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infini d’aiguilles, la série T se confondrait avec celle des nombres
impairs.

J’ai conseillé a mes jeunes gens de fabriquer pour leurs amis
le jeu des 4 aiguilles avec quelque 15 a 20 disques. Dans la prati-
que, ce jeu donnera matiere a beaucoup plus d’hésitations que le
jeu classique de la tour d’Hanoi. C’est dire qu’il a chance de n’étre
pas moins amusant. lls introduiront par un petit conte assyrien
et 'ont baptisé déja: le jeu dela Ziggurat.

Mon vieil ami L.-G. Du Pasquier, professeur a 'Université de
Neuchatel, auquel j’ai communiqué les pages ci-dessus a bien
voulu répondre déja au veeu que j’y exprime d’obtenir des mathé-
maticiens une formule facile permettant de calculer T . Il m’a
permis de joindre 8 ma communication le complément qui suit.

Pierre Bover (Geneve).

II. — Désignons par z;—1 le 2€me nombre triangulaire; d’apres
cela, t,=1,7, =3, t,=6, t, =10, t,=15,..... en général :
t, =+ 4+ 1)A+2). Soit n un nombre positif d’ailleurs quelcon-

que ; représentons par E,(n] le plus grand nombre triangulaire
contenu dans n; par exemple E,(2) =1; E,(n) =3; E, (9= 6;
E, (10, 33) = 10 ; etc. (Cette notation est une généralisation du
symbole de Legendre: E(n) — plus grand nombre entier contenu
dans n; nous posons donc par définition : E,(2) = E(x) ; E,(x)=1e
plus grand nombre triangulaire contenu dans @ ; E,(x) = le plus
grand nombre carré contenu dans . ; E,(x) == le plus grand nombre
pentagonal contenu dans z; et ainsi de suite).

Cela posé, tout nombre positif n peut se représenter, et d’'une
seule maniére, sous forme d’une somme de deux termes

n==1=1O) +r (a)

ou ¢ = K, (n) est le plus grand nombre triangulaire contenu dans
n, et r un nombre non négatif. Si, en particulier, n représente un
nombre entier, par exemple le nombre des disques dans le jeu en
question, on aura les décompositions suivantes :
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La série T, est alors représentée par la formule
—— . ol
I =14 (4 r. 20

[.a sommation de la série

0...n

142.20483.2244. 845,204 . 4 (n41).2" = D) A41) . 2A

A

qui intervient dans la formation des nombres T , peut étre trouvée,

grace aux indications qui suivent, méme par des garcons d’une

douzaine d’années, pourvu qu’ils connaissent la formule de som-
9

mation des progressions géométriques. On a tout d’abord

ST+ 2 =D a2 Dok
A A I\
D’une part,

0...n

221:1+2+4+8+...+2”—_—_2"+1_1,
)

0...n
D’autre part, on peutreprésenter Z A .2"dela maniére que voici:
A

n.2"

+

0...n
Zx.21:04—1.2+2.22+3.23+4.24+5.25+...
x

— 2 + y 2% 4+ 2¢ 204 ...+ 2"

+ 27 L 23 | 2¢ L 25+ ...+ 2"
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. + 2/1—-—-1 + 2n
+ 2"

Faisant la sommation de chaque ligne horizontale séparément,
puis additionnant ces sommes parlielles, il vient

0...n
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Tout ce probléme est ainsi ramené a la sommation de progres-
sions géométriques.

0...n
On trouve facilement Z .20 =2 4 (n—1). 2"
A
0...n - 1
On en déduit immédiatement > (A + 1) .2 =1 + n. i
A

et ce résultat, combiné avec la décomposition (a) du nombre n des
disques, conduit a la formule cherchée

T, =14+ &+ 1. 2h 1

L.-G. Dvu Pasquier (Neuchatel).

Remarques sur le probléme de Jean de Palerme
et de Léonard de Pise (Fibonacci),

a propos d’un article de M. E. Turriére.

Il est intéressant de rapprocher les recherches publiées récem-
ment par MM. Hentzschel! et Turriére? sur le probléme de Jean
de Palerme et de Léonard de Pise. Tandis que M. Turriére ne
fait usage que de moyens élémentaires, M. Hentzschel montre
comment I’emploi des fonctions p de Weierstrass facilite 'étude
approfondie de ces problémes arithmo-géométriques.

D’apres le 7¢ exemple du 3¢ livre de 'Arithmétique de Dio-
phante, il s’agit de trouver trois nombres en progression arith-
métique (@ — d, a, a + d) et tels que la somme de deux des
nombres soit chaque fois un carré parfait.

Diophante cherche d’abord trois nombres carrés qui sont en
progression arithmétique

2¢ —d = r? 2a = 1%, 2a + d = w?

il trouve
412 — 720 = 312 , 412 | 412 4 720 —= 492 . '

1 Jahresbericht der D. M.-V., 24c année, 1915, p. 467-471, LOsung einer Aufgabe aus der
Arithmetik des Diophante; 25° année, 1916, p. 139-145, Ueber eine Aufgabe aus der Arith-
metik des Diophante.

% L’Enseign. mathém., 17¢ année, 1915, p. 315-324, Le probléme de Jean de Palerme et de
Léonard de Pise.
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