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infini d'aiguilles, la série T se confondrait avec celle des nombres
impairs.

J'ai conseillé à mes jeunes gens de fabriquer pour leurs amis
le jeu des 4 aiguilles avec quelque 15 à 20 disques. Dans la pratique,

ce jeu donnera matière à beaucoup plus d'hésitations que le
jeu classique de la tour d'Hanoï. C'est dire qu'il a chance de n'être
pas moins amusant. Ils l'introduiront par un petit conte assyrien
et l'ont baptisé déjà : 1 e jeu de la Ziggurat.

Mon vieil ami L.-G. Du Pasquier, professeur à l'Université de
Neuchâtel, auquel j'ai communiqué les pages ci-dessus a bien
voulu répondre déjà au vœu que j'y exprime d'obtenir des
mathématiciens une formule facile permettant de calculer T Il m'a
permis de joindre à ma communication le complément qui suit.

Pierre Bovet (Genève).

II. — Désignons par t\—i le Âiéme nombre triangulaire; d'après
cela, t0 1, 3, C 6, t3 C 15, en général :

G — \ 'É 4~ 1) (^4~ Soit n un nombre positif d'ailleurs quelconque

; représentons par E2(#) le plus grand nombre triangulaire
contenu dans n ; par exemple E2(2) 1 ; E2(tt) 3 ; E2(9y — 6 ;

E2 (10, 33) — 10 ; etc. (Cette notation est une généralisation du
symbole de Legendre : E [n] plus grand nombre entier contenu
dans n ; nous posons donc par définition : E^x) E(.r) ; Es[x) le
plus grand nombre triangulaire contenu dans w ; E3(^j — le plus
grand nombre carré contenu dans x ; E4èr) le plus grand nombre
pentagonal contenu dans x; et ainsi de suite).

Cela posé, tout nombre positif n peut se représenter, et d'une
seule manière, sous forme d'une somme de deux termes

°ù t\ E2[n) est le plus grand nombre triangulaire contenu dans
7i, et r un nombre non négatif. Si, en particulier, n représente un
nombre entier, par exemple le nombre des disques dans le jeu en
question, on aura les décompositions suivantes :

n — 1 2 3 a4 5

1

6 n 8 9 10 11 12 13 14 15 16

il 1 1 3 3 3 6 6

1

6 6 10 10 10 10 10 15 15

r z=z 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1

A 0 0 1 1 1 2 2 2 2 3 3 3 3 3 4 4
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La série Tn est alors représentée par la formule

T„ 1 + (X+ r) 2>-+1

La sommation de la série
0...«

1 + 2 21 + 3 22 -f- 4 23 + 5 24 -f -f (n -f 1) 2" — ^ (M-l) • 2*.
à

qui intervient dans la formation des nombres T peut être trouvée,
grâce aux indications qui suivent, même par des garçons d'une
douzaine d'années, pourvu qu'ils connaissent la formule de
sommation des progressions géométriques. On a tout d'abord

2 (>- +1) •
2x 2x •+ 22X-

X

D'une part,
0 •.n

2 1 + 2 -}- 4 -f 8 4- -f- 2" 2"+1 — 1

X

0... 71

D'autre part, on peut représenter ^ Ä
• 2^dela manière que voici :

2 +

22 _j_ 3 23 + 4 24 -f- 5 25 + + n 2'

22 + 23 -f 24 + 25 + + 2'

22 —{— 23 + 24 + 25 + + 2'

-h 23 + 24 -f- 25 -f- + 2'

+ 24 -f 25 + + 2J

+
+ 2'7—1 + 2'

+ 2n

Faisant la sommation de chaque ligne horizontale séparément,
puis additionnant ces sommes partielles, il vient
0. ..71

2 À
•

2~A (2"+' — Il — 1

+ (2"+1 — 1) — (1 + 2)

_l_ (2«+1 _ _|_ 2 + 4)

+ (2»+i + 2 + 22 + 22)

+
_l_ (2»+l _ i) _ (i _|_ 2 + 22 -f 23 -f + 2"—2 +
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Tout ce problème est ainsi ramené à la sommation de progrès-
sions géométriques.

0-./i
On trouve facilement ^ ^ — 2 + [n — 1) 2" l.

X

0...71

On en déduit immédiatement ^ ^ ~ ^ ~f~ 11 *

A

et ce résultat, combiné avec la décomposition (a) du nombre n des

disques, conduit à la formule cherchée

Tn 1 + (X + r) 2*+i

L.-G. Du Pasquier (Neuchâtel).

Remarques sur le problème de Jean de Palerme

et de Léonard de Pise (Fibonacci),

à propos d'un article de M. E. Turrière.

Il est intéressant de rapprocher les recherches publiées récemment

par MM. HœnTzschel1 et Turrière2 sur le problème de Jean
de Palerme et de Léonard de Pise. Tandis que M. Turrière ne
fait usage que de moyens élémentaires, M. Haentzschel montre
comment l'emploi des fonctions f de Weierstrass facilite l'étude
approfondie de ces problèmes arithmo-géométriques.

D'après le 7e exemple du 3e livre de l'Arithmétique de Dio-
phante, il s'agit de trouver trois nombres en progression
arithmétique [a — d, a, a -f- d) et tels que la somme de deux des
nombres soit chaque fois un carré parfait.

Diophante cherche d'abord trois nombres carrés qui sont en
progression arithmétique

2 a — d — r2 2 a ~ t2 2 a d — <v2 ;

il trouve
412 __ 720 312 412 412 + 720 492

1 Jahresbericht der D. M.-V., 24e année, 1915, p. 467-471, Lösung einer Aufgabe aus der
Arithmetik des Diophante; 25e année, 1916, p. 139-145, Ueber eine Aufgabe aus der Arithmetik

des Diophante.
8 LJEnseign. mathêm., 17e année, 1915, p. 315-324, Le problème de Jean de Palerme et de

Léonard de Pise.


	...

