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REMARQUES SUR LA THÉORIE DES ENSEMBLES

ET LES ANTINOMIES CANTOR1ENNES. — I.

PAR

D. Mirimanoff (Genève).

Introduction. Dans un travail récent, publié ici même1, j'ai
essayé de faire un rapprochement nouveau entre les antinomies

cantoriennes les plus connues, celle de Russell et celle
de Burali-Forli. Cette étude m'a amené à m'occuper d'un
problème important, que j'ai appelé problème fondamental
de la théorie des ensembles, et qui consiste à trouver les
conditions nécessaires et suffisantes pour qu'un ensemble
d'éléments existe. Ce n'est qu'en m'appuyant sur plusieurs
postulats que j'ai réussi à obtenir un critère pour une
catégorie d'ensembles que j'ai appelés ensembles ordinaires.

Comme je l'ai fait remarquer à la fin de mon travail, ces
postulats auraient besoin d'être examinés de près et discutés.
Je compte le faire prochainement, mais cette discussion exige
à son tour une étude préparatoire. Pour se rendre compte
de la portée des postulats, il est utile de préciser et d'approfondir

les notions en partie nouvelles que j'ai été amené à

introduire dans mon travail. C'est ce que je vais essayer de
faire dans ces premières remarques.

1. — Convenons de représenter un ensemble E dont les
éléments sont a, b, c, par (a, b, cIl y a deux choses
cà distinguer dans un ensemble: les éléments a, b, c, et

1 Eus. math., année 1917, p. 37 à 52.

L'Enseignement mathém., 19e année; 1917.
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l'opération de réunion ou d'association figurée par la parenthèse.

Dans ses Neue Grundlagen der Logik, Arithmetik und
Mengenlehre, J. König distingue plusieurs sortes d'opérations
d'association qu'on pourrait évidemment figurer par des

parenthèses de formes différentes. J'ai fait abstraction de

ces distinctions dans mon travail sur les antinomies.
Nous dirons donc qu'un ensemble E ne diffère pas d'un

ensemble F, lorsque tout élément de E est un élément de F
et réciproquement.

Soit a un élément d'un ensemble E. Deux cas peuvent se

présenter : ou bien, par définition, l'élément a n'est pas un
ensemble ; je dirai alors qu'il est indécomposable et je le
désignerai par une minuscule ; ou bien l'élément a est à son
tour un ensemble; dans ce cas je le désignerai par une
majuscule. Par exemple l'ensemble E (<?, E') contient un
élément indécomposable e et un élément-ensemble E'.

Si l'élément-ensemble E' contient deux éléments indécomposables

/', g, et un élément-ensemble E", on pourra écrire
E' (/', g, E"), d'où E [e, (/', g, E")) ; de même E" pourrait
être représenté par une nouvelle parenthèse, et ainsi de

suite. Pour mettre en évidence la composition des éléments
d'un ensemble, on est conduit, comme on le voit, à introduire
des parenthèses intérieures s'emboîtant les unes dans les
autres.

En supprimant les parenthèses intérieures relatives à un
ensemble E on obtient un ensemble nouveau qui ne doit pas
être confondu avec l'ensemble E. Supposons par exemple
que l'ensemble E contienne deux éléments F et G, tels que
F (/^ f*) ; G (gt» éV 03)1 les fa ff£ étant des indécomposables.

On pourra écrire E (F, G) {(f, /<>), igl, g2, g30).
En supprimant les parenthèses intérieures, on obtient

l'ensemble {fv, /2,g"i, g"2, g*3), que j'appellerai <g. Or aucun
des éléments de 3 n'est un élément de E, et réciproquement ;

du reste les ensembles E et & diffèrent entre eux non seulement

par leurs éléments, mais par le nombre de ces
éléments, puisque E n'en contient que deux tandis que 3 en
contient cinq.
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Gomme l'ensemble & est la somme des ensembles F et G,

supprimer les parenthèses revient ici à remplacer l'ensemble

primitif E dont les éléments sont F et G par la somme des

ensembles F et G.
2. — Deux notions m'ont été particulièrement utiles dans

mon travail sur les antinomies : celle de descente et celle
d'ensembles isomorphes.

En partant d'un ensemble E, parcourons une suite
quelconque E, E\ E" où E' est un élément de E, E" un
élément de E', etc. Cette opération, que j'ai appelée descente,

prend fin lorsqu'on tombe sur un terme indécomposable.
Telles sont par exemple les descentes E, e ; E, E', f dans

l'exemple donné au commencement du n° précédent. J'appelle
noyaux d'un ensemble E les termes indécomposables
auxquels aboutissent les descentes finies de E. Un noyau de E

n'est pas nécessairement un élément de E. Par exemple dans
le cas de l'ensemble E (F, G), que j'ai défini à la fin du

n° précédent, aucun des noyaux /, g'ne figure parmi les
éléments de E. Je désigne par N l'ensemble (e, f, de tous
les noyaux distincts. Le nombre de ces noyaux peut être
égal à 1. Tel est par exemple l'ensemble (e, (e)) dont l'un des
éléments est l'ensemble singulier (e).

Lorsque toutes les descentes d'un ensemble E sont finies,
je dis que E est un ensemble ordinaire.

Je passe maintenant à la notion d'isomorphisme. Cette
notion peut être définie par récurrence. Je dirai que deux
ensembles E et F sont isomorphes, s'il est possible d'établir
entre les éléments de E et ceux de F une correspondance
parfaite, telle qu'à un élément indécomposable de E corresponde

un élément indécomposable de F, et à un élément
ensemble E' de E, un élément ensemble isomorphe F' de F,
et réciproquement. Deux ensembles isomorphes différents
ne diffèrent que par les noyaux et non par les opérations
d'association ou de réunion figurées par les parenthèses.

Ce qui est commun par conséquent aux ensembles isomorphes

c'est leur structure ou le mode de leur composition. Si
Ton fait abstraction des propriétés particulières qui distinguent

un ensemble de ses isomorphes, si l'on ne retient que
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les particularités de sa structure, on arrive à un concept
nouveau qu'on pourrait appeler type de structure de cet
ensemble, concept étroitement lié aux notions de puissance,
et de nombres ordinaux de Cantor; il se confond en effet
avec la notion de puissance, ou de nombre cardinal, lorsqu'on
fait abstraction de la structure des éléments de l'ensemble,
ce qui revient à regarder ces éléments comme des indécomposables

; et d'autre part les types d'ordre des ensembles
bien ordonnés, ou les nombres ordinaux de Cantor, dérivent
directement des types de structure de certains ensembles
particuliers que j'ai appelés ensembles S.

3. — Ensembles de ire et 2de sorte. Conformément à Russell,

je dis qu'un ensemble E est de lre sorte, s'il diffère de

chacun de ses éléments; il est au contraire de 2e sorte, s'il
contient un élément au moins qui ne diffère pas de E. En
modifiant légèrement cette définition, nous dirons qu'un
ensemble est de lre sorte au sens nouveau, s'il n'est
isomorphe à aucun de ses éléments, et nous dirons qu'il est
de 2e sorte au sens nouveau, s'il est isomorphe à l'un au
moins de ses éléments (cf. le n° 2 de mon travail cité). 11

résulte de cette définition qu'un ensemble ordinaire est
toujours de lre sorte.

Je rappelle l'exemple d'un ensemble de 2e sorte au sens
nouveau que j'ai donné dans mon travail (p. 41). Supposons
qu'un ensemble E contienne deux éléments: un élément
indécomposable e et un élément-ensemble E' de la forme (e\
E"), où E" — (e'\ E'"), et en général E('?) E("+1!) pour
tout n. On voit immédiatement que l'ensemble E est
isomorphe à E'; il est donc bien de 2e sorte au sens nouveau.

Si en particulier aucun des noyaux e e'\ e{n\ n'était
différent de e, l'ensemble E pourrait être regardé comme
un ensemble de 2e sorte au sens de Russell.

Autre exemple d'un ensemble de 2e sorte au sens nouveau.
Je me rappelle avoir vu il y a quelques années un livre pour
enfants dont la couverture était ornée d'une grande image
en couleurs. Cette image que j'appellerai J représentait deux
enfants admirant le livre même dont je parle ou plutôt son
image, c'est-à-dire l'image Jr de l'image J. Sur cette image
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J' on apercevait, on devinait plutôt, les deux enfants en petit
et l'image du livre déformés par la perspective. Tout cela

devait théoriquement continuer à l'infini. Or, l'image primitive

J peut être considérée comme un ensemble dont les

éléments sont les enfants ei, e2, l'entourage f et l'image J'

de J, se décomposant à son tour en e\, e\, f' et J". etc. Si

donc l'on convient de regarder les éléments c1, / et

leurs transformés comme des, indécomposables, l'isomor-
phisme de J et de J' est manifeste, et l'image J possède bien,
au point de vue où je me place, les propriétés caractéristiques

d'un ensemble de 2e sorte au sens nouveau.
Ensembles bien ordonnés et ensembles S.

4. — J'ai fait voir dans le n° 5 de mon travail sur les
antinomies qu'en partant d'un nombre ordinal quelconque a de

Cantor on pouvait former un ensemble ordinaire à un

noyau dont la structure dérive directement des relations
d'ordre définissant le nombre a et que j'ai appelé ensemble
S. Une correspondance parfaite peut être établie de cette
manière entre les nombres ordinaux de Cantor et les
ensembles S ainsi formés. Soient a et ß deux nombres ordinaux

de Cantor; si a est inférieur à ß, l'ensemble as est un
élément de l'ensemble ß

Je crois utile de compléter maintenant les indications que
j'ai données au n° 5.

Rappelons d'abord que les nombres ordinaux de Cantor
sont les types d'ordre d'ensembles bien ordonnés.

Soit E (a, 6, c, un ensemble bien ordonné dont le
premier élément est le second ù, le troisième c, etc.

En remplaçant a, ô,c,... par des éléments nouveaux
quelconques a\ b\ c\ on obtient un ensemble E' qui diffère de
E, mais dont le type d'ordre est le même, pourvu que les
relations d'ordre n'aient pas changé, c'est-à-dire par exemple
que a', b', c\ soient respectivement le premier, le second,
le troisième élément de E', etc. Je rappelle que l'ensemble
E' est dit semblable à E. Pour arriver à la notion du type
d'ordre, ou nombre ordinal a, correspondant à E, nous
dovons faire abstraction des propriétés particulières des
éléments a, ô, c, et ne tenir compte que des relations
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d'ordre telles que « a précède b », « b précède c », etc. Peu
importe par conséquent que les éléments a, b, c, soient
des points, des corps, des symboles... Supposons en
particulier que ces éléments soient des ensembles A, B, G,
Cherchons à définir ces ensembles de telle manière que leur
structure dérive directement des relations d'ordre des
éléments correspondants a, b, c, Il suffit pour cela de
remplacer les mots ((précède» ou « est précédé de» par les
mots <( est un élément de » et « contient».

Quelle sera alors par exemple la structure de A? L'élément
correspondant a n'étant «précédé» d'aucun autre élément,
A ne doit «contenir» aucun élément; c'est donc un
indécomposable ou un noyau, que je désignerai par e. De même
l'élément b n'étant précédé que de l'élément a, B est un
ensemble qui ne contient qu'un seul élément: le noyau e.

Donc B t=- (e). On verra de même que C doit être de la forme
(e, (e)), etc.

On pourra définir ainsi de proche en proche les éléments
suivants D, F, de l'ensemble nouveau, qui n'est autre que
l'ensemble S correspondant à E.

Par cette transformation les propriétés particulières des
éléments de l'ensemble initial E ont été éliminées ; seules
les relations d'ordre apparaissent dans la structure de
l'ensemble transformé.

A tous les ensembles bien ordonnés du type a correspond
un ensemble S (ou plus exactement un type de structure aj
déterminé, car je suppose qu'on fait abstraction des propriétés
particulières du noyau e. Et réciproquement, à tout ensemble
S (son type de structure) correspond un nombre ordinal a

déterminé.
5. — Gomme je l'ai fait remarquer dans le n° 6 de mon

travail, on peut édifier la théorie des ensembles S en s'ap-
puyant uniquement sur lés propriétés suivantes, qu'il faut
alors regarder comme une définition de ces ensembles.

1. Un ensemble S est un ensemble ordinaire à un noyau
(le noyau e).

2. Si x et y sont deux éléments d'un ensemble S, l'un deux
est un élément de l'autre.
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3. Si E est un ensemble S, et si x est un élément de E,

tout élément de x est un élément de E.

Indiquons les propriétés les plus importantes des ensembles

S qui découlent de cette définition:
a) Si x et y sont deux éléments d'un ensemble S, on ne

saurait avoir à la fois « x est un élément de y » et « y est un
élément de x ».

En effet, tout ensemble E dont les éléments x, y sont liés

par des relations ce cette forme, possède la descente E, x,
?/, x, dans laquelle les termes x, y, se succèdent
périodiquement. Cette descente étant infinie, l'ensemble E ne
saurait être un ensemble S.

b) Soit E, E', E(,i), e une descente quelconque de E. Je

dis que tous les termes de cette descente sont des éléments
de E. En effet, en vertu de la propriété 3, cela est vrai de E"
et par suite, en vertu de la même propriété, de E(3) E(4), etc.
En particulier le noyau e est un élément de E.

11 en résulte que tout ensemble S contient un élément
indécomposable, le noyau e.

c) Tout élément E' de E est un ensemble S.

Il est évident d'abord que E' est un ensemble ordinaire à

un seul noyau (le noyau e).

Soient maintenant x y' deux éléments de E'. En vertu de
la propriété 3, x', yf sont des éléments de E; donc, en vertu
de 2, l'un d'eux [x par exemple) est un élément de l'autre
(de y'). Par conséquent E' possède les propriétés et 2.

Soit maintenant x" un élément de xr. En vertu de la

propriété b), xf! est un élément de E. Donc, en vertu de 2, x"
est un élément de E', à moins que E' ne soit un élément de
de x'\ mais cette dernière hypothèse est à rejeter, car elle
entraînerait une descente infinie. Donc x" est un élément de
E' et par conséquent E' possède les trois propriétés
caractéristiques des ensembles S.

cl) Soit & un sous-ensemble de E. Il est évident que &
possède les propriétés 1 et 2.

Supposons de plus que l'ensemble & possède aussi la
propriété 3 et qu'il diffère de E. Je dis que 3 figure alors
parmi les éléments de E.
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En effet soit E' un élément de E qui n'appartient pas à 3 ;

en vertu de 2 et 3, tous les éléments de 3 sont contenus dans
E'. Par conséquent 3> est un sous-ensemble de E'. Si 3 diffère
de E', on conclura de même que l'ensemble 3 est un sous-
ensemble d'un élément E" de E', etc. Comme la descente E,
E', E", est finie, on tombera finalement sur un terme E(w)

égal à 3- Or, en vertu de la propriété b) E('l) est un
élément de E.

Donc 3> est un élément de E, si 3 diffère de E.
On en déduit la propriété suivante que j'ai déjà énoncée

dans le paragraphe précédent:
Théorème. Etant donnés deux ensembles S de même

noyau e, ou bien ils sont égaux, ou bien l'un est un élément
de l'autre.

Soient E et F deux ensembles S de même noyau e, et
supposons que E diffère de F. Je dis que l'un de ces ensembles
est un élément de l'autre.

Désignons par 3 l'ensemble de tous les éléments communs
à E et F. Soit d'autre part x un élément quelconque de 3 et

x un élément quelconque de x. En vertu de 3, x est à la fois
un élément de E et un élément de F. Par conséquent x' est
un élément de <§. Il en résulte que l'ensemble 3 possède la

propriété 3.

Donc, en vertu de d)9 3 est un élément de E, si 3 diffère
de E et pour la même raison 3 est un élément de F, si 3>

diffère de F.
D'ailleurs 3 ne peut pas être à la fois élément de E et de

F, puisque, par définition, 3 est l'ensemble de tous les
éléments communs à E et F. Par conséquent 3 se confond avec
l'un des ensembles E, F, par exemple avec E, et alors E est

un élément de F ; c. q. f. d.

L'analogie entre les ensembles S et les ensembles bien
ordonnés est manifeste ; ce qui était à prévoir.

En particulier, le théorème que nous venons de démontrer
est l'analogue du théorème suivant de Cantor: Etant donnés
deux ensembles bien ordonnés, ou bien ils sont semblables

ou bien l'un est semblable à un segment de l'autre.
Du reste, il résulte immédiatement des propriétés 1, 2, 3
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qu'à tout ensemble S correspond un nombre ordinal déterminé

; en effet tout ensemble S peut être bien ordonné ; il
suffit pour cela de traduire les relations « x est un élément
de y», où x et y sont deux éléments quelconques de
l'ensemble, par les relations d'ordre ax précède yy>. On obtient
ainsi un type d'ordre déterminé que dans mon travail sur
les antinomies j'ai appelé rang de l'ensemble S. En
posant le rang du noyau e égal à zéro, on voit immédiatement
que le rang d'un ensemble S est le plus petit nombre ordinal
supérieur aux rangs de ses éléments.

L'analogie que je viens de souligner permet de ramener la

théorie des ensembles bien ordonnés à celle des ensembles
S. Je ne sais si cette méthode détournée présente des
avantages réels. En tout cas la théorie classique de Cantor apparaît

ainsi sous un aspect nouveau. L'essentiel pour nous c'est

que les relations d'ordre, au lieu d'être des étiquettes
artificielles, se trouvent en quelque sorte incorporées aux éléments
de l'ensemble, puisque le rang de chacun d'eux est déterminé
par la structure de l'élément. Aux nombres ordinaux de
Cantor correspondent dans cette théorie les types de structure

des ensembles S.

Dans l'étude suivante, je m'occuperai plus particulièrement
des antinomies cantoriennes.
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