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Tout ce probléme est ainsi ramené a la sommation de progres-
sions géométriques.

0...n
On trouve facilement Z .20 =2 4 (n—1). 2"
A
0...n - 1
On en déduit immédiatement > (A + 1) .2 =1 + n. i
A

et ce résultat, combiné avec la décomposition (a) du nombre n des
disques, conduit a la formule cherchée

T, =14+ &+ 1. 2h 1

L.-G. Dvu Pasquier (Neuchatel).

Remarques sur le probléme de Jean de Palerme
et de Léonard de Pise (Fibonacci),

a propos d’un article de M. E. Turriére.

Il est intéressant de rapprocher les recherches publiées récem-
ment par MM. Hentzschel! et Turriére? sur le probléme de Jean
de Palerme et de Léonard de Pise. Tandis que M. Turriére ne
fait usage que de moyens élémentaires, M. Hentzschel montre
comment I’emploi des fonctions p de Weierstrass facilite 'étude
approfondie de ces problémes arithmo-géométriques.

D’apres le 7¢ exemple du 3¢ livre de 'Arithmétique de Dio-
phante, il s’agit de trouver trois nombres en progression arith-
métique (@ — d, a, a + d) et tels que la somme de deux des
nombres soit chaque fois un carré parfait.

Diophante cherche d’abord trois nombres carrés qui sont en
progression arithmétique

2¢ —d = r? 2a = 1%, 2a + d = w?

il trouve
412 — 720 = 312 , 412 | 412 4 720 —= 492 . '

1 Jahresbericht der D. M.-V., 24c année, 1915, p. 467-471, LOsung einer Aufgabe aus der
Arithmetik des Diophante; 25° année, 1916, p. 139-145, Ueber eine Aufgabe aus der Arith-
metik des Diophante.

% L’Enseign. mathém., 17¢ année, 1915, p. 315-324, Le probléme de Jean de Palerme et de
Léonard de Pise.
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Mais c’est la premiére question de Jean de Palerme a L.éonard
de Pise (Fibonacci) qui a donné la solution

M\ /31\? 41\2 A\ (492
) —°=\3) ) n) T°=\n)

Il est clair que

e . W —r 24 r .
d’ou il suit que 5> 4&;2}—* et ¢ sont des nombres rationnels

de Pythagore.
M. Heentzschel a démontré [/. c., 24° année, p. 468, (5) et p. 469,
(7)-(11)] que 'expression générale de la série est:

2a = Plu) = /n/d,(2/12 — 2k 1) =1 ;
Ve
n®
2a¢ + d = Plu) — e, = ’l&2(21‘2 — 12 = w?
Wk
n?
d=e, = — 81:'{—.(216“——31(?—}-1) ,

ol P(u) est la fonction elliptique de Weierstrass. C’est la solution
primitive selon Fermat. Voici la solution complete du probleme
de Jean de Palerme (Jahresbericht, 25° année, p. 142), ot 0 est une
valeur spéciale de la différence d.

P(u) — o, Pu) . Plu)y 4+ 3 ;
(2u) — &, P(2u) , P(2u) +
(Bu) — o, P(3u) , PBu) 4+ 8 ;

o7

P ;
P
Plnu) — 3o, P(nu) , P(nu) 4+ 6 .

by ME[2ER— 2k 4 0 4 16K (247 — Bk 4+ 172
P2) = Tom @i =17 (20 — 2 + 1)°(2F° — &k &+ 12

P’ (nu)? = 4P (nu)[P?(nu) — d?] ;

. P (). P’ (2u) , ,
P(3u) = P(u) + P2) — Pla) (l. c.. p. 470, 471, 143).
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Exemples. A. k=5; n

(Léonard de Pise.)

A\T L [31\? W\ /RN L [49)?
(l) ('1_2)—0:<_[T_), 5 ;1—:—2' 5 E +3_ o .

113 2792

AR = 242 312 417,497 (24.31.41.

3344161 \2 5728 001 \?
= : tc.
<24.31.41.a9> +0 <24.31.41.49> e

B. A=—1, n=—=—2

5 : 51\2 _
— — -+ d’ot 92 — (=) : d=0J0=5.
=} d’ou suit 2a <12> s d

2; d’ou il suit 24 =25; d=0 = — 24
(Jahresbericht, 25° année, 1916, p. 142-145).
a) 52~ 9% — 12 ; B2 52 4 24 = 72
/ 1201\ . /U5L\2 71201\ /4200\2 71249\
'/ 70 ) T Tt \70 ) <—(T »\ 7o) T =\
| 7776 485\* . _ (4319 999\ 7776 485\2
¢/ 139901) — ~' = \1351.851) ° 1319 901) °
7776 485\2 10 113 6072
- 28 == (e} . .
<1 319 901> + 2 <1 551.851> ete

Dans le travail de M. Turriére on aurait

x' = P3u)’, voir p. 316, (3)

et a; = P(2u) , voir p. 320, (10).

A\

(D’apres une lettre de M. Hextzscuer. La Réd.)
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