0,
(1 4 ) (1 4 =7 1 4 y° 1 4 =

Cette derniére équation représente, dans un systéme de
coordonnées y, z et R, une certaine surface. D’ou il résulte
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que le probléme considéré de détermination d’arithmotri-
angles héroniens est équivalent a ’étude arithmogéomélrique
d’une surface de Uespace ordinazure.

11 n’est guére possible de s'étendre davantage sur un pro-
bléme aussi général; pour aller plus loin, il est nécessaire
de le particulariser.

Parmi les cas particuliers remarquables, il convient de
signaler en premiére ligne celui d'une condition homogene.
Lorsque la relation imposée

est homogeéne, le probleme général, susceptible d'étre asso-
cié al'étude d'une surface, dégénere en un probleme d’arith-
mogéométrie autour d’'une courbe plane. Les coordonnées
d'un certain plan étant x et z, celte courbe est celle que
représente 'équation
flly+ 2 (1 —xy3s), (1 +2%, =1 +23]1=0.
85. — Dans ce méme cas dune relation homogéne entre

les cotés de l’arithmotriangle héronien. cette relation im-
posée peut étre écrite sous la forme :

f(sin A, sinB, sinC) = 0 ;

des cas particuliers intéressants s'obtiennent en se bornant
a des équations entre sin B et sin G, par exemple.

C’est ainsi que, si la condition imposée est une relation
homographique entre sin B et sin C, soit

asinB.sin G 4 28sin B 4+ 2ysinC 4+ 43 =0 ,
cette condition se traduit par 'équation
oz + Byl 4 2% + =1 497 + 31 + 0% (1 + 28 =0,

représentative d’une quartique plane. Cette courbe est la
projection sur le plan Oyz de la biquadratique gauche, inter-
section du paraboloide hyperbolique d’équation

ys—2x=20,
avec une quadrique d’équalion "

o(x? 4 92 4 2% 4+ alyy + Bz) + ax 4+ By + Y=+ 8=0.
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Le cas (@ =0, d =0), c'est-a-dire celui de l'équation
arithmotrigonométrique
sin C
sin B ="

est précisément celui qui a fait Uobjet des considérations du
paragraphe 68. Le probleme dépend de I’équation

yr 42k Ll =[],

étudiée par L. EvLer, A. Genoccur et Ed. Lucas (cf. §51).
86. — Soit une équation du type précédent

M2+ 1=0;
elle peut étre mise sous les deux formes suivantes:
(O 4+ 12 4+ 20k — 1" =[] .
(9° — 1P + 20k + 1)y* = -
dans le cas ot 2(k — 1) est un carré parfait, soit

2k — 1) = ho?
’expression
2wy

1+32

A ’ N ’ 1 N ) . i 0 .
peut étre égalée a la tangente d’'un arc # tel que tang - soit
rationnel. Si donc on pose

© = tan @
4 = g 2 d

on a
w.sin ® = tang § ;

réciproquement, l'équation précédente dans laquelle o est

un nombre rationnel et ® et § deux arcs tels que tang% et

tang§ soient rationnels est réductible a une équation

42 4+ 1 =11 .

Si d’autre part 2(1 — %) est un carré, soit 4e?, I'expression

2wy A , . . 5 i s
——— peut étre éoalée a4 un sinus d’'un arc €: on est ainsi
14 )% ©
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conduit a une équation

w.sin® — sin § ;

c’est précisément ce qui se produit au paragraphe 68.
Considérons de méme ['équation

(P — 4P+ 20+ 1 =01 .
3 w‘)_
c’est-a-dire o tang O est égale & un sinus et I'on retombe sur

une équation

Lorsque 2(k + 1) est de la forme — 4w?, 'expression

w tang & = sin§
déja traitée. |
Enfin lorsque 2(k + 1) est un carré 4w?, l'équation n’est
aulre que
wtang & = tang § .

Celle-ci n'est d’ailleurs pas essentiellement distincte de
I’équation

wsin ® == sin b
cette derniére équation devient, en effet,

w’ tang &’ = tang §” ,
en posant
e + 0 GRS , 1 —ow

w

=TT
En résumé, les €quations arithmotrigonoméirigues

sin ®
sin 8
sin ®
tang 6

— I

-n,

tang .
tang 0 (.

0 ® . :
dans lesquelles n, tang 5 el tang = sont trois nombres ration-

nels dont le premier est imposé, sont respectivement équiva-
lentes a lrois équations eulériennes du type

at 4 2k 1 =[] .

I’Enseignement mathém., 19+ année; 1917. 17
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~

87. — Parmi les équations de cette espéce se trouve I’équa-
tion

at 14 1 =1
qul mérite une mention spéciale, car elle intervient dans
I’'étude du probléme des arithmotriangles télémétriques.
_ Reprenons, en effet, I'équation trouvée au paragraphe 67
de la quartique plane dont I'étude arithmotrigonométrique
est équivalente a I'étude des arithmotriangles télémétriques
géneéraux:
_ (a? — 3.2) (2% — 2y2) = a? + 2)2
La condition de rationalité en .x? de cetle équation bicarrée
en x est précisément exprimée par I’équation

P =T

en ’écrivant sous la forme

@ ’ ’ »” \ v o, ol ®
et en posant y = tang -, elle équivaut & I'équation arithmo-

trigonométrique .
tadg 6 = 2tang 9 .

L’équation considérée admet des solutions banales évi-
dentes: y = 0, 1 et I'ew; elle nadmet pas d’autre solution
rationnelle. L'impossibilité de cette équation particuliere a
élé primitivement établie par L. EuLer en 17801, Par suite,

[l n’existe aucun triangle télémétriqgue dont les trois cotés
sotent rationnels.

88. — Je profite de l'occasion qui m’est offerte pour indi-
quer une transformation intéressante de ce type d'équation.
L. EuLEr considere I'équation particuliére

at + 1ha? +1 =[],

1 Cctte impossibilité de l'équation
cxt 41?2 1 =]

est établie a la fin de la piece De binis formulis speciei X% 4 my? et x? 4 ny? inter se con—
cordibus et discordibus, datée de 1780 [Commentationes arithmetice, t. 2, pp. 406-413] et
rappelée (p. 492) au début de celles des deux piéces du méme titre : De casibus quibus hanc
formulam x4 4 kx®y? + y4 ad quadratum reducere licet qui est datée de 1782 (t. 2, p. 492).

L’impossibilité de cette équation particuliére est rappeléc dans le travail déja cité de
A. Genocchi (C. R., t. 78, p. 435).
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en méme temps que l'éguation également impossible
at — a2+ 1=0];

toutes deux se présentent, en effet, suivant l'ordre que l'on
adopte dans I'étude du systéme des deux équations

- Evper établit 'impossibilité de toutes ces équations ainsi
que de celles qui peuvent en étre déduites par transforma-
tion : « Denique etiam formulae biquadratica, quae se obtu-
« lerunt, sunt impossibiles. Ita cum ex theoremate sit
« pt — p?g* 4+ ¢* = [] impossibilis, impossibilis quoque
« erit heec forma p*+ 14p2¢* 4+ ¢* = [, hincque etiam
« plures aliee formulee, quee per transformationem hinc for-
« mari possunt. » Il ne semble point qu’il ait apercu la pos-
sibilité de transformer I'une en l'autre par une transforma-
tion simple ces deux équations |

xt ke -1 =[] . axt — 22 +1=0].

Cette transformation n’est autre que la transformation
homographique
' |

Tiya

Soit généralement, en effet, une équation
xt+ 2k + 1 =1[];
la transformation ci-dessus lui fait correspondre 1’équation
xt 4 28 xt =[],

et la correspondance est réciproque. Entre les nombres %
et &' existe la correspondance involutive

b+ 4+ 1) Fe=0;
tout particuliérement pour 4 == 4+ 7, on obtient %A — ___%

89. — ARITHMOTRIANGLES HERONIENS DONT LA SOMME DES
CARRES DE DEUX COTES EST UN CARRE. — Il s’agit de recher-
cher tous les arithmotriangles héroniens, généralisant les
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arithmotriangles pythagoriques, tels'que la somme des car-
rés de deux cotés, b et ¢ par exemple, soit un carré :

b2 + 2 =[] .
On a donc
sin? B -+ sin?C =[] .
c’est-a-dire encore
14 92\2 /1 4 =2\°
(457 (£ =0
:) ~
Cette derniéere équation a été rencontrée par L. EULER? qui
en a donné, en 1773, la solution

4t 312 41
T=E—1 T iega
en fonction d’'un parametre rationnel ¢ quelconque.

90. — Qu’il me soit permis, a ce sujet, de placer ici quel-
ques observations sur les Commentationes arithmetice.

Déja en maintes occasions, j'ai mentionné le nom d'EuLER
parmi ceux des géometres qui ont étudié certaines figures
simples sous le point de vue arithmogéométrique. Les ques-
tions d’analyse indéterminée traitées dans les admirables
Commentationes arithmetice, dont la lecture est facile et cap-
tivante, sont de deux especes. Les unes sont de nature géo-
métrique : triangles héroniens. triangles a médianes ration-
nelles, triangles rectangles dont I’hypoténuse est un carré
parfait ainsi que la somme des cathétes, parallélépipedes
rectangles dont les arétes et les diagonales des faces sont
commensurables, etc.

A coté de ces questions essentiellement arithmogéomé-
triques, résolues totalement ou partiellement par des consi-
dérations purement arithmétiques, se placent des questions
de pure analyse indéterminée, telles que I'étude de I’équa-
tion

~x4—i—kx2—}—1:[___] '
dont il a été question ci-dessus (aux paragraphes 51 et 71 no-
tamment). Rien dans 'ceuvre d’EULER ne permet de détermi-

1 Commentationes arithmetice, Miscellanea analytica, 15 novembre 1773, tomus posterior,
Petropoli, 1849, pp. 44-52. Le probléme ci-dessus considéré est traité aux pp. 46-47.
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ner ['origine de ces questions : les a-t-il considérées comme
de simples généralisations de I'équation de BrammaGupTa-
FERMAT

ax® + bx + ¢c =[] ,

ou les a-t-il rencontrées a I'occasion d'études relatives a des
probléemes géométriques du genre précédent, problemes
auxquels il n’a pas cru devoir faire allusion dans sa rédaction
définitive ? 1l semble difficile de solutionner celte question
d’origine, car il insiste fréquemment sur le caractére ana-
lytique de ces recherches qui constituent un prolongement
de U'analyse diophantine.

Il semble pourtant difficile d’attribuer une origine de ce
genre a des équations telles que celle,

2 2 2 2
=)+ (57) =0

de la piece du 15 novembre 1773. Elle est peut-étre née de
I'étude d'une figure géométrique dont il ne reste pas trace
dans le mémoire d’'Evrek. 1l est fort possible que la généra-
lisation des triangles pythagoriques dont je viens de ratta-
cher ['étude a cette curieuse équation ait été envisagée par
le méme géometre qui consacrait plusieurs mémoires aux
équations

b? 4 ¢ — 24 = [

des arithmotriangles a médianes rationnelles (voir § 98) et
aux équations

(voir § 100} dont la liaison avec les précédentes est évidente.
Il en est de méme des équations du systéme

2+ =1].
x4+ =],

dont il vient d'¢tre question & propos des arithmotriangles
télémétriques (voir § 88) et qui sont manifestement celles qui
traduisent analytiquement le probléme des arithmotriangles
pyvthagoriques & deux médianes rationnelles (voir § 99).
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Le probléme des arithmodistances
pour un arithmotriangle donné.

91. — Les cotés d’un triangle étant mesurés rationnelle-
ment, s'il existe dans le plan du triangle un seul point dont
les trois distances aux c¢oOtés soient rationnelles, ce triangle
est de toute nécessité un arithmotriangle héronien.

Si, conformément aux conclusions du paragraphe 20,
Parithmotriangle héronien est défini par trois arithmodiri-
gées quelconques du plan, tout arithmopoint du plan est
alors a4 des distances rationnelles des cotés du triangle.

Voila donc un probléeme d’arithmogéométrie simplement
et complétement résolu. Il y a lien de se poser d'une ma-
niere analogue le probléme suivant que jappellerai par la
suite probleme des aritthmodistances pour un arithmolri-
angle :

- Etant donné un arithmotriangle quelconque, c’est-a-dire un
triangle a cotés commensurables, déterminer les points de
son plan qui sont situés a des distances rationnelles de ses
(rois sommets.

92. — LE QUADRILATERE RATIONNEL. — (e probléme impor-
tant doit étre rattaché au probléeme du quadrilatére rationnel,
c'est-a-dire du quadrilatére a cotés et a diagonales commen-
surables. Dans le cas actuel, trois sommels du quadrilatere
rationnel sont imposés.

Le premier quadrilatére rationnel considéré fut celui de
Brahmagupta (paragraphe 30) ; ce quadrilatere rationnel est
inscriptible dans un cercle.

L’étude du quadrilatere rationnel le plus général semble
avoir été faite pour la premiére fois en 1848, par E.-E. Kum-
MER ! qui a démontré que :

Dans tout quadrilatére a cétés et a diagonales rationnels
les diagonales se coupent en parties ralionnelles.

Ce résultat essentiel pour la théorie des quadrilatéres ra-

1 E.-E. KuammEeRr. Ueber die Vierecke deren Seifen und Diagonalen rational sind, Jour-
nal fiir die reine und angewandte Mathematik (Crelle), 37¢ B., 1848, S. 1-20.
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tionnels avait dailleurs été déja signalé par L.-N.-M. Car~or?
dés 1803 ; le géométre francais forme les expressions des
segments des diagonales et il insiste sur le fait que chacun
des quatre segments des diagonales s’obtient par une équa-
tion du premier degré. 1l en est de méme, ajoute Carnot, des
segments formés sur les cotés par les prolongements
d’autres cotés.

La théorie des quadrilateres rationnels, fondée sur le
théoreme précédent, a été ramenée par Kummer a l'étude
d’une équation

2 .
[a;x2 — 2c{a ++ y)x — OL/{2] + 4kPyRat =1 ,

dans laquelle «, y, ¢, & sont des constantes, et par suite aux
fonctions elliptiques, comme application d’'un mémoire de
Jacosi? sur les équations

a + bx + cx® + dad - ext =[] .

93. — Ces résultats relatifs aux quadrilatéres rationnels
rappelés, je reprends l'étude du probléeme des arithmodis-
tances aux sommets d'un quadrilatere et vais réduire ce pro-
bléeme aux fonctions elliptiques par une voie plus géomé-
trique. :

St a, b et ¢ sont les cotés de l'arithmotriangle ABG et si
x, y et z sont les distances aux trois sommets respectifs A,
B et C d’un point M quelconque du plan, ces six longueurs
sont liées par la relation

0 1 i 1 1

1 0 c* h2 x*

1 g4 0 a’ 32 == fj ,
1 h? a? 0 32

1 x2 32 22 0

ou encore apres développement du déterminant :

a?(x? — 22 (a2 — 22) + b2(3% — 23 (1% — 2%) + (% — a? (s — 1¥
+ @®(a® — b — ) x? 4+ b2(b? — 2 — a®)y? + (e — a? — )?) 22
+ a?h?c¢> =0

1 Géométrie de position, Paris, 1803, p. 391-393 (non citée par KunMER).
Z Jacosi. De usu theorize integralium ellipticorum et abelianorum in Analysi Diophantea,
Journal fir die reine und angewandte Mathematik, 13¢ B, 1835, 8. 353-355.
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Celte condition, nécessaire et suflisante pour que quatre
points dont les distances mutuelles sont données, soient
situés dans un méme plan’, montre que le probléme posé
est équivalent a U'étude arithmogéométrigue d’une surface du
quatrieme degré.

Avant de pousser plus loin I'étude du probléme dans toute
sa généralité, il convient de mettre en évidence les solutions
particulieres dont la connaissance sera ensuite précieuse,
puisqu’elle assurera aux biquadratiques gauches génératrices
de cette surface 'existence d’arithmopoints particuliers.

94. — Le probléme des arithmodistances pour un arithmo-
triangle quelconque adnet une infinité de solutions parti-
culieres qu’il est possible de déterminer simplement. Ce
probleme est, en effet, résoluble dans le cas le plus général
sur le périmetre du triangle.

Soient @, b, ¢ les cotés du triangle ABC et un point M de
I'un des cotés, BC par exemple, situé a des distances ration-

nelles
BM

CM

o,

rA—a

|

|

des sommets; A étant un nombre algébrique quelconque,
tous les cas possibles de figure correspondent a ces for-
mules. Le point M sera une solution particuliere du pro-
bleme des arithmodistances si sa distance au point A est
ralionnelle ; celle-ci est fournie par la relation de Stewart:

2. MC 4~ 2. BM — a.AM® = «.BM.CM

qui se traduit algébriquement par 1'équation

b2k 4+ c®la — A) — akla A =a AM” ,

¢’est-a-dire une équation de Brahmagupla-Fermat du second

3 ()\'l’.
deb]e . h? — a? — (2 —
. A A2 =AM .

c? -

a

1 Cette relation doit étre connue depuis fort longtemps. Elle est formée dans la Géomeétrie
de position de CArnoT (1803, p 387-389), rappelée par FOrRsTEMANN (Umkehrung des Ptolo-
miischen Satzes, Journal de Crelle, 13¢ tome, 1835, p. 233-236) d’aprés l'édition allemande
de Scnumackkr de l'ouvrage précédent et formée encore par SALMoN (Traité de Géoméirie
analytique @ trois dimensions, 1882, p. 50-51).
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Elle admet trois solutions A =w, A =0 (point B), A —=a
(point C) connues a priori; elle est donc résoluble et sa
solution générale en fonction d’'un paramétre est:

62 . 12
P .
{ ¢t — D°
a Y
a
95. — Le probléme des arithmodistances pour un arithmo-

iriangle quelconque est de méme loujours résotuble sur la
circonféerence du cercle circonscrit au triangle.

Soient, en effet, x, y et z les distances d’un point M de
cette circonférence aux sommets ABC de l'arithmotriangle.
Les deux théoremes de Ptolémée relatifs au quadrilatére
inscriptible ABCM se traduisent par les relations

cz = ax + by ,
c _ bx + ay
2 xy -+ ab’

par multiplication membre 4 membre de ces deux relations,

on obtient
5 (ax -+ by) (bx + ay)

¥

xy + ab

c

¢’est-a-dire
(l2 + b2 . c2
- ab

x? 4

xy + 22 = ¢? ,

ou encore
x? 4+ 2cos A xy + y? = ¢? .

St x et y sont regardées comme des coordonnées ordi-
naires, cette derniére équation est celle d’une ellipse pas-
sant par un certain nombre d’arithmopoints simples
w==c, y=0), x =0, y==2¢), (x==4a, y = Fb),
(x === 0, y = 7F a). 1l en résulte que cette ellipse est une
arithmoconique et que, par suite, x et y peuvent étre expri-
més rationnellement en fonction d’un parameétre rationnel
arbitraire; la formule |

. cz = ax + by

donne eunsuite la troisieme distance. Telle est la solution
simple et compléte du probléeme sur la circonférence cir-
conscrite.,
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96. — Les résultats qui précedent sont d’ailleurs liés entre
eux d’'une maniere trés simple. Soit tout d’abord une solu-
tion D du probleme des arithmodistances sur la circonfé-
rence circonscrite au triangle ABC. Les segments AB, BC,
CA, AD, BD, CD sont, par définition, mesurés par des
nombres rationnels. Si E est alors le point de concours des
diagonales, AD et BC pour fixer les idées, du quadrilatere
inscriptible ABCD, les divers triangles semblables de la
figure fournissent des relations qui permettent d’évaluer
trés simplement les segments de diagonales et de vérifier,
pour ce quadrilatere inscriptible, le théoreme de Carnot-
Kummer. De toute solution du probleme des arithmodis-
tances sur la circonférence inscrite au triangle, les aligne-
ments avec les sommets A, B et Cpermettent donc de déduire
trois nouvelles solutions situées sur le périmetre du triangle.

Réciproquement d’ailleurs, les mémes relations simples
prouvent que, d'une solution E située sur le périmetre du
triangle, il est possible, par alignement avec I'un des som-
mets, d’en déduire une autre solution D située sur la cir-
conférence circonscrite.

97. — A quels points de la surface du quatrieme degré
correspondent les solutions particulieres dont il vient d’étre
question ?

Soit tout d'abord une solution sur le coté BC. Les coor-
données x, vy, z satisfont alors a I'une des équations

Tyt zz=ua

b

correspondant aux trois segments formés par les points B
et C sur la droite illimitée qui porte le coté BC et a I’équa-
tion qui traduit le théoreme de Stewart; cette derniere est
du second degré en x, y et z. 1l en résulte qu'aux cotés
du triangle correspondent trois coniques de la surface du
quatrieme ordre et les coniques symétriques de celles-ci
par rapport aux plans coordonnés.

Ce sont des arithmoconiques d’aprés le résultat du para-
graphe 95. 1l en est de méme des courbes qui correspondent
aux trois arcs AB, BC et CA de la circonférence circonscrite,
d’aprés les relations (ui traduisent les deux théorémes de
Ptolémée.
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La solution du probléme général des arithmodistances aux
sommets d’un arithmotriangle résultealors des considérations
qui précédent. Soit, en effet, une droite issue d’'un sommet,
A par exemple, et contenant les deux solutions particuliéres
mais dépendant d’un paramétre arbitraire. D sur le cercle
circonscrit et E sur le coté BC. Sur cette droite ADE le pro-
bleme des arithmodistances s’exprime par les deux équa-
tions :

— 2

)
)

+ x? — 2bx cos [,

w

= ¢* 4+ a2 — 2cx cos v,

Al

3 et » étant les angles de la droite ADE avec les deux cotés
partant du sommet A ; les cosinus de ces angles sont ration-
nels puisque les cotés des triangles ABE et ACE sont ration-
nels. Les deux équalions qu‘i précedent représentent deux
cylindres du second ordre et, par suite, sur la droite consi-
dérée ADE, le probleme des arithmodistances aux sommels
de ABC se rattache a 'étude d’une biquadratique gauche.
Cette biquadratique gauche engendre évidemment la surface
du quatriéme degré, lorsque ADE pivote autour de A.

Sur la surface du quatriéme degré attachée auw probléme
des arithmodistances aux sommets d'un triangle, il existe
donc une triple infinuté (@ un parameire) de biquadratiques
gauches. Chacune de ces biquadratiques gauches admet des
arithmopoints connus, sitiés sur les arithmoconiques de la
surface.

Arithmotriangles a médianes rationnelles.

98. — ARITHMOTRIANGL.ES A MEDIANES RATIONNELLES. D'une
maniere générale, le centre de gravité de l’aire d’un arith-
motriangle n'est pas une solution particuliére du probléme
des arithmodistances attaché a ce triangle, car les médianes
ne sont pas généralement mesurées rationnellement. Le dif-
ficile probléme qui consiste a déterminer les triangles dont
les cotés et les médianes sont rationnellement mesurés a
été 'objet de toute une série de Mémoires de L. EULER *

a) Solutio problemalis de inveniendo triangulo in quo recte
ex singulis angulis latera opposila bisecantes sint rationales



268 L. TURRIERE

(1772), [Leonhardi Euleri Commentationes arithmetice col-
lectee, tomus prior, Petropoli, 1849, pp. 507-515].

b) Investigatio trianguli, in quo distantiee angulorum ab
ejus centro gravitatis rationaliter exprimantur (1778) [ibid.,
tomus posterior, Petropoli, 1849, pp. 294-301].

c) Solutio facilior problematis Diophanter circa triangu-
lum, in quo recte ex angulis latera opposita bisecantes ratio-
naliter exprimantur (1779) [ibid., tomus posterior, pp. 362-
365].

d) Probléeme de géométrie, résolu par Uanalyse de Dio-
phante (1782) [ibid., tomus posterior, pp. 488 491].

Comme solutions simples, Euler donne dans ces divers
mémoires les suivantes:

a —= 68 b — 87 ¢c— &b m, = 158 my = 127 m, = 131
0
477 277 446 569 861 640

159 325 314 619 377

=~
e~

a, b, c étant les cotés et my,, my,, m. les médianes des tri-
angles considérés.

e) Il faut en outre mentionner un fragment relatif a ces
mémes triangles: Fragmenta commentationis cujusdam ma-
Joris, de invenienda relatione inter latera triangulorunt quo-
rum area rationaliler exprimi possit (ibid., tomus posterior,
pp. 648-651). La piéce débule par quelques considérations
sur les triangles que nous nommons actuellement les arith-
motriangles héroniens (pp. 648-649); puis Euler ¢étudie, au
titre de probleme analogue, celui des arithmotriangles a
médianes rationnelles (pp. 649-650): « quod autem illo diffi-
« cilius est judicandum quoniam non generaliter solvi pati-
« tur ».

Ce probleme consiste donc a résoudre le systeme suivant
de trois équations

2(0° 4 ¢f) — > =17,
202+ a*) — 0*=1[],
2(a®> 4 %) — ¢ =

J'observerai que le probléme ui consiste a déterminer un
arithmotriangle (@, b, ¢) admeltant une médiane rationnelle
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(sans se préoccuper de la nature des deux aulres) est reso-
luble de la maniére suivante. L’équation du probleme
2(b% + ¢%) — =[],
mise sous la forme
200 + ) =a* + [,
est susceptible d’étre mise sous la nouvelle forme

(b4 cP+(b—c)P=2a+[];

il résulte de la théorie de l'arithmocercle que cette derniere
équation admet pour solution générale

a=(b+ c)cosa + (b —¢) sina ;

b et ¢ restent arbitraires, a est déterminé par cette équation,
o . .
dans laquelle « est un arc tel que tang 5 est rationnel (je ne

discute pas les conditions d’existence du triangle).

Il résulte de la remarque qui précede que, dans tout arith-
motriangle a médianes rationnelles, les trois cotés a, b, ¢
sont liés entre eux par trois relations linéaires et homogénes

a

b

|

(b + ¢) cosa 4 (b — ¢) sina ,
(c 4+ a)cos § 4+ (¢c — a) sin §

(@ 4+ b) cosy 4 (a — b) siny

J

c

1

o4 “
dans lesquelles tang 5, tangg, tang—;— sfont trois nombres

rationnels algébriques

B Y

tang%:x s 7tang§:y , tangizz 5

ces trois nombres sont assujettis a vérifier certaines inéga-
lités assurant l'existence effective du triangle et une relation
de compatibilité que je retiendrai seule :

—1 cos 2 4 sina cos o — sina
cos 3 — sinf3 —1 . cosf f+sinB | =0

cos y 4 siny cos Yy — siny " —1
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En posant, pour abréger I'écriture

2X — a® — 1 2Y =y — 1, 22 — ¥ — 1

cette condition prend la forme :

'X+1 X -2 X+«

Y + » Y +1 Y —y ’:0;
|
7 — 3 Z 4+ = Z—}—l:

par développement du déterminant, cette équation se réduit
finalement a celle

d’une surface algébrique du quatriéme ordre dépourvue de
ligne double.

Il 'y a, d’apres ce qui précede, équivalence entre le pro-
bléme d’EvLEr et 'étude arithmogéométrique de la surface
précédente. A tout arithmotriangle a médianes simultané-
ment rationnelles correspondent des arithmopoints de la
surface, puisque les équations en «, (3, y sont du second degré
en r, en y et en z. Inversement a tout arithmopoint de la
surface correspond une solution (a, b, ¢) délinie a un méme
facteur prés, dont l'existence correspond & une similitude
arbitraire des triangles solutions.

Quant a I'étude arithmogéométrique de la surface mise en
évidence, elle est immédiate, si 'on observe que c'est une
surface du quatrieme degré, admettant d’ailleurs quatre
séries de sections planes simples (v = const., y = const.,
z = const., x + y 4+ z = const.) qui sont des cubiques
planes. De tout arithmopoint connu @ priori ou par un pro-
cédé quelconque, se déduisent donc immédiatement quatre
cubiques non complanes douées d’arithmopoints.

99. — Il est intéressant de noter en passant que dans tout
arithmotriangle pythagorique la médiane relative a Uhypo-
ténuse est seule rationnelle. Cette question n’est point traitée
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dans les Commentationes arithmetice, mais elle conduilt a
’étude des équations simultanées

LZ"‘) _l__J.‘Z: D ,
=[],

to

32 + 4

entre les cathétes d’un triangle, ces équations exprimant
respectivement que le triangle est rectangle et que 'une des
médianes relatives a 'une des cathétes est rationnelle. Ce
systeme impossible a été considéré par EvLER, dans le sup-
plément de la piece du 5 juin 1780, citée au paragraphe 87,
al’occasion de l'inexistence d’arithmotriangles télémétriques.
100. — Le probleme traité par EuLEr dans son Mémoire
qui a pour titre Reclerches sur le probléme de trois nombres |
carrés tels que la somme de deux quelconques, moins le trot-
steme, fasse un nombre carré (Leonhardi Euleri, Commenta-
tiones arithmeitcee collectae, tomus posterior, Petropoli,
1849, pp. 603-616) se rattache manifestement par analogie au
probleme des arithmotriangles a médianes rationnelles. Les
équations sont ici

|

2 2 ¥ __ 2
b* + ¢ — @ == ] =p*,
¢+ a?— 0P =] =¢?,

2 24 D}

at + 0 — =] =r;

Euler en signale toute une série de solutions particuliéres,
telles que

I o m v v
a = 241 397 425 295 493
h = 269 593 373 769 797
¢ = 149 707 205 965 937

auxquelles correspondent respectivement les nombres :

I 11 111 v V
P = 19l 833 23 1081 1127
g = 89 533 289 833 - 697

r— 329 97 927 119 289 .
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lci encore, en posant

a="bcosa -+ csina ,
b—=ccos3 4 asinj,
c =acosy -+ bsiny ,

% g Y :

g =&, lango =y, tang5 =3 le probleme se
rameéne a l'étude arithmogéométrique d’une surface dont le
premier membre de l'équation est le développement du
déterminant exprimant la compatipilité entre les relations

qui précedent :

avec tang

\ — 1 cos a sina;
Esin;:‘, —1 cos 3 | = 0 ;
‘cosY siny —1 i

cette surface est représentée par l’équation du sixieme degré .

Quoique le degré de cette surface soit aussi élevé, il se
trouve qu’en raison de la nature de sa courbe a 'infini, une
grande simplification se produit ici. Les sections par les
plans paralléles al'un quelconque des plans coordonnés sont,
en effet, des quartiques planes. En outre, une telle quar-
tique se présente manifestement comme étant la projection
d'une biquadratique gauche. Si l'on considere, en effet, la
quartique située dans le plan de cote z, et silon pose

xy —= t

.«

la quartique considérée n'est autre que la projection de la
biquadratique gauche, intersection du paraboloide hyper-
bolique représenté par cette derniére équation en x, y et ¢
par une autre quadrique dont 'équation est moins simple.
De la connaissance d’une solution particuliere du probléme
il est donc possible de déduire une infinité de nouvelles
solutions, comme application de la théorie des fonctions

elliptiques.
(A sutvre)
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