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La réductibilité à l'étude arithmogéométrîque d'une surface

de l'espace ordinaire n'est évidemment pas particulière
aux systèmes d'équations quadratiques. Lorsqu'en effet les

équations cp u2 et tp — v2 à étudier sont de degrés plus
élevés, la méthode précédente conduit à deux équations
algébriques en t ; l'élimination de t permet alors de se ramener
à l'étude d'une relation unique entre a, /3, y, S, homogène
par rapport à ces mêmes variables.

La réductibilité à l'étude d'une surface cubique de

l'espace ordinaire du système des deux équations quadratiques
<p(/r, y) a2 et $(.%, y) c2 étant acquise, il faut maintenant
observer que les conclusions du § 36 peuvent en outre être
appliquées à la nouvelle équation cubique. La surface cubique

obtenue est précisément douée de trois arithmopoints non-
singuliers, Ce sont les arithmopoints de coordonnées respectives

a — 0 [j — 0 y — 0,
a o } ßz=o, y y 0 o 0

a — 0 h 0
- T wo -

B *'o '

c'est-à-dire deux des sommets du tétraèdre de référence et
un troisième point de l'arête qui les joint. La connaissance
d'un seul de ces arithmopoints suffit pour assurer et diriger
parle procédé du § 36 la représentation rationnelle de la surface

cubique au moyen de deux paramètres indépendants.
Dans ces conditions, la connaissance d'une solution

particulière du système cCéquations quadratiques généralisées de
Bliaskara entraîne la résolubilité du système ; la solution
dépend de deux paramètres. Si la représentation trouvée de la
surface cubique est propre, cette solution est la solution générale.

Arithmogéométrie autour des cubiques de Lucas.

58. — Pour un nombre assez considérable d'équations
indéterminées ayant été l'objet de recherches spéciales, le
groupement x2 + y2 + z2 intervient dans la structure de ces
équations. Il semble donc qu'il y ait intérêt — et effective-

L'Enseignement mathém., 19e année; 1917. 12



178 E. TURRIÈRE

ment il y a très souvent un réel intérêt — de rattacher une
équation de cette espèce à l'étude d'une arithmosphère.

C'est ainsi que, pour une courbe sphérique, tracée sur une
sphère de rayon pris pour unité, les coordonnées d'un point
quelconque et leurs dérivées des deux premiers ordres par
rapport au paramètre qui repère le point courant de cette
courbe sphérique sont liées par une identité due à E.
Catalan :

(x/2 + y'2 + z'2) [(xy" — yx")2 + (yz" — ~y")2 + (zx" — ^.")2J

(x'af -f y'/ + z'z')* + [x\fz» — z'f) + + s Wf-fx")Y
Cette identité donne une infinité de solutions de l'équation

indéterminée
(PS _J_ Q2 _J_ R2j(P'2 + Q/a -f R'*} XJ2 yS

on en conclut, par exemple *,

(242 + 72 + 152)(302 -f 362 + 232) 3752 + 14752

Mais en pareil cas il convient de ne pas se laisser fasciner
par la présence du groupement x2 + y2 + s2; il peut y avoir
au contraire avantage à chercher des solutions arithmogéo-
m étriqué s n'ayant absolument aucun rapport avec l'arithmo-
sphère.

59. — L'équation x2 + y2 + z2 x'2 + y'2 + z2. Cette
équation quadratique homogène à six indéterminées se
rattache manifestement à l'arithmosphère. Si l'on se donne, en
effet, arbitrairement les trois indéterminées x\ y\ z\ la
détermination de x, y, z n'est autre que la recherche d'un arith-
mopoint quelconque sur l'arithmosphère de centre O qui
passe par l'arithmopoint de coordonnées x\ y', z L'équation

considérée peut donc être résolue par une des méthodes
indiquées au § 8 (représentation géographique, ou mieux :

projection stéréographique).
La même équation peut être étudiée arithmogéométrique-

ment d'une manière toute différente. J'observerai dans ce
but que cette équation est susceptible d'une interprétation

1 Question n° 1124 des Nouvelles Annales de Mathématiques.
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géométrique remarquable. Etant considéré un triangle de

référence ABC, si Ton prend sur les côtés des points A' sur
BC, B' sur GA et G' sur AB, déterminant sur cés mêmes côtés
six segments

BA' — x A'C — x'
CB' y B'A /
AC' z C'B — z'

la condition nécessaire et suffisante de concours des
perpendiculaires aux côtés en ces points A'B'C' est précisément
la relation

x2 + j2 + A2 x-/2 + /- + •

Cette remarque élémentaire faite, je supposerai que les
sommes x -f- x\ y -f y' et 2 sont imposées ; soient :

x —J— x — ci y —j— y — b z —j— z' — c

Je suppose en outre que les nombres a, ô, c peuvent être
considérés comme étant les mesures des côtés d'un arithmo-
triangle héronien.

La solution générale de l'équation indéterminée dépend
alors de a, b et c et de deux paramètres arbitraires. Pour
avoir cette solution générale, il suffira de se donner arbitrairement

un arithmopoint du plan de Vctrithmotriangle héronien

et de le projeter sur les droites arithmodirigées qui portent

les trois côtés de ce triangle : les six segments déterminés

par ces trois projections constituent précisément la solution
générale désirée.

60. — L'équation x2 y2 z2 — x'2 + y'2, qui de son
côté a fait aussi l'objet d'assez nombreuses remarques1 se
rattache à la précédente au titre de cas particulier. Les
formules déduites de l'étude arithmogéométrique d'une arith-
mosphère de centre 0 et qui passe par l'arithmopoint des
coordonnées (x\ y' et 0) se simplifient du fait que l'arithmopoint

connu a priori a sa cote nulle.

1 Cette équation indéterminée x2 + >/2 + — xn -f- y'2 + z'2 a été fréquemment considérée
(question n° 3621 de YIntermédiaire des Mathématiciens). Je pense toutefois que la solution
géométrique ci-dessus doit être nouvelle.

1 Question 4383 de VIntermédiaire des Mathématiciens.
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Cette équation comme la précédente est susceptible d'une
solution dépendant de la considération de l'arithmotriangle
héronien général. Ici toutefois la solution générale dépend
des côtés de l'arithmotriangle héronien et d'un seul
paramètre. Cette solution générale s'obtient, en effet, en supposant

que l'arithmopoint que l'on projette sur les côtés du

triangle n'est plus arbitraire dans le plan mais appartient à

une autre droite arithmodirigée spéciale du plan (perpendiculaire

en B à l'arithmodirigée AB).
61. — Le problème des parallélépipèdes rectangles

équivalents et isodiagonaux. — Le problème du § 46 peut
être étudié sous un nouveau point de vue et rattaché à l'étude
arithmogéométrique de l'une ou l'autre de deux cubiques
remarquables du plan d'un triangle. Ces cubiques ayant été

l'objet de deux questions très précises posées par Ed. Lucas,
il m'a paru justifié de proposer de leur donner le nom de
l'illustre géomètre, puisqu'il s'agit ici d'une application
arithmologique que Lucas aurait parfaitement pu suggérer,
s'il ne l'a pas fait d'ailleurs dans des notes aujourd'hui
perdues.

L'énoncé du problème des parallélépipèdes rectangles
équivalents et isodiagonaux, au sujet desquels toutes mes
recherches bibliographiques sont restées infructueuses, est
le suivant :

Etudier les couples de parallélépipèdes rectangles à arêtes
rationnelles dont les diagonales sont égales, sans être
nécessairement rationnelles, et dont les volumes sont équivalents.
Soient (.r, ?/, z) et (#', y', zf) les arêtes respectives des deux
parallélépipèdes que l'on désire associer ainsi. Les équations
du problème sont alors les suivantes :

{ X*+f-L +/» + *'«

} x.y.z ~ x' .y .z'

La question se traduisant ainsi par deux équations homogènes

respectivement des second et troisième degrés à six
inconnues, il convient de se donner arbitrairement trois
conditions supplémentaires. Pour chaque choix de ces conditions

supplémentaires, on aura à résoudre un problème du
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genre de celui traité au § 44, où j'avais imposé une arête
d'un des volumes et deux de l'autre.

Le problème des parallélépipèdes équivalents et isodiagonaux

se rattache à des considérations particulièrement
élégantes d'arithmogéométrie lorsqu'on impose les trois sommes
formées avec une arête de chacun des deux parallélépipèdes.
Soient, en effet, et, b, c les sommes

x -\- x' a y + r' — b z z/ —- c

Pour simplifier, je supposerai que ces longueurs a, &, c

sont les côtés d'un triangle ; cette hypothèse nécessaire pour
pouvoir introduire des considérations d'arithmogéométrie
conduit à des formules qui sont plus généralement valables

pour (a, b, c) absolument quelconques.
Si donc ABC est un triangle de côtés (#, è, c) et si

(.r, x\ y, y\ z, z) sont les mesures de six segments consécutifs,

dans l'ordre même de ces lettres, pris sur les côtés
BC, CA, AB du triangle, les équations ci-dessus écrites expriment

des propriétés géométriques remarquables.
La relation de J. Céva,

xyz — x'y'z'

exprime le concours des trois droites AA', BB', CC'. Quant
à la seconde relation

.,;2 + y* —J— z~ x'* + + ,/2

elle exprime que les perpendiculaires en A' BACX aux côtés
BC, CA, AB du triangle sont trois droites concourantes (§ 59).

Dans ces conditions, une solution particulière apparaît
manifestement; elle est tellement remarquable qu'elle mérite
d'être signalée avant de pousser plus loin l'étude générale
du système d'équations ci-dessus. En se bornant au cas d'un
triangle acutangle, les parallélépipèdes rectangles admettant
respectivement pour arêtes les segments d'ordre pair et d'ordre
impair déterminés sur les côtés d'un triangle quelconque par
les hauteurs du triangle sont des solutions particulières du
problème.

Si a, 6, c désignent les mesures rationnelles des côtés du
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triangle figuratif ABC, les expressions correspondantes des
arêtes des deux parallélépipèdes associés sont :

a2 -J- b2 — c2 a2 — b2 -f- c2
x — x —2 a

I's + c2 — a2

2b

c2 + a2 — b2

2 a

b2 — c2 -
2 h

c2 _ a2 + h2

2e

C'est ainsi que le triangle de côtés (4, 5, 6) donne, après
multiplication par 8, les deux parallélépipèdes rectangles
d'arêtes respectives

x —21 y 4 * 30

x' — 5 y' — 86 z' 18

62. — La première cubique d'Edouard Lucas. — C'est aux
cubiques qui font l'objet de la question suivante que se
rattache l'étude générale du problème des parallélépipèdes
rectangles équivalents et isodiagonaux. « On joint les trois
sommets d'un triangle ABC à un point P et l'on prend les
« intersections A'B' C' des lignes de jonction avec les côtés
« opposés. Trouver le lieu des points P de telle sorte que les
« perpendiculaires élevées sur les côtés aux points A'B'C'
« se rencontrent en un même point Q. Ce lieu est une cubi-
a que dont il est facile de déterminer seize points et trois
« tangentes. Déterminer les asymptotes et, aussi, trouver le
« lieu du point Q.1 »

Soient X. Y, Z les coordonnées barycentriques du point
courant P de la première cubique de Lucas, le triangle ABC
étant pris pour triangle de référence. La droite AP a pour
équation

Y - IY Z '

1 Ed. Lucas, Nouvelles Annales de Mathématiques, 2<= série, t. XV, 1876, question n° 1207,

p. 240. Solution p. 550-555 (Dkwulf).
Enoncé analogue par Ed. Lucas, Nouvelle correspondance mathématique, t. II, 1876, question

n° 83, p. 94. Solutions : lre partie, 1880, p. 56-65 et 2e partie, 1878, pp. 261-272 par
H. van Aubiïl.

Cf. >»ussi un article de H. van Aubkl, Nouvelle correspondance mathématique, t. V,
1879, p. 87, Sur un lieu géométrique (trouver le lieu des points Q tels que les perpendiculaires

QA', QB', QC abaissées sur les trois côtés d'un triangle ABC déterminent sur ces
côtés des segments en involution.
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et, par suite, les segments BA' et A'C déterminés
x Z

sur le côté £ 0 sont entre eux dans le rapport —, ^ • Les

valeurs des six segments BA', A'C, CB', B'A, AC et C B

sont donc

•y + z

J, 4tx' r' b-

Y

Y + Z

Z

Z + X

X
A - "'X + Y ' * X + Y '

la relation x2 + y2 + z2 — x2 + yn + z2 donne alors l'équation

de la première cubique de Lucas en ce système de
coordonnées barycentriques :

9 Y-Z |2 Z-X 9 X- Y_a" ' Y + Z Z + X. X + Y '

Cette cubique se transforme en elle-même dans la
transformation quadratique définie par les formules

XX1 YY1 ZZ1

et qui est analogue à la transformation isogonale. Cette
invariance de la cubique correspond à l'échange entre eux des
deux parallélépipèdes associés.

En revenant au problème des parallélépipèdes rectangles
équivalents et isodiagonaux, il résulte des considérations qui
précèdent que sa solution générale s'exprime par les
formules suivantes où et, b, c sont des paramètres absolument
quelconques (qui ne sont pas de toute nécessité les mesures
des côtés d'un triangle ABC) :

x a —

y !>*

z
x/ a

Y
Y + Z ' ' Y + Z

X f />•
Z

Z + X '

Y

Z + X

X
X + Y ' X + Y
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X, Y, Z sont les coordonnées homogènes d'un arithmopoint
quelconque de la cubique d'équation homogène

>2 >Y- z
n2,a'T^z °

passant par les sommets du triangle de référence (qui n'est
plus nécessairement le triangle A, B, G).

Il est essentiel de remarquer que la première cubique
d'Edouard Lucas permet de résoudre le problème des
parallélépipèdes lorsque a, b, c sont les mesures des côtés d'un
triangle et que, si cette dernière condition n'est pas satisfaite,

les formules obtenues gardent un sens et, par
continuité, donnent la solution générale du même problème.

La première cubique de Lucas [ou sa généralisation pour
le cas de a, ô, c quelconques] est douée d'un certain nombre
de points remarquables: les sommets ABC du triangle de
référence, le centre de gravité, l'orthocentre, les sommets
A, B, G, du triangle formé par les parallèles aux côtés de

ABC, etc D'où a priori un certain nombre d'arithmo-
points très simples

X 0 il o Z r= 1

x 0 Y 1 Z 0
:

X 1 H* II O Z — o

X 1 Y 1 z 1

x 1 Y — 1 z — —

X 1 Y — 1 z — 1

x -- — t Y 1 z 1

— a2 Y c2 + tf2 — b2 Z —

Ce dernier arithmopoint correspond, par exemple, au point
transformé de l'orthocentre dans la transformation quadratique

signalée précédemment.
63. — La seconde cubique de Lucas. — Soient maintenant

X, Y, Z les coordonnées trilinéaires du point Q. Le théorème
des projections donne immédiatement les expressions des
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segments BA', A'G... déterminés sur les côtés du triangle
ABC par les projections de Q :

Z 4- X cos B Y 4- X cos C

sin B ' sin G

_ X -f Y cos C
a __

Z -f- Y cos A
^ ~~' sin C ' ^ sin A

Y -j- Z cos A X -j- Z cos B

sin A ' sin B

l'équation de la seconde cubique de Lucas résulte du théorème

de J. Ce va :

(Y -f Z cos A) (Z + X cos B) (X + Y cos C) (Z + Y.cos A) (X + Z cos B)

(Y + XcosC).

Cette cubique est invariante dans la transformation isogonale.

Elle passe par les sommets A, B, C du triangle ABC,
par l'orthocentre, par le centre du cercle circonscrit qui est
d'ailleurs le centre de cette cubique, par les centres des

quatre cercles tritangents aux côtés du triangle, par les

points à l'infini des trois médiatrices qui sont asymptotes de
la cubique

Revenons au problème des parallélépipèdes. Il résulte
des considérations qui précèdent que l'on doit poser

2acZ + (a2 + c2 — b2)X 2abY + (a2 + b2 — c2)X
* — -, *=- —

S représentant la surface du triangle ABC; l'équation de la
seconde cubique de Lucas est alors:

n 2acZ -f- (a2 -f- c2 — />2)X

2ab Y + (a2 -j- b2 — c2) X

11 est absolument indispensable de supposer actuellement
que a, 6, c sont les mesures d'un véritable triangle et en
outre que ce triangle est un arithmotriangle héronien. A la
différence des considérations du paragraphe précédent relatif
à la première cubique de Lucas, où aucune hypothèse
restrictive n'était nécessaire sur la nature de a, b, c, ce n'est
actuellement que moyennant cette double condition que le
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problème des parallélépipèdes restangles équivalents et
isodiagonaux étudié sera susceptible d'être rattaché à l'étude
des arithmopoints de la seconde cubique de Lucas.

64. — Autre définition de la seconde cubique de Lucas.—
Je crois devoir indiquer ici une propriété importante1 qui
peut servir à définir la seconde cubique de Lucas.

La seconde cubique d'E. Lucas est le lieu des points Q
du plan d'un triangle ABC tels que les droites QA, QB et QG
soient normales en A, B et G à une même conique.

Si l'on représente, en effet, en coordonnées trilinéaires
par rapport au triangle de référence ABC, une droite issue
du sommet A par l'équation

Y ~ tïiL

l'involution des droites orthogonales autour du point A, qui
comprend comme couples de droites associées d'une part les
deux bissectrices (m 1, m — 1) et d'autre part la

hauteur AH (m — et 'e parallèle au côté opposé BG

(in' =—^ ^ est définie par l'équation

mm' -f- 1 -f- (m m') cos A 0

Si donc [x, y, z) sont les coordonnées trilinéaires du point
Q du lieu étudié, les perpendiculaires en A, B et G aux
droites OA, QB, QG ont pour équations respectives

Y — aZ Z ßX X Y Y

avec
z -f- r cos A x z cos B y -f- x cos G

a
y -f- c cos A ' z x cos B ' x -f- r cos G

Il résulte, d'autre part, de l'équation générale d'une conique

circonscrite à ABG,

x y z

que les coefficients jouant le rôle de coefficients angulaires

1 A porter au compte d'un auteur dont je ne puis préciser le nom, n'ayant pu retrouver
la référence utile.
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des tangentes aux sommets A, B, G du triangle de référence

sont
ûh

a e
" ~ë ' p=_â'

La condition nécessaire et suffisante pour que QA, QB, QG

soient normales à une même conique en A, B et G est donc

aßT — 1 ;

elle se traduit, par conséquent, par l'équation

(z y cos -A) [x z cos B) (y -j- x cos C)

— (y -f- z cos A) (z + x cos B) (x -f- y cos C)

représentative de la seconde cubique d'E. Lucas.

Les arithmotriangles télémétriques.

65. —Le problème télémétrique conduit à la considération
de triangles obtusangles particuliers ABC qui sont définis
par la relation1

sin 2C 4- 2 sin 2B rz: 0 ^B -jjj-

J'appellerai triangles télémétriques les triangles de cette
nature. Par exemple, les triangles d'angles

A 30° B 105° C 45°

qui peuvent être facilement construits à partir des triangles
équilatéraux sont des triangles télémétriques particuliers.

Soient maintenant A' B' C' les pieds des hauteurs d'un
triangle télémétrique. Le triangle pédal A' B' G' de ABC a

pour angles
A' 2A B' 2B — % G' 2G

Il en résulte que la relation de définition d'un triangle
télémétrique quelconque se traduit par une condition très sim-

1 J.-E. Estienne, Note sur les télémètres, Revue d'artillerie, novembre 1904.
Jules Raibaud, Instruments d'optique, d'observiition et de mesure, Encyclopédie scientifique,,

Paris, 1910, p. 321-322.
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